MAXIMALITY OF THE ANALYTIC SUBALGEBRAS OF C^* -ALGEBRAS WITH FLOWS

AKITAKA KISHIMOTO

ABSTRACT. Given a faithful flow α on a C^* -algebra A, when A is α -simple we will show that the closed subalgebra of A consisting of elements with non-negative Arveson spectra is maximal if and only if the crossed product of A by α is simple. We will also show how the general case can be reduced to the α -simple case, which roughly says that any flow with the above maximality is an extension of a trivial flow by a flow of the above type in the α -simple case. We also propose a condition of essential maximality for such closed subalgebras.

1. Introduction

Let α be a flow on a C^* -algebra A, i.e., α is a one-parameter automorphism group of A such that $t\mapsto \alpha_t(x)$ is continuous for $x\in A$. We denote by $\operatorname{Sp}_{\alpha}(x)$ the Arveson spectrum of $x\in A$ and by $\operatorname{Sp}(\alpha)$ the Arveson spectrum of α ; the latter being the closure of the union of all $\operatorname{Sp}_{\alpha}(x)$, $x\in A$. Note that $\operatorname{Sp}(\alpha)$ is a closed subset of $\mathbb R$ with $\operatorname{Sp}(\alpha)=-\operatorname{Sp}(\alpha)$ and $\operatorname{Sp}(\alpha)\ni 0$. We define the spectral subspaces $A^{\alpha}(\Omega)$ for closed or open subsets Ω of $\mathbb R$ (see [2] or Chapter 8 of [8]). If α is not trivial, i.e., $\operatorname{Sp}(\alpha)\neq\{0\}$, then $A^{\alpha}[0,\infty)$ is a proper closed subalgebra of A, called the analytic subalgebra for α . If B is a closed subalgebra of A such that $B\supset A^{\alpha}[0,\infty)$, then it is known that B is α -invariant (Corollary 6 of [9]). We would be interested, following [9], in the property that the analytic subalgebra $A^{\alpha}[0,\infty)$ is maximal, i.e., if B is a closed subalgebra of A with $B\supset A^{\alpha}[0,\infty)$, then either $B=A^{\alpha}[0,\infty)$ or B=A. We note that the subalgebras are also studied from different perspectives (e.g., [1], [3]).

When α is periodic this problem was completely solved by Peligrad and Zsidó (see Theorem 13 of [9]). When α is a faithful action of $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ on a C^* -algebra A such that A is α -simple, i.e., has no α -invariant ideals except for $\{0\}$ and A, and $\mathrm{Sp}(\alpha)$ has more than three points, i.e., $\mathrm{Sp}(\alpha) \supsetneq \{1,0,-1\}$, the maximality of $A^{\alpha}[0,\infty)$ is equivalent to the simplicity of the crossed product of $A \times_{\alpha} \mathbb{T}$, which is again equivalent to the fullness of the strong Connes spectrum

Received January 29, 2013.

 $2010\ Mathematics\ Subject\ Classification.\ 46L55.$

Key words and phrases. Arveson spectrum, maximal subalgebra, crossed product.

©2013 The Korean Mathematical Society

of α (see [4]). Note that this generalizes a classical result for $A=C(\mathbb{T})$ with α induced by translations on the base space \mathbb{T} , due to Wermer [11]. In this case the analytic subalgebra $A^{\alpha}[0,\infty)$ is identified with the subalgebra of continuous functions on $\mathbb{D}=\{x\in\mathbb{C}\mid |z|\leq 1\}$ which are analytic in the interior, where the restriction map to $C(\mathbb{T})$ with $\mathbb{T}=\partial\mathbb{D}$ is injective, and the crossed product $A\times_{\alpha}\mathbb{T}$ is isomorphic to the compact operators on $L^{2}(\mathbb{T})$.

Our result for non-periodic flows is completely parallel to their result (and also to the result [10] in the von Neumann algebra case): When α is a faithful action of $\mathbb R$ on a C^* -algebra A which is α -simple, the maximality of $A^{\alpha}[0,\infty)$ is equivalent to the simplicity of $A\times_{\alpha}\mathbb R$, which is again equivalent to the fullness of the strong Connes spectrum of α (In this case $\operatorname{Sp}(\alpha)$ automatically contains at least five points; so no additional assumption on $\operatorname{Sp}(\alpha)$ is necessary). In the proof we will use the definition of strong Connes spectrum $\tilde{\mathbb R}(\alpha)$, which is in general a closed subsemigroup of $\mathbb R$ containing 0: λ belongs to $\tilde{\mathbb R}(\alpha)$ if for any open interval J containing λ and any non-zero α -invariant hereditary C^* -subalgebra D the support projection of $D^{\alpha}(J)$ is 1_D , i.e., the hereditary C^* -subalgebra generated by $D^{\alpha}(J)^*D^{\alpha}(J)$ is D.

