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FINITE GROUPS ALL OF

WHOSE MAXIMAL SUBGROUPS ARE SB-GROUPS

Pengfei Guo, Junxin Wang, and Hailiang Zhang

Abstract. A finite group G is called a SB-group if every subgroup of
G is either s-quasinormal or abnormal in G. In this paper, we give a
complete classification of those groups which are not SB-groups but all
of whose proper subgroups are SB-groups.

1. Introduction

All groups considered here are assumed to be finite, and all notations em-
ployed are standard.

Let Σ be an abstract group theoretical property. If all proper subgroups of
a group G have the property Σ but G does not have the property Σ, then G
is called a minimal non-Σ-group. One of the hottest topics in group theory is
to determinate the structure of minimal non-Σ-groups and many meaningful
results about this topic have been obtained. For example, O. J. Schmidt [12]
determined the structure of minimal non-nilpotent groups, K. Doerk [4] eluci-
dated the structure of minimal non-supersolvable groups, and J. G. Thompson
[14] gave the classification of nonsolvable groups all of whose local subgroups are
solvable. These achievements have greatly pushed forward the developments of
group theory. The more new results can be referred to refs. [7, 8, 9, 11, 13, 17].

The aim of the present article is to study the structures of some minimal non-
Σ-groups. Recall that a subgroup H of a group G is an abnormal subgroup
if x ∈ 〈H,Hx〉 for every x ∈ G. A subgroup H of a group G is said to be
quasinormal in G if HK = KH for any subgroup K of G, and H is said to be
s-quasinormal in G if HS = SH for any Sylow subgroup S of G. A. Fattahi [5]
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called a group G a B-group if every primary subgroup (i.e., subgroup of prime-
power order) of G is either normal or abnormal in G, and obtained the structure
of B-groups. Q. H. Zhang [16] studied the groups in which every subgroup is
either s-quasinormal (resp. quasinormal) or abnormal, and gave the structures
of the two kinds of groups. In this paper, we call such groups SB-groups (resp.
QB-groups), and call a group G a minimal non-SB-group (resp. minimal non-
QB-group, minimal non-B-group) if every proper subgroup of G is a SB-group
(resp. QB-group, B-group) but G itself is not. The complete classifications
of the minimal non-SB-groups, minimal non-QB-groups and minimal non-B-
groups are shown as follows.

Theorem 1.1. Let p, q and r be distinct primes. Then a group G is a minimal

non-SB-group if and only if G is one of the following types:
(I) G = 〈x, y | xp = yq

n

= 1, y−1xy = xi〉, where p ≡ 1 (mod q), n ≥ 2,

iq 6≡ 1 (mod p), iq
2

≡ 1 (mod p) with 1 < i < p;
(II) G = 〈x, y | xpq = yq = 1, y−1xy = xi〉, where p ≡ 1 (mod q), i ≡

1 (mod q), iq ≡ 1 (mod p) with 1 < i < p;
(III) G = 〈x, y | x4p = 1, y2 = x2p, y−1xy = x−1〉, where p 6= 2;

(IV) G = 〈x, y, z | xp = yq
n−1

= zq = 1, y−1xy = xi, [x, z] = 1, [y, z] = 1〉,
where p ≡ 1 (mod q), n ≥ 3, iq ≡ 1 (mod p) with 1 < i < p;

(V) G = 〈x, y, z | xp = yq
n−1

= zq = 1, y−1xy = xi, [x, z] = 1, [y, z] =

yq
n−2

〉, where p ≡ 1 (mod q), iq ≡ 1 (mod p) with 1 < i < p, n ≥ 3, and n ≥ 4
if q = 2;

(VI) G = P ⋊Q, where P = 〈a, b〉 is an elementary abelian p-group of order

p2, and Q = 〈y〉 is cyclic of order qr. The action of Q on P is defined by

ay = ai, by = bj, p ≡ 1 (mod q), and r ≥ 1, where i is a primitive q-th root of

unity modulo p, i 6≡ j (mod p) with 0 < i, j < p;
(VII) G = P ⋊ Q, where Q = 〈y〉 is cyclic of order qr > 1, with q ∤ p − 1,

and P is an irreducible Q-module over the field of p elements with kernel 〈yq〉
in Q;

