JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **16**, No.1, June 2003

CERTAIN GROUPS OF AUTOMORPHISMS OF A UNIVERSAL MINIMAL TRANSFORMATION GROUP

JUNG OK YU*

ABSTRACT. A subgroup $S(X, \gamma)$ of the group of automorphisms of a universal minimal transformation group is introduced and a necessary and sufficient condition for two subgroups to be identical is obtained.

1. Certain groups of automorphisms of a universal minimal transformation group

Throughout this paper, (X, T) will denote the transformation group with compact Hausdorff space X. A closed nonempty subset A of X is called a *minimal subset* if for every $x \in A$, the *orbit* xT is dense in A. A point whose orbit closure is a minimal subset is called an *almost periodic point*. If X is itself minimal, X is called a *minimal set*.

If T is a topological group, a universal minimal transformation group for T is a minimal set (M, T) such that every minimal set with group T is a homomorphic image of (M, T). For any group T, a universal minimal transformation group exists and is a unique up to isomorphism ([6]).

A continuous map $\pi : (X, T) \to (Y, T)$ with $\pi(xt) = \pi(x)t$ is called a *homomorphism*. A homomorphism π from (X, T) onto itself is called an *endomorphism* of (X, T), and an isomorphism $\pi : (X, T) \to (X, T)$

^{*}This work was supported by Hannam University Research Fund, 2002.

Received by the editors on June 11, 2003.

 $^{2000 \} Mathematics \ Subject \ Classifications: \ \ {\rm Primary \ 54H15}.$

Key words and phrases: universal minimal transformation group, automorphism, regular minimal set.

J.O. YU

is called an *automorphism* of (X, T). We denote the group of automorphisms of (X, T) by A(X).

The compact Hausdorff space X carries a natural uniformity whose indices are the neighborhood of the diagonal in $X \times X$. Two points x and y of X are called *proximal* provided that for each index \mathcal{U} of X, there exists a $t \in T$ such that $(xt, yt) \in \mathcal{U}$. Two points x and y of X are *regular* if h(x) and y are proximal for some automorphism h of X.

Let $\{(X_i, T) | i \in I\}$ be a family of transformation groups with the same phase group T. The product transformation group $(\prod_i X_i, T)$ is defined by the condition that $(x_i | i \in I) \in \prod_i X_i$ and $t \in T$ imply $(x_i | i \in I)t = (x_i t | i \in I)$.

DEFINITION 1.1. ([1]) A minimal transformation group (X, T) is called *regular* if $x, y \in X$, then there is an endomorphism h of (X, T)such that h(x) and y are proximal. Equivalently, if (x, y) is an almost periodic point of $(X \times X, T)$, then there is an endomorphism h of (X, T)such that h(x) = y

A minimal set is said to be *coalescent* if every endomorphism is an automorphism. It is well known that regular minimal sets are coalescent, so endomorphism in Definition 1 may be replaced by automorphism.

Let (M, T) be a universal minimal transformation group, which will be fixed from now on, and let G be the group of automorphism of (M, T). Given a minimal transformation group (X, T) and a homomorphism $\gamma: M \to X$, Auslander ([3]) defined a subgroup

$$G(X,\gamma) = \{ \alpha \in G \mid \gamma \alpha = \gamma \}.$$

DEFINITION 1.2. ([11]) For a subgroup H of A(X) we define a subgroup $S_H(X, \gamma)$ of G as follows;

$$S_H(X,\gamma) = \{ \alpha \in G \mid h\gamma \alpha = \gamma \text{ for some } h \in H \},\$$

where (M, T), (X, T) and $\gamma : M \to X$ are given as in the previous paragraph. If we take $H = \{1_X\}$, then $S_H(X, \gamma)$ coincides with $G(X, \gamma)$. We denote $S_{A(X)}(X, \gamma)$ by $S(X, \gamma)$, simply.

Remark 1. (1) In fact, $S(X, \gamma)$ is a subgroup of G ([11]).

(2) If (X, T) is regular minimal, then $S(X, \gamma)$ is a normal subgroup of G ([11]).