There are many examples of (A, α) which give simple crossed products. For example if α is a flow on the Cuntz algebra \mathcal{O}_n generated by n isometries s_1, \ldots, s_n such that $\alpha_t(s_i) = e^{ip_it}s_i$ for some $p_1, \ldots, p_n \in \mathbb{R}$ and if $p_1, \ldots, p_n, -p_i$ generate \mathbb{R} as a closed subsemigroup for all $i = 1, \ldots, n$, then $\mathcal{O}_n \times_{\alpha} \mathbb{R}$ is simple [4]. Hence in this case $\mathcal{O}_n^{\alpha}[0, \infty)$ is maximal.

In the next section we will consider the maximality of $A^{\alpha}[0,\infty)$ without α -simplicity; the result we present can essentially be read from [9] and reduces the problem to the α -simple case; If $A^{\alpha}[0,\infty)$ is maximal with α faithful, then A has an α -simple ideal I such that $I \times_{\alpha} \mathbb{R}$ is simple and α induces a trivial flow on A/I (see 2.1 for details). In Section 3 we treat the α -simple case and prove the result quoted above (see 3.7). In Section 4 we propose the notion of essential maximality for $A^{\alpha}[0,\infty)$ in case A is not α -simple and $A^{\alpha}[0,\infty)$ does not include a non-zero ideal of A, i.e., $A^{\alpha}[0,\infty)$ is called essentially maximal if any closed subalgebra B strictly containing $A^{\alpha}[0,\infty)$ contains a non-zero ideal of A. We point out some relationship of this notion with the strong Connes spectrum. When α satisfies additional conditions including the no energy gap condition [7], we shall show that $A^{\alpha}[0,\infty)$ is essentially maximal if and only if there is an α -invariant essential ideal I of A such that the strong Connes spectrum of $\alpha|I$ is full (see 4.9).

2. General case

If α (resp. β) is a flow on a C^* -algebra A (resp. B) and ϕ is a homomorphism of A into B such that $\phi \alpha_t = \beta_t \phi$, then we have that $\operatorname{Sp}_{\beta}(\phi(x)) \subset \operatorname{Sp}_{\alpha}(x)$ for $x \in A$. Hence it follows that $\phi(A^{\alpha}[0,\infty)) \subset B^{\beta}[0,\infty)$. We do not know whether the equality holds when ϕ is onto.

Proposition 2.1. Let α be a non-trivial flow on a C^* -algebra A. Then the following conditions are equivalent.

- (1) $A^{\alpha}[0,\infty)$ is maximal.
- (2) There is a minimal α -invariant closed ideal I of A such that the induced flow on the quotient A/I is trivial, the image of $A^{\alpha}[0,\infty)$ is dense in A/I under the quotient map from A onto A/I, and $I^{\alpha|I}[0,\infty)$ is maximal.

Proof. Suppose that $A^{\alpha}[0,\infty)$ is maximal. If J is a non-zero α -invariant ideal of A such that $\alpha|J$ is non-trivial, then the induced flow $\beta=\dot{\alpha}$ on A/J must be trivial. Otherwise $B=Q^{-1}((A/J)^{\beta}[0,\infty))$ is a proper closed subalgebra strictly containing $A^{\alpha}[0,\infty)$ because $B\supset J$, where Q is the quotient map of A onto A/J. In this case we must have $\mathrm{Sp}(\alpha)=\mathrm{Sp}(\alpha|J)$. If (J_i) is a decreasing net of α -invariant ideals of A such that $\alpha|J_i$ is non-trivial, then $\bigcap_i J_i \neq 0$. This is shown as follows. If $\bigcap_i J_i = 0$ and $x \in A$, then $\alpha_t(x) - x \in J_i$ for all i and $t \in \mathbb{R}$, which implies that $\alpha_t(x) = x$ for all $t \in \mathbb{R}$, i.e., α is trivial, a contradiction. Thus we obtain a minimal α -invariant ideal I such that the induced flow on A/I is trivial and $\alpha|I$ is non-trivial. Suppose that $I \neq A$; otherwise there is nothing to prove.

