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CERTAIN GROUPS OF AUTOMORPHISMS OF A

UNIVERSAL MINIMAL TRANSFORMATION GROUP

Jung Ok Yu*

Abstract. A subgroup S(X, γ) of the group of automorphisms of a

universal minimal transformation group is introduced and a necessary

and sufficient condition for two subgroups to be identical is obtained.

1. Certain groups of automorphisms of

a universal minimal transformation group

Throughout this paper, (X, T ) will denote the transformation group

with compact Hausdorff space X. A closed nonempty subset A of X

is called a minimal subset if for every x ∈ A, the orbit xT is dense in

A. A point whose orbit closure is a minimal subset is called an almost

periodic point. If X is itself minimal, X is called a minimal set.

If T is a topological group, a universal minimal transformation group

for T is a minimal set (M, T ) such that every minimal set with group

T is a homomorphic image of (M, T ). For any group T , a universal

minimal transformation group exists and is a unique up to isomorphism

([6]).

A continuous map π : (X, T ) → (Y, T ) with π(xt) = π(x)t is called

a homomorphism. A homomorphism π from (X, T ) onto itself is called

an endomorphism of (X, T ), and an isomorphism π : (X, T ) → (X, T )
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is called an automorphism of (X, T ). We denote the group of auto-

morphisms of (X, T ) by A(X).

The compact Hausdorff space X carries a natural uniformity whose

indices are the neighborhood of the diagonal in X × X. Two points x

and y of X are called proximal provided that for each index U of X,

there exists a t ∈ T such that (xt, yt) ∈ U . Two points x and y of X

are regular if h(x) and y are proximal for some automorphism h of X.

Let {(Xi, T )|i ∈ I} be a family of transformation groups with the

same phase group T . The product transformation group (
∏

i
Xi, T ) is

defined by the condition that (xi|i ∈ I) ∈
∏

i
Xi and t ∈ T imply

(xi|i ∈ I)t = (xit|i ∈ I).

Definition 1.1. ([1]) A minimal transformation group (X, T ) is

called regular if x, y ∈ X, then there is an endomorphism h of (X, T )

such that h(x) and y are proximal. Equivalently, if (x, y) is an almost

periodic point of (X×X, T ), then there is an endomorphism h of (X, T )

such that h(x) = y

A minimal set is said to be coalescent if every endomorphism is an au-

tomorphism. It is well known that regular minimal sets are coalescent,

so endomorphism in Definition 1 may be replaced by automorphism.

Let (M, T ) be a universal minimal transformation group, which will

be fixed from now on, and let G be the group of automorphism of

(M, T ). Given a minimal transformation group (X, T ) and a homo-

morphism γ : M → X, Auslander ([3]) defined a subgroup

G(X, γ) = {α ∈ G | γα = γ}.

Definition 1.2. ([11]) For a subgroup H of A(X) we define a sub-

group SH(X, γ) of G as follows;

SH(X, γ) = {α ∈ G | hγα = γ for some h ∈ H},
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where (M, T ), (X, T ) and γ : M → X are given as in the previous para-

graph. If we take H = {1X}, then SH(X, γ) coincides with G(X, γ).

We denote SA(X)(X, γ) by S(X, γ), simply.

Remark 1. (1) In fact, S(X, γ) is a subgroup of G ([11]).

(2) If (X, T ) is regular minimal, then S(X, γ) is a normal subgroup

of G ([11]).

(3) If (X, T ) is minimal, then G(X, γ) is a normal subgroup of

S(X, γ) ([12]).

Given a homomorphism π : X → Y , the inclusions among the sub-

groups G(Y, πγ), S(X, γ) and S(Y, πγ) extend the notions of regular

homomorphisms ([12]).