(VIII) G = P ⋊Q, where P is a non-abelian special p-group of rank 2m, the

order of p modulo q being 2m, Q = 〈y〉 is cyclic of order qr > 1, y induces an

automorphism in P such that P/Φ(P ) is a faithful and irreducible Q-module,

and y centralizes Φ(P ). Furthermore, |P/Φ(P )| = p2m and |P ′| ≤ pm;
(IX) G = P ⋊ Q, where P = 〈a0, a1, . . . , aq−1〉 is an elementary abelian

p-group of order pq, Q = 〈y〉 is cyclic of order qr, q is the highest power of q
dividing p − 1 and r > 1. The action of Q on P is defined by ayj = aj+1 for

0 ≤ j < q − 1 and ayq−1 = ai0, where i is a primitive q-th root of unity modulo

p;
(X) G = 〈a, b | ap = bqr

m

= 1, b−1ab = ai〉, where p > r, q > r, p ≡
1 (mod r), (p, qrm(i − 1)) = 1, ir ≡ 1 (mod p) and iq 6≡ 1 (mod p) with

1 < i < p;
(XI) G = 〈a, b | ap = bq

mr = 1, b−1ab = ai〉, where p > q > r, p ≡ 1 (mod q),
(p, qmr(i − 1)) = 1, ir 6≡ 1 (mod p) and iq ≡ 1 (mod p) with 1 < i < p;
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(XII) G = 〈a, b | ap = bqr = 1, b−1ab = ai〉, where p > q > r, p ≡
1 (mod qr), (p, qr(i−1)) = 1, i is a primitive qr-th root of unity modulo p with

1 < i < p.

Theorem 1.2. The minimal non-QB-groups are exactly the groups of types

(I) to (XII) of Theorem 1.1, with P is also a quasi-Hamilton group in the case

of groups of type (VIII).

Theorem 1.3. The minimal non-B-groups are exactly the groups of types (I)
to (IV), (VI) to (XII) of Theorem 1.1, with p = 2, q = 3 and m = 1 in the case

of groups of type (VIII).

2. Preliminary results

We collect some lemmas which will be frequently used in the following de-
duction.

Lemma 2.1 ([16, Theorem 2]). If a group G is a SB-group, then G is super-

solvable.

Lemma 2.2 ([4]). Let G be a minimal non-supersolvable group. Then

(1) G has a unique normal Sylow p-subgroup P ;
(2) P/Φ(P ) is a minimal normal subgroup of G/Φ(P ), and P/Φ(P ) is non-

cyclic;
(3) If p 6= 2, then the exponent of P is p;
(4) If P is non-abelian and p = 2, then the exponent of P is at most 4;
(5) If P is abelian, then the exponent of P is p.

Lemma 2.3 ([16, Theorem 3]). A group G is a SB-group if and only if G is

precisely one of the following:
I) G is a nilpotent group;
II) G = HP , where H is a normal abelian p′-Hall subgroup of G, P =

〈x〉 ∈ Sylp(G), 〈xp〉 = Op(G) = Z(G), x induces a fixed-point-free power

automorphism of order p on H, and p is the smallest prime factor of |G|.

Lemma 2.4. Let G be a minimal non-SB-group. Then G has a normal Sylow

subgroup and |π(G)| ≤ 3.

Proof. By assumption, every proper subgroup of G is a SB-group, and G is
supersolvable or minimal non-supersolvable by Lemma 2.1. Lemma 2.2 implies
that G is solvable. Let A = {P1, P2, . . . , Ps} be a Sylow basis, where Pi is a
Sylow pi-subgroup of G and p1 < p2 < · · · < ps. Suppose that s ≥ 4.

Since PiPs < G, PiPs is supersolvable. Thus, Ps is normalized by each
Pi(i = 1, 2, . . . , s), and so Ps E G. Since Ps has a complement which must be
supersolvable, it follows that G has a Sylow tower.