First we assert that if 0 is not isolated in $Sp(\alpha)$ the support and range projections of $A^{\alpha}(0,\infty) = I^{\alpha|I}(0,\infty)$ are 1_I (We may simply write α for $\alpha|I$ later). For example if the hereditary C^* -subalgebra generated by $I^{\alpha}(0,\infty)^*I^{\alpha}(0,\infty)$ is not I, there is a pure state ϕ of I such that $\phi(I^{\alpha}(0,\infty)^*I^{\alpha}(0,\infty))=0$. Then ϕ is an α -invariant state called a ceiling state. Regarding ϕ as a state of A let $(\pi_{\phi}, \mathcal{H}_{\phi}, \Omega_{\phi})$ be the GNS representation triple associated with ϕ , where π_{ϕ} is an irreducible representation on a Hilbert space \mathcal{H}_{ϕ} and $\Omega_{\phi} \in \mathcal{H}_{\phi}$ is a cyclic vector for $\pi_{\phi}(A)$ such that $\phi(x) = \langle \Omega_{\phi}, \pi_{\phi}(x)\Omega_{\phi} \rangle$, $x \in A$. Define a unitary flow U on \mathcal{H}_{ϕ} by $U_t \pi_{\phi}(x) \Omega_{\phi} = \pi_{\phi} \alpha_t(x) \Omega_{\phi}, x \in A$. Then the self-adjoint generator H of U satisfies that $H \leq 0$ and $H\Omega_{\phi} = 0$. If E denotes the spectral measure of H choose a < b < 0 such that all $E(-\infty, a], E(a, b], E(b, 0]$ are non-zero. Then the closure B of $AA^{\alpha}[-b,\infty) + A^{\alpha}[0,\infty)$ gives a non-trivial closed subalgebra containing $A^{\alpha}[0,\infty)$ as $\pi_{\phi}(B)E(b,0] = E(b,0]\pi_{\phi}(B)E(b,0]$ and $\pi_{\phi}(B)E(a,0] \neq$ $E(a,0]\pi_{\phi}(B)E(a,0]$ and $\pi_{\phi}(A^{\alpha}[0,\infty))E(c,0] = E(c,0]\pi_{\phi}(A^{\alpha}[0,\infty))E(c,0]$ for any $c \leq 0$. This contradiction shows that if 0 is not isolated in $Sp(\alpha)$ the support projection of $I^{\alpha}(0,\infty)$ is 1_I . Similarly one can show the statement for the range projection.

If $I^{\alpha}[0,\infty)$ is not maximal, then there is a proper closed subalgebra B of I such that B strictly contains $I^{\alpha}[0,\infty)$. Since B is α -invariant by [9], $\operatorname{Sp}(\alpha|B)$ contains some p < 0. For any $\delta \in (0, -p/4)$ there is an $x \in B$ such that $\operatorname{Sp}_{\alpha}(x) \subset (p - \delta, p + \delta)$. There are $b_1, b_2 \in I^{\alpha}[0, \delta)$ such that $b_1 x b_2 \neq 0$.

We will show this last claim. Let B_1 be the α -invariant hereditary C^* subalgebra generated by $\alpha_t(xx^*)$, $t \in \mathbb{R}$. If 0 is isolated in $\operatorname{Sp}(\alpha|B_1)$ there is a
non-zero $b_1 \in B_1$ such that $\operatorname{Sp}_{\alpha}(b_1) = \{0\}$. Since $b_1 \in B_1 \subset I$ and $b_1\alpha_t(x) \neq 0$ for some $t \in \mathbb{R}$, we conclude that b_1 satisfies that $b_1x \neq 0$. If 0 is not isolated

there is a non-zero $c_1 \in B_1$ such that $\operatorname{Sp}_{\alpha}(c_1) \subset (0, \delta)$. Since $c_1\alpha_t(x) \neq 0$ for some $t \in \mathbb{R}$ we may set $b_1 = \alpha_{-t}(c_1)$ which satisfies $b_1x \neq 0$. Next we set B_2 to be the α -invariant hereditary C^* -subalgebra generated by $\alpha_t(x^*b_1^*b_1x)$, $t \in \mathbb{R}$. Then one can construct as above an element $b_2 \in B_2^{\alpha|B_2}[0,\delta) \subset I$ such that $b_1xb_2 \neq 0$.

Note that $\operatorname{Sp}_{\alpha}(b_1xb_2) \subset (p-\delta, p+3\delta)$ and $b_1xb_2 \in B \setminus I^{\alpha|I}[0,\infty)$. Let D denote the closed subalgebra generated by b_1xb_2 and $A^{\alpha}[0,\infty)$. Since

$$A^{\alpha}[0,\infty)b_1xb_2A^{\alpha}[0,\infty)\subset I^{\alpha}[0,\infty)xI^{\alpha}[0,\infty)\subset B$$

we derive that the subalgebra generated by b_1xb_2 and $A^{\alpha}[0,\infty)$ is contained in $B+A^{\alpha}[0,\infty)$. Hence it follows that D is contained in the closure X of $B+A^{\alpha}[0,\infty)$. We assert that $X \not\supseteq I$. If $X \supset I$, then for any $x \in I$ with $\operatorname{Sp}_{\alpha}(x) \subset (-\infty,0)$ there is a sequence b_n+a_n with $b_n \in B$ and $a_n \in A^{\alpha}[0,\infty)$ such that $b_n+a_n \to x$. But since $\operatorname{Sp}_{\alpha}(x) \subset (-\infty,0)$ and $\operatorname{Sp}(a_n) \subset [0,\infty)$ it follows that $\alpha_f(b_n) \to x$, where $f \in L^1(\mathbb{R})$ is chosen to be such that $\alpha_f(x) = \int f(t)\alpha_t(x)dt = x$ and $\alpha_f = 0$ on $A^{\alpha}[0,\infty)$; Hence $x \in B$, or $B \supset I^{\alpha}(-\infty,0)$. Since $B \supset I^{\alpha}[0,\infty)$ if 0 is isolated in $\operatorname{Sp}(\alpha)$, then $B \supset I$, a contradiction. Suppose that 0 is not isolated in $\operatorname{Sp}(\alpha)$ and let $x \in I$. Then there is a sequence $b_n + a_n$ with $b_n \in B$ and $\operatorname{Sp}_{\alpha}(a_n) \subset [0,1/n)$ such that $b_n + a_n \to x$ because $A^{\alpha}(0,\infty) = I^{\alpha}(0,\infty) \subset B$. If $z_i \in I$ satisfies $\operatorname{Sp}_{\alpha}(z_i) \subset (-\infty,0)$ for $i = 1,2,\ldots,k$, we obtain that $z_i^*z_i(a_n+b_n) \in B$ for all large n. Hence $z_i^*z_ix \in B$. Since the elements of the form $(1+\sum_i z_i^*z_i)^{-1}\sum_i z_i^*z_i$ with k arbitrary gives an approximate identity for I we conclude that $B \supset I$. Thus it follows that $X \not\supseteq I$; in particular D is a proper subalgebra.