Let h : X → X, k : Y → Y be the automorphisms of X and Y ,

respectively. We define h × k : X × Y → X × Y by (h × k)(x, y) =

(h(x), k(y)), ((x, y) ∈ X×Y ). Then h×k is obviously an automorphism

of X × Y . We denote the set of all h × k by A(X) × A(Y ). It follows

that A(X)×A(Y ) ⊂ A(X × Y ), but A(X × Y ) ⊂ A(X)×A(Y ) is not

true, in general. Regular minimalities of (X, T ) and (Y, T ) ensure the

following lemma.

Lemma 1.1. Let (X, T ) and (Y, T ) be regular minimal transforma-

tion groups and let (X × X, T ) and (Y × Y, T ) be minimal. Then

A(X × Y ) = A(X) ×A(Y ).

Proof. We need only show that A(X × Y ) ⊂ A(X) × A(Y ). Let

ϕ ∈ A(X × Y ) and let ϕ(x, y) = (x′, y′). Since (X, T ) and (Y, T ) are

regular minimal and (x, x′) ∈ X×X, (y, y′) ∈ Y ×Y are almost periodic

points, there exist automorphisms h ∈ A(X) and k ∈ A(Y ) such that

h(x) = x′ and k(y) = y′. Therefore,

ϕ(x, y) = (x′, y′) = (h(x), k(y)) = (h × k)(x, y),

which implies that ϕ ∈ A(X) × A(Y ).
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Theorem 1.2. Let γ : M → X, γ′ : M → X ′ be homomorphisms

from universal minimal transformation group M to minimal sets X and

X ′, respectively. Define λ : M → X × X ′ by λ(m) = (γ(m), γ′(m)).

Then
(1) S(X, γ) ∩ S(X ′, γ′) ⊂ S(X × X ′, λ)

(2) Furthermore, if (X, T ) and (X ′, T ) are regular minimal and (X ×

X, T ), (X ′ × X ′, T ) are minimal, then S(X, γ) ∩ S(X ′, γ′) = S(X ×

X ′, λ).

Proof. (1) Let α ∈ S(X, γ)∩S(X ′, γ′). Then hγα = γ and h′γ′α = γ′

for some h ∈ A(X) and h′ ∈ A(X ′), that is,

hγα(m) = γ(m) and h′γ′α(m) = γ′(m)

for all m ∈ M . Therefore,

λ(m) = (γ(m), γ′(m))

= (hγα(m), h′γ′α(m))

= (h × h′)(γα(m), γ′α(m))

= (h × h′)(λα(m)),

which shows that α ∈ S(X × X ′, λ).

(2) Let (X, T ) and (X ′, T ) be regular minimal and let α ∈ S(X ×

X ′, λ). Then there exists a ϕ ∈ A(X × X ′) such that ϕλα = λ. From

Lemma 1.1, we obtain ϕ = h × h′ for some h ∈ A(X) and h′ ∈ A(X ′).

It follows that

(γ(m), γ′(m)) = λ(m)

= ϕλα(m)

= (h × h′)(γα(m), γ′α(m))

= (hγα(m), h′γ′α(m))

for all m ∈ M . Therefore,

hγα = γ and h′γ′α = γ′,
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which implies that α ∈ S(X, γ) ∩ S(X ′, γ′).

The following theorem is an analogy of Theorem 2 ([3]) by using a

subgroup SH(X, γ) instead of G(X, γ).

Theorem 1.3. Let (X, T ) and (X ′, T ) be minimal transformation

groups and let γ : M → X, γ′ : M → X ′ be homomorphisms. Let H

and H ′ be subgroups of A(X) and A(X ′), respectively. Suppose that

(X ×X, T ) and (X ′ ×X ′, T ) are minimal transformation groups. Then

the following are equivalent;

(1) SH(X, γ) ⊂ SH ′(X ′, γ′).

(2) There are homomorphism λ : M → X × X ′ and projections π :

X × X ′ → X, π′ : X × X ′ → X ′ with γ = πλ, γ′ = π′λ and

SH(X, πλ) ⊂ SH×H ′(X ×X ′, λ).