Without loss of generality, we suppose that s = 4. If P1 is non-cyclic, then
by Lemma 2.3, P1P2P3, P1P2P4 and P1P3P4 must be nilpotent, and so G is
nilpotent, a contradiction. Hence P1 is cyclic. If one of P1P2P3, P1P2P4 and
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P1P3P4 is nilpotent, then by Lemma 2.3, all of them are nilpotent, and so
G is nilpotent, a contradiction. Thus, each of P1P2P3, P1P2P4 and P1P3P4

is not nilpotent. By Lemma 2.3, P2P3, P2P4 and P3P4 are all abelian, and
every element of P1 acting on P2P3, P2P4 and P3P4 are fixed-point-free power
automorphisms of order p. Clearly, P2P3P4 is abelian, and every element of P1

acting on P2P3P4 is a fixed-point-free power automorphism of order p, and so
G is a SB-group, a contradiction. Hence |π(G)| ≤ 3. �

Lemma 2.5 ([10, 13.4.3]). Let α be a power automorphism of an abelian group

A. If A is a p-group of finite exponent, then there is a positive integer l such
that aα = al for all a in A. If α is nontrivial and has order prime to p, then α
is fixed-point-free.

Lemma 2.6 ([6, Lemma 2.9]). If a p-group G of order pn+1 has a unique non-

cyclic maximal subgroup, then G is isomorphic to one of the following groups:
(I) Cpn × Cp = 〈a, b | ap

n

= bp = 1, [a, b] = 1〉, where n ≥ 2;

(II) Mpn+1 = 〈a, b | ap
n

= bp = 1, [a, b] = ap
n−1

〉, where n ≥ 2, and n ≥ 3 if

p = 2.

Lemma 2.7 ([16, Corollary 2]). A group G is a QB-group if and only if G is

precisely one of the following:
I) G is a quasi-Hamilton group;
II) The group as listed in Lemma 2.3 II).

Lemma 2.8 ([16, Corollary 3]). A group G is an B-group if and only if G is

precisely one of the following:
I) G is a Dedekind group;
II) The group as listed in Lemma 2.3 II).

Lemma 2.9 ([18]). A p-group G is a quasi-Hamilton group if and only if G
is either a Hamilton group or G has an abelian normal subgroup A such that

G/A is cyclic, and there exist a positive integer s and an element g of G such

that G = 〈A, g〉, ag = a1+ps

for any a ∈ G, s ≥ 2 if p = 2.

3. The proof of Theorem 1.1

Proof. If G is a minimal non-SB-group, then by Lemma 2.4, |π(G)| ≤ 3.
We first consider the case of |π(G)| = 2, and assume that G = PQ with

P EG and Q 5 G by Lemma 2.4, where P ∈ Sylp(G) and Q ∈ Sylq(G).
Assume that neither P nor Q is cyclic. Let P1 be an arbitrary maximal

subgroup of P , and let Q1 and Q2 be two distinct maximal subgroups of Q.
By assumption, PQ1 and PQ2 are SB-groups. Lemma 2.3 implies that P1 is
normal in G = 〈P,Q1, Q2〉. For two distinct maximal subgroups A and B of
P , AQ and BQ are SB-groups by assumption. By Lemma 2.3, Q is normal in
G = 〈A,B,Q〉, a contradiction. Hence either P or Q is cyclic.

Now we divide the situation into the following four cases to be discussed.
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(1) Assume that P and Q are both cyclic, and let P = 〈x〉 and Q = 〈y〉
with |x| = pm and |y| = qn. In this case, y−1xy = xi with iq

n

≡ 1 (mod pm),
p ≡ 1 (mod q), 1 < i < pm and (pm, qn(i − 1)) = 1. By assumption, P 〈yq〉

and 〈xp〉Q are both SB-groups. Clearly, 〈yq〉 is not normal in G, and 〈yq
2

〉 is

normal in 〈x〉〈yq〉. We have (yq)−1xyq = xiq 6= x and (yq
2

)−1xyq
2

= xiq
2

= x.
Hence iq 6≡ 1 (mod pm), yq induces a power automorphism of order q in P , and
every proper subgroup of 〈yq〉 is normal in G. If xp 6= 1, then by Lemma 2.5,
〈xp〉〈yq〉 6= 〈xp〉 × 〈yq〉. However, we have 〈xp〉〈yq〉 = 〈xp〉 × 〈yq〉 since 〈yq〉 is
normal in 〈xp〉〈y〉, a contradiction. So G is of type (I).