Since D contains $A^{\alpha}[0,\infty)$ and $b_1xb_2 \notin A^{\alpha}[0,\infty)$, it follows that D is a closed subalgebra strictly bigger than $A^{\alpha}[0,\infty)$, which contradicts that $A^{\alpha}[0,\infty)$ is maximal. Thus one can conclude that $I^{\alpha}[0,\infty)$ is maximal.

Suppose that the closure B of $Q(A^{\alpha}[0,\infty))$ is a proper closed subalgebra of A/I. Then $Q^{-1}(B)$ is a proper closed subalgebra strictly containing $A^{\alpha}[0,\infty)$ since $B \supset I$; this contradiction shows B = A/I.

Suppose the second condition holds. If there is a closed subalgebra B of A strictly containing $A^{\alpha}[0,\infty)$, there is a non-zero $x\in B$ such that $\operatorname{Sp}_{\alpha}(x)\subset (-\infty,0)$. Since the induced flow on A/I is trivial we derive that $x\in I$. Since $I^{\alpha}[0,\infty)$ and x generates I as a closed subalgebra it follows that $B\supset I$. Since $B\supset A^{\alpha}[0,\infty)$, $Q(A^{\alpha}[0,\infty))$ is dense in A/I, and Q(B) is closed as being the quotient of B by $I\subset B$, one can conclude that B=A. This contradiction shows that $A^{\alpha}[0,\infty)$ is maximal.

3. α -simple case

When α is a flow on a C^* -algebra A we construct another C^* -algebra called the crossed product $A \times_{\alpha} \mathbb{R}$ of A by α . We recall the following result: $A \times_{\alpha} \mathbb{R}$ is simple if and only if A is α -simple and the strong Connes spectrum $\tilde{\mathbb{R}}(\alpha)$ is equal to \mathbb{R} [4].

Lemma 3.1. Let α be a flow on a C^* -algebra A such that $A \times_{\alpha} \mathbb{R}$ is simple. Let D be a non-zero α -invariant hereditary C^* -subalgebra of A. Then for any non-zero open interval I the closed linear span of $A^{\alpha}(I)^*DA^{\alpha}(I)$ is A.

Proof. Let $I=(p-\delta,p+\delta)$ for some $p\in\mathbb{R}$ and $\delta>0$. We choose a sequence (p_i) in \mathbb{R} such that $\bigcup_i (p_i-\delta/2,p_i+\delta/2)=\mathbb{R}$. Since A is α -simple, i.e., the α -invariant ideals are $\{0\}$ and A only, it follows that the hereditary C^* -subalgebra generated by all $A^{\alpha}(I_i)^*DA^{\alpha}(I_i)$ with $I_i=(p_i-\delta/2,p_i+\delta/2)$ for $i=1,2,\ldots$ is A. Since $\tilde{\mathbb{R}}(\alpha)=\mathbb{R}$, the hereditary C^* -subalgebra generated by $D^{\alpha}(-I_i+p)^*D^{\alpha}(-I_i+p)$ is D. Since $D^{\alpha}(-I_i+p)A^{\alpha}(I_i)\subset A^{\alpha}(I)\cap DA$ which is in the closure of $DA^{\alpha}(I)$, it follows by replacing D in $A^{\alpha}(I_i)^*DA^{\alpha}(I_i)$ by $D^{\alpha}(-I_i+p)^*D^{\alpha}(-I_i+p)$ that the hereditary C^* -subalgebra generated by $A^{\alpha}(I)^*DA^{\alpha}(I)$ is A, which is the same as the closed linear span of $A^{\alpha}(I)^*DA^{\alpha}(I)$.

Proposition 3.2. Let α be a flow on a C^* -algebra A such that $A \times_{\alpha} \mathbb{R}$ is simple. Then $A^{\alpha}[0,\infty)$ is maximal.