(3) If (X,T) is minimal, then $G(X,\gamma)$ is a normal subgroup of $S(X,\gamma)$ ([12]).

Given a homomorphism $\pi : X \to Y$, the inclusions among the subgroups $G(Y, \pi\gamma)$, $S(X, \gamma)$ and $S(Y, \pi\gamma)$ extend the notions of regular homomorphisms ([12]).

Let $h: X \to X$, $k: Y \to Y$ be the automorphisms of X and Y, respectively. We define $h \times k: X \times Y \to X \times Y$ by $(h \times k)(x, y) =$ $(h(x), k(y)), ((x, y) \in X \times Y)$. Then $h \times k$ is obviously an automorphism of $X \times Y$. We denote the set of all $h \times k$ by $A(X) \times A(Y)$. It follows that $A(X) \times A(Y) \subset A(X \times Y)$, but $A(X \times Y) \subset A(X) \times A(Y)$ is not true, in general. Regular minimalities of (X, T) and (Y, T) ensure the following lemma.

LEMMA 1.1. Let (X,T) and (Y,T) be regular minimal transformation groups and let $(X \times X,T)$ and $(Y \times Y,T)$ be minimal. Then $A(X \times Y) = A(X) \times A(Y)$.

Proof. We need only show that $A(X \times Y) \subset A(X) \times A(Y)$. Let $\varphi \in A(X \times Y)$ and let $\varphi(x, y) = (x', y')$. Since (X, T) and (Y, T) are regular minimal and $(x, x') \in X \times X, (y, y') \in Y \times Y$ are almost periodic points, there exist automorphisms $h \in A(X)$ and $k \in A(Y)$ such that h(x) = x' and k(y) = y'. Therefore,

$$\varphi(x, y) = (x', y') = (h(x), k(y)) = (h \times k)(x, y),$$

which implies that $\varphi \in A(X) \times A(Y)$.

J.O. YU

THEOREM 1.2. Let $\gamma : M \to X, \gamma' : M \to X'$ be homomorphisms from universal minimal transformation group M to minimal sets X and X', respectively. Define $\lambda : M \to X \times X'$ by $\lambda(m) = (\gamma(m), \gamma'(m))$. Then

(1) $S(X,\gamma) \cap S(X',\gamma') \subset S(X \times X',\lambda)$

(2) Furthermore, if (X,T) and (X',T) are regular minimal and $(X \times X,T)$, $(X' \times X',T)$ are minimal, then $S(X,\gamma) \cap S(X',\gamma') = S(X \times X',\lambda)$.

Proof. (1) Let $\alpha \in S(X, \gamma) \cap S(X', \gamma')$. Then $h\gamma \alpha = \gamma$ and $h'\gamma' \alpha = \gamma'$ for some $h \in A(X)$ and $h' \in A(X')$, that is,

$$h\gamma\alpha(m) = \gamma(m)$$
 and $h'\gamma'\alpha(m) = \gamma'(m)$

for all $m \in M$. Therefore,

$$\begin{split} \lambda(m) &= (\gamma(m), \gamma'(m)) \\ &= (h\gamma\alpha(m), h'\gamma'\alpha(m)) \\ &= (h \times h')(\gamma\alpha(m), \gamma'\alpha(m)) \\ &= (h \times h')(\lambda\alpha(m)), \end{split}$$

which shows that $\alpha \in S(X \times X', \lambda)$.

(2) Let (X, T) and (X', T) be regular minimal and let $\alpha \in S(X \times X', \lambda)$. Then there exists a $\varphi \in A(X \times X')$ such that $\varphi \lambda \alpha = \lambda$. From Lemma 1.1, we obtain $\varphi = h \times h'$ for some $h \in A(X)$ and $h' \in A(X')$. It follows that

$$\begin{aligned} (\gamma(m), \gamma'(m)) &= \lambda(m) \\ &= \varphi \lambda \alpha(m) \\ &= (h \times h')(\gamma \alpha(m), \gamma' \alpha(m)) \\ &= (h \gamma \alpha(m), h' \gamma' \alpha(m)) \end{aligned}$$

for all $m \in M$. Therefore,

$$h\gamma\alpha = \gamma$$
 and $h'\gamma'\alpha = \gamma'$,

76

which implies that $\alpha \in S(X, \gamma) \cap S(X', \gamma')$.