(2) Assume that P is cyclic, Q is non-cyclic and p > q. If Q has two distinct
non-cyclic maximal subgroups Q1 and Q2, then by Lemma 2.3, PQ1 = P ×Q1

and PQ2 = P × Q2. Hence Q = Q1Q2 is normal in G, a contradiction.
Therefore, all maximal subgroups of Q are cyclic or Q has a unique non-cyclic
maximal subgroup.

Case 1. All maximal subgroups of Q are cyclic. It is clear that Q is either
an elementary abelian group of order q2 or the quaternion group of order 8.

If Q is elementary abelian, then we let P = 〈z〉, Q = 〈a, b | aq = bq =
1, [a, b] = 1〉, a−1za = zi, b−1zb = zj , where iq ≡ jq ≡ 1 (mod p), 1 ≤ i, j < p,
|z| = pm with m ≥ 1. If zp 6= 1, then 〈zp〉Q = 〈zp〉 × Q by Lemma 2.3.
Clearly, there exists a nontrivial power automorphism that a or b acts on P
by conjugation. Without loss of generality, we assume that a acting on P by
conjugation is nontrivial. By Lemma 2.5, 〈zp〉〈a〉 6= 〈zp〉×〈a〉, which contradicts
the fact that 〈zp〉Q = 〈zp〉 ×Q. Thus, zp = 1. If CG(P ) = P , then G/CG(P )
is an elementary abelian group of order q2. However, G/CG(P ) . Aut(P ),
and Aut(P ) is cyclic, a contradiction. Therefore one of a and b is contained in
CG(P ) but the other is not. We can let CG(P ) = 〈x〉, y−1xy = xi, where x = zb
is a generator of CG(P ), |x| = pq, y = a, i ≡ 1 (mod q) and iq ≡ 1 (mod p).
So G is of type (II).

If Q is the quaternion group of order 8, then we let Q = 〈a, b | a4 = 1, b2 =
a2, b−1ab = a−1〉 and P = 〈z〉. With similar arguments as above, there exists
a nontrivial power automorphism that a or b acts on P by conjugation, and
zp = 1. We can assume that a acting on P by conjugation is nontrivial. Since
P 〈a〉 is a SB-group, 〈a2〉 ≤ CG(P ). If CG(P ) = P × 〈a2〉, then G/CG(P )
is an elementary abelian group of order 4, which contradicts the fact that
G/CG(P ) . Aut(P ), and Aut(P ) is cyclic. Therefore, CG(P ) must contain an
element of order 4, and let CG(P ) = 〈x〉 be a cyclic group of order 4p, where x
is a generator of CG(P ). Surely, G has an element y of order 4 such that y 6= xp,

and let y−1xy = xi, where i 6≡ 1 (mod 4p). Since (y2)−1xy2 = xi2 = x, we have
i2 ≡ 1 (mod 4p). By calculations, G = 〈x, y | x4p = 1, y2 = x2p, y−1xy = x−1〉.
So G is of type (III).

Case 2. Let P = 〈x〉, and let Q be as in Lemma 2.6 (I) with |Q| = qn.

That is, Q = 〈y, z | yq
n−1

= zq = 1, [y, z] = 1〉, where n ≥ 3. Then Q has the
maximal subgroups H = 〈y〉, K0 = 〈yq, z〉 and Ks = 〈yq, zys〉 = 〈zys〉 with
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s = 1, . . . , q−1, where K0 is the unique non-cyclic maximal subgroup of Q. By
Lemma 2.3, PK0 = P ×K0. Clearly PH 6= P ×H and z ∈ Z(G). Since PH
is a SB-group, y induces a power automorphism of order q in P . With similar
arguments used in Case 1, we can prove xp = 1. Hence G = 〈x, y, z | xp =

yq
n−1

= zq = 1, y−1xy = xi, [x, z] = 1, [y, z] = 1〉, where n ≥ 3, p ≡ 1 (mod q),
iq ≡ 1 (mod p) with 1 < i < p. So G is of type (IV).