Proof. Suppose that there is a proper closed subalgebra B of A strictly containing $A^{\alpha}[0,\infty)$. Then B is α -invariant [9] and $\operatorname{Sp}(\alpha|B)$ is strictly bigger than $[0,\infty)$. Let $p\in\operatorname{Sp}(\alpha|B)\setminus[0,\infty)$. For $\delta>0$ we choose $x\in B$ such that $\operatorname{Sp}_{\alpha}(x)\subset(p-\delta,p+\delta)$ and set D to be the α -invariant hereditary C^* -subalgebra generated by $\alpha_t(x^*x)$, $t\in\mathbb{R}$, which is the same as the hereditary C^* -subalgebra generated by $\alpha_t(x)^*A^{\alpha}(0,\delta)^*A^{\alpha}(0,\delta)\alpha_t(x)$, $t\in\mathbb{R}$. By the previous lemma the hereditary C^* -subalgebra generated by $A^{\alpha}(0,\delta)^*DA^{\alpha}(0,\delta)$ is A; that is, the support projection of the family $A^{\alpha}(0,\delta)\alpha_t(x)A^{\alpha}(0,\delta)$ with $t\in\mathbb{R}$ is 1. In the same way we can conclude that the range projection of the family $A^{\alpha}(0,\delta)\alpha_t(x)A^{\alpha}(0,\delta)$, $t\in\mathbb{R}$ is 1. Since $A^{\alpha}(0,\delta)\alpha_t(x)A^{\alpha}(0,\delta)\subset B^{\alpha}(p-\delta,p+3\delta)$ and δ is arbitrary, we conclude that the range and support projections of $B^{\alpha}(p-\epsilon,p+\epsilon)$ are 1 for any $\epsilon>0$. Then in particular we derive that $\operatorname{Sp}(\alpha|B)\ni np$ for any $n=1,2,\ldots$

Let $x_i \in B^{\alpha}(p - \epsilon, p + \epsilon)$ for i = 1, 2, ..., n with n arbitrary and $p \in \operatorname{Sp}(\alpha|B) \setminus [0, \infty)$. Then the elements of the form $(1 + \sum_i x_i x_i^*)^{-1} (\sum_i x_i x_i^*) \in B$ constitutes an approximate identity for A (see 1.4 of [8]).

Let $y \in A$ be such that $\operatorname{Sp}_{\alpha}(y)$ is compact. Then there is a $p \in \operatorname{Sp}(\alpha|B)$ such that $-p + \operatorname{Sp}_{\alpha}(y) \subset (\delta, \infty)$ for some $\delta > 0$. Then for any $\epsilon > 0$ there are $x_i \in B^{\alpha}(p - \delta, p + \delta)$ for $i = 1, 2, \ldots, n$ such that $||zy - y|| < \epsilon$ for $z = (1 + \sum_i x_i x_i^*)^{-1}(\sum_i x_i x_i^*)$. Since $(\sum_i x_i x_i^*)y = \sum_i x_i(x_i^*y) \in B$ it follows that $zy \in B$. Since $\epsilon > 0$ is arbitrary it follows that $y \in B$. Hence we conclude that B = A, which shows that $A^{\alpha}[0, \infty)$ is maximal.

Lemma 3.3. Let α be a flow on a C^* -algebra A such that A is α -simple and $\operatorname{Sp}(\alpha)$ contains more than three points. If $A^{\alpha}[0,\infty)$ is maximal, then the support and range projections of $A^{\alpha}(p,q)$ are 1 for all open intervals (p,q) with $0 and <math>\operatorname{Sp}(\alpha) \cap (p,q) \ne \emptyset$. In particular $\operatorname{Sp}(\alpha)$ is a group.

Proof. Suppose that the hereditary C^* -subalgebra S_p generated by

$$A^{\alpha}(p,\infty)^*A^{\alpha}(p,\infty)$$

is not A for some $p \geq 0$. Let S be the set of positive functionals f on A satisfying $f(S_p) = 0$ and $||f|| \leq 1$. Since S is a closed face of the compact unit ball of positive functionals on A, it has a non-zero extreme point which is a pure state ϕ . Since the α -spectrum of ϕ is contained in [-p,p], ϕ is α -covariant. The GNS representation π_{ϕ} associated with ϕ is a faithful irreducible representation and there is a unitary flow U on the representation space \mathcal{H}_{ϕ} such that $U_t\pi_{\phi}(x)U_t^* = \pi_{\phi}\alpha_t(x), \ x \in A$. If Ω_{ϕ} is the associated unit vector, i.e., Ω_{ϕ} is a cyclic vector satisfying $\phi(x) = \langle \Omega_{\phi}, \pi_{\phi}(x)\Omega_{\phi} \rangle$, $x \in A$, then $\pi_{\phi}(A^{\alpha}(p,\infty))\Omega_{\phi} = 0$. Since the U-spectrum of Ω_{ϕ} is compact we may assume by adjusting U by a character on \mathbb{R} that the spectrum of U is contained in $(-\infty,0]$ including U, i.e., if U is the self-adjoint operator defined by $U_t = e^{itH}$, then $U \in U$ with U in the spectrum of U. Let U denote the spectral measure of U. By the assumption on U is support of U has more than two points in addition to U. We choose U0 such that all U1 is U2 is a closed face of the compact U3 is a closed face of the compact U4 is a sumption on U5.