The following theorem is an analogy of Theorem 2 ([3]) by using a subgroup $S_H(X, \gamma)$ instead of $G(X, \gamma)$.

THEOREM 1.3. Let (X, T) and (X', T) be minimal transformation groups and let $\gamma : M \to X, \gamma' : M \to X'$ be homomorphisms. Let Hand H' be subgroups of A(X) and A(X'), respectively. Suppose that $(X \times X, T)$ and $(X' \times X', T)$ are minimal transformation groups. Then the following are equivalent;

- (1) $S_H(X,\gamma) \subset S_{H'}(X',\gamma').$
- (2) There are homomorphism $\lambda : M \to X \times X'$ and projections $\pi : X \times X' \to X, \pi' : X \times X' \to X'$ with $\gamma = \pi \lambda, \gamma' = \pi' \lambda$ and $S_H(X, \pi \lambda) \subset S_{H \times H'}(X \times X', \lambda).$

Proof. (1) implies (2). Define $\lambda : M \to X \times X'$ by $\lambda(m) = (\gamma(m), \gamma'(m))$, and let $\pi : X \times X' \to X$ and $\pi' : X \times X' \to X'$ be the coordinate projections to $X \times X'$. Then $\pi \lambda = \gamma$ and $\pi' \lambda = \gamma'$. Now, let $\alpha \in S_H(X, \pi \lambda)$. Then $h\pi \lambda \alpha = \pi \lambda$ for some $h \in H$, that is, $h\gamma \alpha = \gamma$. We also have $h'\gamma'\alpha = \gamma'$ for some $h' \in H'$ by assumption. Then $h \times h' : X \times X' \to X \times X'$ is an automorphism of $X \times X'$ and,

$$(h \times h')(\gamma \alpha(m), \gamma' \alpha(m)) = (h \gamma \alpha(m), h' \gamma' \alpha(m))$$
$$= (\gamma(m), \gamma'(m))$$
$$= \lambda(m),$$

for $m \in M$. This show that $(h \times h')\lambda \alpha = \lambda$, that is, $\alpha \in S_{H \times H'}(X \times X', \lambda)$.

(2) implies (1). Let $\alpha \in S_H(X, \gamma)$. Since there exist λ, π, π' with $\gamma = \pi \lambda$, $\gamma' = \pi' \lambda$, $\alpha \in S_H(X, \pi \lambda)$. By hypothesis, $\alpha \in S_{H \times H'}(X \times X', \lambda)$. Therefore, there are $h \in H$ and $h' \in H'$ such that $(h \times h')\lambda \alpha = \lambda$ and we also have $\pi'(h \times h')\lambda \alpha = \pi'\lambda$. It is easy to show that $\pi'(h \times h')\lambda \alpha = h'\pi'\lambda \alpha$. Therefore, we obtain $h'\pi'\lambda \alpha = \pi'(h \times h')\lambda \alpha = \pi'\lambda$, that is, $h'\gamma'\alpha = \gamma'$. This implies that $\alpha \in S_{H'}(X', \gamma')$. J.O. YU

COROLLARY 1.4. Let (X, T) and (X', T) be minimal transformation groups and let $\gamma : M \to X, \ \gamma' : M \to X'$ be homomorphisms, and let $(X \times X', T)$ be minimal. Then $G(X, \gamma) \subset G(X', \gamma')$ if and only if there exist homomorphism $\lambda : M \to X \times X'$ and projections $\pi : X \times X' \to X$, $\pi' : X \times X' \to X'$ with $\gamma = \pi\lambda, \ \gamma' = \pi'\lambda$ and $G(X, \pi\lambda) = G(X \times X', \lambda)$.