Case 3. Let P = 〈x〉, and let Q be as in Lemma 2.6 (II) with |Q| = qn.

That is, Q = 〈y, z | yq
n−1

= zq = 1, z−1yz = y1+qn−2

〉, where n ≥ 3, and n ≥ 4
if p = 2. In the similar way as Case 2, y induces a power automorphism of
order q in P and 〈z〉 ≤ CG(P ). Furthermore, we have xp = 1, y−1xy = xi,
where p ≡ 1 (mod q), iq ≡ 1 (mod p) with 1 < i < p. So G is of type (V).

(3) Assume that G is supersolvable, P is non-cyclic and Q = 〈y〉.
Since G is supersolvable, we have easily that P has at least two maximal

subgroups which are normal in G by applying Maschke’s Theorem [10, 8.1.2]
and Schreier’s Refinement Theorem [10, 3.1.2]. By assumption, we further have
that every maximal subgroup of G has prime index, 〈yq〉 = Oq(G) = Z(G), G
has maximal subgroups P 〈yq〉g and P1〈y〉

g, where P1 is some maximal subgroup
of P which can permute with 〈y〉g, and g ∈ G. If G is a PST-group, then P
is abelian by applying Agrawal’s Theorem in [1]. (A group G is called a PST-
group if s-quasinormality is a transitive relation in G, and Agrawal showed
that G is a solvable PST-group if and only if it has an abelian normal Hall
subgroup N on which G acts by conjugation as power automorphisms and
G/N is a solvable PST-group.) By Lemma 2.5, y induces a fixed-point-free
power automorphism of order q on P , i.e., G is a SB-group, a contradiction.
Clearly, all maximal subgroups of G are PST-groups by assumption, and so G
is a minimal non-PST-group. An accurate examination of the list of minimal
non-PST-groups in [11, Theorem 1], we have that either G is of type (VI) with
j = 1 or G is of type (VI) with j 6= 1.

(4) Assume that G is minimal non-supersolvable and Q is cyclic.
Denote M = P3Q⋖G, where P3 is a Sylow p-subgroup of M . By [P3, Q] ≤

P∩P3Q = P3, we haveNG(P3) ≥ P3Q = M . On the other hand, NP (P3) > P3,
so P3 is normal in G. By Lemma 2.2 and the maximality of M , P3 = Φ(P ) is
a Sylow p-subgroup of M . Thus, we prove that Φ(P ) is a Sylow p-subgroup of
M if Q ≤ M ⋖G.

Case 1. If G is also a minimal non-nilpotent group, then G is of either type
(VII) or type (VIII) by [3, Theorem 3].

Case 2. If G is not a minimal non-nilpotent group and P is abelian, by
applying [2, Theorem 9, 10], we assume that G = PQ, where P = 〈a0, a1, . . .,
aq−1〉 is an elementary abelian p-group of order pq, Q = 〈y〉 is cyclic of order
qr, qf is the highest power of q dividing p − 1 and r > f ≥ 1. The action of
Q on P is defined by ayj = aj+1 for 0 ≤ j < q − 1 and ayq−1 = ai0, where i is a

primitive qf -th root of unity modulo p.
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By assumption, P 〈yq〉 is a SB-group, and so yq induces a power automor-

phism of order q in P by Lemma 2.3. Hence ay
q
2

j = ai
q

j = aj , a
yq

2

q−1 = ai
q

q−1 =

aq−1. Thus, i
q ≡ 1 (mod p) and f = 1, so G is of type (IX).

Case 3. Assume that G is not a minimal non-nilpotent group and P is non-
abelian. By [2, Theorem 9, 10], we assume that G = PQ such that P = 〈a0, a1〉
is an extraspecial group of order p3 with the exponent p, Q = 〈y〉 is a cyclic
group of order 2r with 2f the largest power of 2 dividing p− 1 and r > f ≥ 1,
and ay0 = a1 and ay1 = ai0x, where x ∈ 〈[a0, a1]〉 and i is a primitive 2f -th root
of unity modulo p.