Let B be the closed linear span of $AA^{\alpha}[-b,\infty) + A^{\alpha}[0,\infty)$. Then B is a closed subalgebra containing $A^{\alpha}[0,\infty)$. Since $\pi_{\phi}(A^{\alpha}[-b,\infty))E(b,0] = 0$ and $\pi_{\phi}(A^{\alpha}[0,\infty))E(b,0] = E(b,0]\pi_{\phi}(A^{\alpha}[0,\infty))E(b,0]$, it follows that

$$\pi_{\phi}(B)E(b,0] = E(b,0]\pi_{\phi}(B)E(b,0].$$

Since $E(b,0] \neq 0,1$ and $\pi_{\phi}(A)$ is irreducible we conclude that $B \neq A$. Note that $E(a,0] \neq 0,1, E(b,0]$ and that

$$\pi_{\phi}(A^{\alpha}[0,\infty))E(a,0] = E(a,0]\pi_{\phi}(A^{\alpha}[0,\infty))E(a,0].$$

But since the range projection of $\pi_{\phi}(B)E(a,0]$, which dominates the range projection of $\pi_{\phi}(A)E(a-b,0]$, is 1, we derive that

$$\pi_{\phi}(B)E(a,0] \neq E(a,0]\pi_{\phi}(B)E(a,0].$$

Thus B is bigger than $A^{\alpha}[0,\infty)$, which contradicts the maximality of $A^{\alpha}[0,\infty)$. Thus we conclude that the support projection of $A^{\alpha}(p,\infty)$ is 1 for all $p \geq 0$. Suppose that the hereditary C^* -subalgebra S_r generated by

$$A^{\alpha}(p, p+r)^*A^{\alpha}(p, p+r)$$

is non-zero and not equal to A for some $r>p\geq 0$. Suppose that $\operatorname{Sp}(\alpha)\cap (0,r)\neq\emptyset$ and let $q\in\operatorname{Sp}(\alpha)\cap (0,r)$. Let $\delta\in(0,(r-q)/4)$ and let $x\in A$ be such that $\operatorname{Sp}_{\alpha}(x)\subset(q-\delta,q+\delta)$. Let V denote the closed linear span of $AS_r+A^{\alpha}(p+q+\delta,\infty)$ and define $B=\{x\in A\mid xV\subset V\}$. Note that B is a closed subalgebra and $B\supset A^{\alpha}[0,\infty)$.

Note that $A^{\alpha}(p+q+\delta,p+q+r-\delta)+A^{\alpha}(p+q+r-2\delta,\infty)=A^{\alpha}(p+r+\delta,\infty)$. Since $x^*A^{\alpha}(p+q+\delta,p+q+r-\delta)\subset A^{\alpha}(p,p+r)$ and $x^*A^{\alpha}(p+q+r-2\delta,\infty)\subset A^{\alpha}(p+r-3\delta,\infty)\subset A^{\alpha}(p+q+\delta,\infty)$, it follows that $x^*V\subset V$ and so $x^*\in B$. Thus B strictly contains $A^{\alpha}[0,\infty)$. On the other hand there is an $s>p+q+\delta$ such that the hereditary C^* -subalgebra generated by $A^{\alpha}(s,s+p+q)^*A^{\alpha}(s,s+p+q)$ is not contained in S_r . Let $y\in A^{\alpha}(s,s+p+q)$ be such that $y^*y\not\in S_r$. Then $y^*y\in A^{\alpha}(-p-q,p+q)$. Since $y\in V$ and $y^*y\not\in V$ we derive that $y^*\not\in B$. This contradicts the maximality of $A^{\alpha}[0,\infty)$. Hence if $\mathrm{Sp}(\alpha)\cap (p,p+r)\neq\emptyset$ and $\operatorname{Sp}(\alpha) \cap (0,r) \neq \emptyset$, then it follows that $S_r = A$. If 0 is not isolated in $\operatorname{Sp}(\alpha)$ this implies that whenever $\operatorname{Sp}(\alpha) \cap (p,p+r) \neq \emptyset$ the support projection of $A^{\alpha}(p,p+r)$ is 1.