Proof. (1) implies (2). Define λ : M → X×X ′ by λ(m) = (γ(m), γ′(m)),

and let π : X × X ′ → X and π′ : X × X ′ → X ′ be the coordi-

nate projections to X × X ′. Then πλ = γ and π′λ = γ′. Now, let

α ∈ SH(X, πλ). Then hπλα = πλ for some h ∈ H, that is, hγα = γ.

We also have h′γ′α = γ′ for some h′ ∈ H ′ by assumption. Then

h × h′ : X × X ′ → X × X ′ is an automorphism of X × X ′ and,

(h × h′)(γα(m), γ′α(m)) = (hγα(m), h′γ′α(m))

= (γ(m), γ′(m))

= λ(m),

for m ∈ M . This show that (h × h′)λα = λ, that is, α ∈ SH×H ′(X ×

X ′, λ).

(2) implies (1). Let α ∈ SH(X, γ). Since there exist λ, π, π′ with γ =

πλ, γ′ = π′λ, α ∈ SH(X, πλ). By hypothesis, α ∈ SH×H ′(X × X ′, λ).

Therefore, there are h ∈ H and h′ ∈ H ′ such that (h × h′)λα = λ and

we also have π′(h×h′)λα = π′λ. It is easy to show that π′(h×h′)λα =

h′π′λα. Therefore, we obtain h′π′λα = π′(h × h′)λα = π′λ, that is,

h′γ′α = γ′. This implies that α ∈ SH ′(X ′, γ′).



78 J.O. YU

Corollary 1.4. Let (X, T ) and (X ′, T ) be minimal transformation

groups and let γ : M → X, γ′ : M → X ′ be homomorphisms, and let

(X ×X ′, T ) be minimal. Then G(X, γ) ⊂ G(X ′, γ′) if and only if there

exist homomorphism λ : M → X×X ′ and projections π : X×X ′ → X,

π′ : X×X ′ → X ′ with γ = πλ, γ′ = π′λ and G(X, πλ) = G(X×X ′, λ).

Proof. Necessity. Take H = {1X} and H ′ = {1X ′}, the trivial sub-

groups of A(X) and A(X ′), respectively. Then SH(X, γ) = G(X, γ) and

SH ′(X ′, γ′) = G(X ′, γ′). Then by Theorem 1.3, SH(X, γ) ⊂ SH ′(X ′, γ)

implies that there exist λ, π and π′ with γ = πλ, γ′ = π′λ and

G(X, πλ) ⊂ G(X × X ′, λ). But G(X × X ′, λ) ⊂ G(X, πλ) is obvi-

ous. So, we obtain G(X, πλ) = G(X × X ′, λ).

Sufficiency. Let α ∈ G(X, γ). Then γα = γ. Since G(X × X ′, λ) =

G(X, πλ) = G(X, γ), λα = λ. So, π′λα = π′λ, which shows that

γ′α = γ′, that is, α ∈ G(X ′, γ′).

Let (X, T ) and (X ′, T ) be regular minimal and let (X × X, T ) and

(X ′ × X ′, T ) be minimal. Then S(X × X ′, λ) = S(X, γ) ∩ S(X ′, γ′)

from Theorem 5. Therefore, S(X × X ′, λ) = S(X, γ) if and only if

S(X, γ) ⊂ S(X ′, γ′).

The following theorem follows immediately from the preceding dis-

cussion and Theorem 1.3.

Theorem 1.5. Let (X, T ) and (X ′, T ) be regular minimal sets and

let (X × X, T ) and (X ′ × X ′, T ) be minimal. Then

1) S(X, γ) ⊂ S(X ′, γ′) if and only if there are homomorphism λ : M →

X × X ′ and projections π : X × X ′ → X, π′ : X × X ′ → X ′ with

γ = πλ, γ′ = π′λ and S(X ×X ′, λ) = S(X, πλ).

2) S(X, γ) = S(X ′, γ′) if and only if there are homomorphisms λ, π,

and π′as in 1), such that S(X, πλ) = S(X × X ′, λ) = S(X ′, π′λ).
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