By assumption, all subgroups of P 〈y2〉 are SB-groups. If P 〈y2〉 6= P × 〈y2〉,
then by Lemma 2.3, P is abelian, a contradiction. Hence P 〈y2〉 = P × 〈y2〉

and ay
2

0 = ay1 = ai0x = a0, which implies that x = 1 and i ≡ 1 (mod p), a
contradiction. So G is not of the type as above.

Next we discuss the case that |π(G)| has exactly three prime divisors.
By Lemma 2.4, we can assume that G = PQR, where P ∈ Sylp(G), Q ∈

Sylq(G), R ∈ Sylr(G), and p > q > r. If R is non-cyclic, then PR and
QR are all nilpotent by Lemma 2.3. Hence R is normal in G. Let R1 be
an arbitrary maximal subgroup of R. Then PQR1 is a SB-group and hence
PQR1 is nilpotent by Lemma 2.3, which implies that G itself is nilpotent, a
contradiction. Thus, we have that R is cyclic and PQ E G. By assumption,
PQ is either a nilpotent group or a group of the type (2) in Lemma 2.3 by
Lemma 2.3.

Case 1. Assume that PQ = P ×Q, PR = P ×R and QR = Q×R. Then
G is nilpotent, a contradiction.

Case 2. Assume that PQ = P × Q, PR = P × R and QR = Q ⋊ R. By
Lemma 2.3, Q is an abelian q-group and R is cyclic. If |P | 6= p, then P1QR
is nilpotent by Lemma 2.3 again, where 1 < P1 < P , a contradiction. Hence
|P | = p. Similarly, |Q| = q and G is a metacyclic group.

Therefore, we first assume that G = 〈a, b | apq = br
m

= 1, b−1ab = ai〉,
where ir

m

≡ 1 (mod pq), q ≡ 1 (mod r), 1 < i < pq and (pq, rm(i − 1)) = 1.
By assumption, (aq)b = aiq = aq, and so i ≡ 1 (mod p), a contradiction.

Next we assume that G = 〈a, b | aq = bpr
m

= 1, b−1ab = ai〉, where ipr
m

≡
1 (mod q), q ≡ 1 (mod r), 1 < i < q and (q, prm(i − 1)) = 1. Furthermore,
ab

r

= ai
r

= a, and ab
p

= ai
p

6= a. Hence ir ≡ 1 (mod q), ip 6≡ 1 (mod q), and
G is isomorphic to type (X).

Case 3. Assume that PQ = P ×Q, PR = P ⋊R and QR = Q×R. With
similar arguments as above, we have |P | = p, |Q| = q, R is cyclic.

Assume that G = 〈a, b | apq = br
m

= 1, b−1ab = ai〉, where ir
m

≡
1 (mod pq), p ≡ 1 (mod r), 1 < i < pq and (pq, rm(i − 1)) = 1. However,
(ap)b = aip = ap, and so i ≡ 1 (mod q), a contradiction.
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Now we can assume that G = 〈a, b | ap = bqr
m

= 1, b−1ab = ai〉, where
iqr

m

≡ 1 (mod p), p ≡ 1 (mod r), 1 < i < p and (p, qrm(i − 1)) = 1. Further-
more, ab

r

= ai
r

= a, and ab
q

= ai
q

6= a. Hence ir ≡ 1 (mod p), iq 6≡ 1 (mod p),
and G is of type (X).

Case 4. Assume that PQ = P×Q, PR = P⋊R andQR = Q⋊R. If |P | > p,
then let x be an element of P with x 6= 1, y ∈ Q, and z ∈ R. By assumption,
we have (xy)z = (xy)j , xz = xk, yz = yl for some positive integers j, k and
l. Hence (xy)z = xjyj = xkyl = xzyz. Furthermore, xz = xj , yz = yj , which
implies that R induces a fixed-point-free power automorphism of order r on PQ,
a contradiction. Hence |P | = p. Similarly, |Q| = q. Thus, G is a metacyclic
group. We only can assume that G = 〈a, b | apq = br

m

= 1, b−1ab = ai〉,
where ir

m

≡ 1 (mod pq), p ≡ 1 (mod r), q ≡ 1 (mod r), 1 < i < pq and
(pq, rm(i− 1)) = 1. However, G is a SB-group, a contradiction.