Proof. Necessity. Take $H = \{1_X\}$ and $H' = \{1_{X'}\}$, the trivial subgroups of A(X) and A(X'), respectively. Then $S_H(X,\gamma) = G(X,\gamma)$ and $S_{H'}(X',\gamma') = G(X',\gamma')$. Then by Theorem 1.3, $S_H(X,\gamma) \subset S_{H'}(X',\gamma)$ implies that there exist λ , π and π' with $\gamma = \pi\lambda$, $\gamma' = \pi'\lambda$ and $G(X,\pi\lambda) \subset G(X \times X',\lambda)$. But $G(X \times X',\lambda) \subset G(X,\pi\lambda)$ is obvious. So, we obtain $G(X,\pi\lambda) = G(X \times X',\lambda)$.

Sufficiency. Let $\alpha \in G(X, \gamma)$. Then $\gamma \alpha = \gamma$. Since $G(X \times X', \lambda) = G(X, \pi \lambda) = G(X, \gamma)$, $\lambda \alpha = \lambda$. So, $\pi' \lambda \alpha = \pi' \lambda$, which shows that $\gamma' \alpha = \gamma'$, that is, $\alpha \in G(X', \gamma')$.

Let (X, T) and (X', T) be regular minimal and let $(X \times X, T)$ and $(X' \times X', T)$ be minimal. Then $S(X \times X', \lambda) = S(X, \gamma) \cap S(X', \gamma')$ from Theorem 5. Therefore, $S(X \times X', \lambda) = S(X, \gamma)$ if and only if $S(X, \gamma) \subset S(X', \gamma')$.

The following theorem follows immediately from the preceding discussion and Theorem 1.3.

THEOREM 1.5. Let (X, T) and (X', T) be regular minimal sets and let $(X \times X, T)$ and $(X' \times X', T)$ be minimal. Then 1) $S(X, \gamma) \subset S(X', \gamma')$ if and only if there are homomorphism $\lambda : M \to X \times X'$ and projections $\pi : X \times X' \to X, \pi' : X \times X' \to X'$ with $\gamma = \pi \lambda, \gamma' = \pi' \lambda$ and $S(X \times X', \lambda) = S(X, \pi \lambda)$.

2) $S(X,\gamma) = S(X',\gamma')$ if and only if there are homomorphisms λ , π , and π' as in 1), such that $S(X,\pi\lambda) = S(X \times X',\lambda) = S(X',\pi'\lambda)$.

78

References

- J. Auslander, Regular minimal sets I, Trans. Amer. Math. Soc. 123 (1966), pp. 469-479.
- J. Auslander, Endomorphisms of minimal sets, Duke. Math. J. 30 (1963), pp. 605-614.
- J. Auslander, Homomorphisms of minimal transformation group, Topology 9 (1970), pp. 195-203.
- 4. I. U. Bronstein, *Extension of Minimal Transformation Groups*, Sijthoff and Nordhoff Inter. Publ., Netherlands, 1979.
- R. Ellis, A semigroup associated with a transformation group, Trans. Amer. Math. Soc., 94 (1960), pp. 272-281.
- 6. R. Ellis, Universal minimal sets, Proc. Amer. Math. Soc. 11 (1960).
- 7. R. Ellis, Lectures on Topological Dynamics, W. A. Benjamin Inc, 1969.
- P. Shoenfeld, Regular Homomorphisms of Minimal Sets, Doctoral Dissertation, University of Maryland, 1974.
- M. H. Woo, *Regular transformation groups*, J. Korean Math. Soc. 15 (1979), pp. 129-137.
- J. O. Yu, Regular relations in transformation group, J. Korean Math. Soc. 21 (1984), pp. 41-48.
- J. O. Yu, Remark on regular minimal sets, J. Chungchung Math. Soc. 8 (1995), pp. 71-77.
- J. O. Yu, Regular homomorphisms in transformation groups, J. Chungchung Math. Soc. 14 (2001), pp. 49-59.

*

DEPARTMENT OF MATHEMATICS HANNAM UNIVERSITY DAEJEON 306-791, KOREA *E-mail*: joy@math.hannam.ac.kr