Suppose that 0 is isolated in $\operatorname{Sp}(\alpha)$ and let $q=\min\operatorname{Sp}(\alpha)\cap(0,\infty)>0$. Then by the reasoning above we derive that the support projection of $A^{\alpha}(0,q+\epsilon)$ is 1 for any $\epsilon>0$. Since $A^{\alpha}(0,q+\epsilon)=A^{\alpha}[q,q+\epsilon)$, it follows that the support projection of $A^{\alpha}[q,q+\epsilon)$ is 1. If $\operatorname{Sp}(\alpha)\cap(q,2q)$ is not empty, let $s\in\operatorname{Sp}(\alpha)\cap(q,2q)$. For a sufficiently small $\epsilon>0$ let $x\in A$ be such that $\operatorname{Sp}_{\alpha}(x)\subset(s-\epsilon,s+\epsilon)$. Then as the support projection of $A^{\alpha}[q,q+\epsilon)$ is 1 there is a $y\in A^{\alpha}[q,q+\epsilon)$ such that $xy^*\neq 0$. This is a contradiction because $\operatorname{Sp}_{\alpha}(xy^*)\subset(s-q-2\epsilon,s-q+\epsilon)$ which would imply that $\operatorname{Sp}(\alpha)\cap(0,q)\neq\emptyset$ as 0< s-q< q. Hence we deduce that $\operatorname{Sp}(\alpha)\cap(q,2q)=\emptyset$. Since the support projection of $A^{\alpha}[2q,2q+\epsilon)\supset A^{\alpha}[q,q+\epsilon/2)A^{\alpha}[q,q+\epsilon/2)$ is 1 for any $\epsilon>0$ we can repeat this argument to obtain $\operatorname{Sp}(\alpha)\cap(2q,3q)=\emptyset$. Thus we conclude by induction that $\operatorname{Sp}(\alpha)=q\mathbb{Z}$ and that the support projection of $A^{\alpha}(\{nq\})$ is 1 for all $n=1,2,\ldots$

Suppose that the hereditary C^* -subalgebra R_p generated by

$$A^{\alpha}(p,\infty)A^{\alpha}(p,\infty)^*$$

is not A for some $p \geq 0$. Then as above there is a pure state ϕ such that $\phi(R_p) = 0$. We have a unitary flow U on \mathcal{H}_{ϕ} such that $U_t\pi_{\phi}(x)U_t^* = \pi_{\phi}\alpha_t(x)$, $x \in A$ and $H \geq 0$ and $\mathrm{Sp}(H) \ni 0$ for the self-adjoint operator H satisfying $U_t = e^{itH}$. We choose 0 < a < b such that $E[0,a), E[a,b), E[b,\infty)$ are all non-zero with E the spectral measure of H, and set E to be the closed linear span of $A^{\alpha}[a,\infty)A + A^{\alpha}[0,\infty)$. Then it follows that E is a closed subalgebra containing E[0,a) and $E[0,a)\pi_{\phi}(E) = E[0,a)\pi_{\phi}(E)$. Then we will reach a contradiction as before, which shows that E[0,a). Then we may arguments for the range projections of non-zero E[0,a) and E[0,a).

If $\operatorname{Sp}(\alpha)$ contains more than three points, then $\operatorname{Sp}(\alpha)$ is a group; so either $\operatorname{Sp}(\alpha) = \lambda \mathbb{Z}$ for some $\lambda > 0$ or $\operatorname{Sp}(\alpha) = \mathbb{R}$. In the former case α is periodic. Since the periodic case is treated by Peligrad and Zsidó, we will concentrate on the case $\operatorname{Sp}(\alpha) = \mathbb{R}$ in the next lemma.

Lemma 3.4. Let α be a flow on a C^* -algebra A such that A is α -simple, $A^{\alpha}[0,\infty)$ is maximal, and $\operatorname{Sp}(\alpha)=\mathbb{R}$. If D is a non-zero α -invariant hereditary C^* -subalgebra of A, then $A^{\alpha}(p,q)^*DA^{\alpha}(p,q)$ generates A as a hereditary C^* -subalgebra for all open intervals (p,q).

Proof. First note that for any open interval (p,q) the support and range projections of $A^{\alpha}(p,q)$ are 1. This follows from the previous lemma if $0 \le p < q$ or $p < q \le 0$. If p < 0 < q, then this follows because the support and range projections of $A^{\alpha}(0,q)$ are already 1.

Suppose that the hereditary C^* -subalgebra D_1 generated by

$$A^{\alpha}(p,q)^*DA^{\alpha}(p,q)$$

is not equal to A for some open interval (p,q). Let V be the closed linear span of $AD_1 + A^{\alpha}(p,\infty)$ and $B = \{x \in A \mid xV \subset V\}$. Then B is a closed subalgebra containing $A^{\alpha}[0,\infty)$. Let $\delta = (q-p)/3$ and let d be a non-zero positive element of D such that $\mathrm{Sp}_{\alpha}(d) \subset (-\delta,\delta)$. Since the range projection of $A^{\alpha}(\delta,2\delta-\epsilon)$ is 1, there is an $x \in A$ such that $\mathrm{Sp}_{\alpha}(x) \subset (\delta,2\delta-\epsilon)$ for some small $\epsilon>0$ and $dx \neq 0$. Since $\mathrm{Sp}_{\alpha}(dx) \subset (0,3\delta-\epsilon)$ it follows that $x^*dA^{\alpha}(q-\epsilon,\infty) \subset A^{\alpha}(p,\infty)$. Combining the fact that $x^*dA^{\alpha}(p,q)$ is contained in the closed linear span of AD_1 , we derive that $x^*dV \subset V$, i.e., $x^*d \in B$. Since $x^*d \notin A^{\alpha}[0,\infty)$, we conclude that B is bigger than $A^{\alpha}[0,\infty)$. Let $y \in A^{\alpha}(p,2p)$ be such that $y^*y \notin D_1$. Since $\mathrm{Sp}_{\alpha}(y^*y) \subset (-p,p)$ we derive that $y^*y \notin V$. Since $y \in V$ this implies that $y^* \notin B$. This contradicts the maximality of $A^{\alpha}[0,\infty)$. Hence $D_1 = A$.