Case 5. Assume that PQ = P ⋊ Q, PR = P × R, QR = Q × R. With
similar arguments as above, |P | = p, |R| = r and Q is cyclic with |Q| = qm.

We first assume that G = 〈a, b | ap = bq
mr = 1, b−1ab = ai〉, where iq

mr ≡
1 (mod p), p ≡ 1 (mod q), 1 < i < p and (p, qmr(i − 1)) = 1. Furthermore,
ab

r

= ai
r

6= a and ab
q

= ai
q

= a. Hence ir 6≡ 1 (mod p), iq ≡ 1 (mod p), and
G is of type (XI).

Next we assume that G = 〈a, b | apr = bq
m

= 1, b−1ab = ai〉, where iq
m

≡
1 (mod pr), p ≡ 1 (mod q), 1 < i < pr and (pr, qm(i − 1)) = 1. Furthermore,
(ap)b = aip = ap, and so i ≡ 1 (mod r), a contradiction.

Case 6. Assume that PQ = P ⋊ Q, PR = P × R, QR = Q ⋊ R. With
similar arguments as above, |P | = p, |Q| = q, R is a cyclic subgroup of order
rm, and G is a metacyclic group. This contradicts the assumption.

Case 7. Assume that PQ = P ⋊ Q, PR = P ⋊ R, QR = Q × R. With
similar arguments as above, |P | = p, |Q| = q, |R| = r. We assume that
G = 〈a, b | ap = bqr = 1, b−1ab = ai〉, where iqr ≡ 1 (mod p), p ≡ 1 (mod q),
p ≡ 1 (mod r), 1 < i < p, (p, qr(i − 1)) = 1. Clearly, iq 6≡ 1 (mod p) and
ir 6≡ 1 (mod p). So G is of type (XII).

Case 8. Assume that PQ = P ⋊ Q, PR = P ⋊ R, QR = Q ⋊ R. With
similar arguments as above, G is a metacyclic group, a contradiction. Hence
G does not exists.

Conversely, it is clear that a group which belongs to types (I), (II), (X)—
(XII) is a minimal non-SB-group.

For type (III), G is not nilpotent, and all Sylow 2-subgroups of G are non-
cyclic, G is not a SB-group by Lemma 2.3. Since 〈x2p〉 = Z(G) is the unique
subgroup of G of order 2 and G has maximal groups of orders 4p and 8, we
have that G is a minimal non-SB-group.

For type (IV), it is clear that G is not a SB-group. With similar arguments
used in Case 2 of (2), G has maximal subgroups PHg, PKg

0 , PKg
s and Qg,

where g ∈ G,K0 = 〈yq, z〉, Ks = 〈zys〉 with s = 1, . . . , q − 1. Since 〈yq〉
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is normal in G and z ∈ Z(G), we have that all proper subgroups of G are
SB-groups. Therefore, G is a minimal non-SB-group.

For type (V), in the similar way as type (IV), we conclude that G is a
minimal non-SB-group easily.

For type (VI), we conclude easily that G has maximal subgroups 〈a〉Qg,
〈b〉Qg and Qg, where g ∈ G. Clearly, G is a minimal non-SB-group.

For types (VII) and (VIII), since G is minimal non-nilpotent, G is non-
supersolvable by [15, Theorem 2.8]. In view of Lemma 2.1, G is not a SB-group,
and so G is a minimal non-SB-group.

For type (IX), since G is minimal non-supersolvable, G is not a SB-group
by Lemma 2.1. Similar arguments used in (4) lead to the fact that G has
maximal subgroups P 〈yq〉u and Qu, where u ∈ G. Clearly, G is a minimal
non-SB-group. �

Remark 3.1. By applying Lemma 2.7, Lemma 2.8 and Lemma 2.9, similar
procedure to the proof of Theorem 1.1, we easily obtain Theorem 1.2 and
Theorem 1.3, so we omit their proofs.
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