• 제목/요약/키워드: maximal subalgebra

검색결과 11건 처리시간 0.033초

A CONSTRUCTION OF MAXIMAL COMMUTATIVE SUBALGEBRA OF MATRIX ALGEBRAS

  • Song, Young-Kwon
    • 대한수학회지
    • /
    • 제40권2호
    • /
    • pp.241-250
    • /
    • 2003
  • Let (B, m$_{B}$, k) be a maximal commutative $textsc{k}$-subalgebra of M$_{m}$(k). Then, for some element z $\in$ Soc(B), a k-algebra R = B[X,Y]/I, where I = (m$_{B}$X, m$_{B}$Y, X$^2$- z,Y$^2$- z, XY) will create an interesting maximal commutative $textsc{k}$-subalgebra of a matrix algebra which is neither a $C_1$-construction nor a $C_2$-construction. This construction will also be useful to embed a maximal commutative $textsc{k}$-subalgebra of matrix algebra to a maximal commutative $textsc{k}$-subalgebra of a larger size matrix algebra.gebra.a.

MAXIMALITY PRESERVING CONSTRUCTIONS OF MAXIMAL COMMUTATIVE SUBALGEBRAS OF MATRIX ALGEBRA

  • Song, Young-Kwon
    • 대한수학회보
    • /
    • 제49권2호
    • /
    • pp.295-306
    • /
    • 2012
  • Let (R, $m_R$, k) be a local maximal commutative subalgebra of $M_n$(k) with nilpotent maximal ideal $m_R$. In this paper, we will construct a maximal commutative subalgebra $R^{ST}$ which is isomorphic to R and study some interesting properties related to $R^{ST}$. Moreover, we will introduce a method to construct an algebra in $MC_n$(k) with i($m_R$) = n and dim(R) = n.

C32-CONSTRUCTION ON Mn(κ)

  • Song, Youngkwon
    • Korean Journal of Mathematics
    • /
    • 제12권1호
    • /
    • pp.23-32
    • /
    • 2004
  • Let (B, $m_B$, ${\kappa}$) be a maximal commutative ${\kappa}$-subalgebra of a matrix algebra $M_n(\kappa)$. We will construct a maximal commutative ${\kappa}$-subalgebra (R, $m$, ${\kappa}$) of $M_n+3(\kappa)$ from the algebra B such that the algebra R has dimension greater than the dimension of B by 3. Moreover, we will show a $C_i$-construction doesn't imply a $C^3_2$-construction for $i=1,2$.

  • PDF

NOTES ON MAXIMAL COMMUTATIVE SUBALGEBRAS OF 14 BY 14 MATRICES

  • Song, Youngkwon
    • Korean Journal of Mathematics
    • /
    • 제7권2호
    • /
    • pp.291-299
    • /
    • 1999
  • Let ${\Omega}$ be the set of all commutative $k$-subalgebras of 14 by 14 matrices over a field $k$ whose dimension is 13 and index of Jacobson radical is 3. Then we will find the equivalent condition for a commutative subalgebra to be maximal.

  • PDF

MAXIMALITY OF THE ANALYTIC SUBALGEBRAS OF C*-ALGEBRAS WITH FLOWS

  • Kishimoto, Akitaka
    • 대한수학회지
    • /
    • 제50권6호
    • /
    • pp.1333-1348
    • /
    • 2013
  • Given a faithful flow ${\alpha}$ on a $C^*$-algebra A, when A is ${\alpha}$-simple we will show that the closed subalgebra of A consisting of elements with non-negative Arveson spectra is maximal if and only if the crossed product of A by ${\alpha}$ is simple. We will also show how the general case can be reduced to the ${\alpha}$-simple case, which roughly says that any flow with the above maximality is an extension of a trivial flow by a flow of the above type in the ${\alpha}$-simple case. We also propose a condition of essential maximality for such closed subalgebras.

PATH-CONNECTED AND NON PATH-CONNECTED ORTHOMODULAR LATTICES

  • Park, Eun-Soon;Song, Won-Hee
    • 대한수학회보
    • /
    • 제46권5호
    • /
    • pp.845-856
    • /
    • 2009
  • A block of an orthomodular lattice L is a maximal Boolean subalgebra of L. A site is a subalgebra of an orthomodular lattice L of the form S = A $\cap$ B, where A and B are distinct blocks of L. An orthomodular lattice L is called with finite sites if |A $\cap$ B| < $\infty$ for all distinct blocks A, B of L. We prove that there exists a weakly path-connected orthomodular lattice with finite sites which is not path-connected and if L is an orthomodular lattice such that the height of the join-semilattice [ComL]$\vee$ generated by the commutators of L is finite, then L is pathconnected.

Inverse of Frobenius Graphs and Flexibility

  • Aljouiee, Abdulla
    • Kyungpook Mathematical Journal
    • /
    • 제45권4호
    • /
    • pp.561-570
    • /
    • 2005
  • Weak Crossed Product Algebras correspond to certain graphs called lower subtractive graphs. The properties of such algebras can be obtained by studying this kind of graphs ([4], [5]). In [1], the author showed that a weak crossed product is Frobenius and its restricted subalgebra is symmetric if and only if its associated graph has a unique maximal vertex. A special construction of these graphs came naturally and was known as standard lower subtractive graph. It was a deep question that when such a special graph possesses unique maximal vertex? This work is to answer the question partially and to give a particular characterization for such graphs at which the corresponding algebras are isomorphic. A graph that follows the mentioned characterization is called flexible. Flexibility is to some extend a generalization of the so-called Coxeter groups and its weak Bruhat ordering.

  • PDF