Remark 3.5. In the above lemma if we assume that $\operatorname{Sp}(\alpha)$ is isomorphic to $\mathbb Z$ instead of $\operatorname{Sp}(\alpha) = \mathbb R$, then the statement goes as follows: If D is a non-zero α -invariant hereditary C^* -subalgebra, then $A^{\alpha}(\{p\})^*DA^{\alpha}(\{p\})$ generates A as a hereditary C^* -subalgebra for all $p \in \operatorname{Sp}(\alpha)$. To prove this assume that the hereditary C^* -subalgebra D_1 generated by $A^{\alpha}(\{p\})^*DA^{\alpha}(\{p\})$ is not equal to A and then define V to be the closed linear span of $AD_1 + A^{\alpha}[p,\infty)$. Then $B = \{x \in A \mid xV \subset V\}$ is a proper closed subalgebra strictly containing $A^{\alpha}[0,\infty)$, which is a contradiction.

Lemma 3.6. Let α be a flow on a C^* -algebra A such that A is α -simple, $A^{\alpha}[0,\infty)$ is maximal, and $\operatorname{Sp}(\alpha)$ contains more than three points. If D is a non-zero α -invariant hereditary C^* -subalgebra of A and (p,q) is an open interval with $\operatorname{Sp}(\alpha) \cap (p,q) \neq \emptyset$, then the hereditary C^* -subalgebra generated by $D^{\alpha}(p,q)^*D^{\alpha}(p,q)$ is D. In other words $\widetilde{\mathbb{R}}(\alpha) = \operatorname{Sp}(\alpha)$.

Proof. We know by Lemma 3.3 that $Sp(\alpha)$ is a closed group.

First we assume that $\operatorname{Sp}(\alpha) = \mathbb{R}$. Let D_1 be the hereditary C^* -subalgebra generated by $D^{\alpha}(p,q)^*D^{\alpha}(p,q)$. Let $\delta > 0$. Since the hereditary C^* -subalgebra generated by $A^{\alpha}(-\delta,\delta)^*D_1A^{\alpha}(-\delta,\delta)$ is A by Lemma 3.4, one can conclude that the hereditary C^* -subalgebra generated by

$$D^{\alpha}(-\delta,\delta)^*A^{\alpha}(-\delta,\delta)^*D_1A^{\alpha}(-\delta,\delta)D^{\alpha}(-\delta,\delta)$$

is D. This implies that the support projection of $D^{\alpha}(p,q)A^{\alpha}(-\delta,\delta)D^{\alpha}(-\delta,-\delta)$, which is a subset of $D^{\alpha}(p-2\delta,q+2\delta)$, is 1_D . Since p < q and $\delta > 0$ are arbitrary, this shows that the support projection of $D^{\alpha}(p-\epsilon,p+\epsilon)$ is 1_D for any $p \in \mathbb{R}$ and $\epsilon > 0$, which implies $\tilde{\mathbb{R}}(\alpha) = \mathbb{R}$.

The case $Sp(\alpha) \cong \mathbb{Z}$ follows in the same way by using Remark 3.5.

The following result has an analogous version in the von Neumann algebra case due to Solel (Theorem 3.7 of [10]), where α -simplicity is replaced by α -ergodicity on the center and the strong Connes spectrum $\tilde{\mathbb{R}}(\alpha)$ is replaced by the (original) Connes spectrum.

Theorem 3.7. Let α be a non-trivial flow on a C^* -algebra A. Suppose that A is α -simple. Then $A^{\alpha}[0,\infty)$ is maximal if and only if one of the following three conditions holds:

- (1) $\operatorname{Sp}(\alpha) = \{\lambda, 0, \lambda\}$ for some $\lambda > 0$; in this case A is simple and there is a projection E in the multiplier algebra M(A) such that $\alpha_t = \operatorname{Ad} e^{it\lambda E}$; moreover $A^{\alpha}[0, \infty) = EA + (1 E)A(1 E)$.
- (2) $\operatorname{Sp}(\alpha) = \tilde{\mathbb{R}}(\alpha) = \lambda \mathbb{Z}$ for some $\lambda > 0$; in this case α is periodic with period $1/\lambda$.
- (3) $\operatorname{Sp}(\alpha) = \tilde{\mathbb{R}}(\alpha) = \mathbb{R}$.

Proof. The first and second cases were treated in [9] at least under the assumption α is periodic. We will give a slightly more general statement concerning the first case below.

If one of the three conditions is satisfied, then it follows that $A^{\alpha}[0,\infty)$ is maximal ([9] for the first two cases and Lemma 3.2 for the third).

If $A^{\alpha}[0,\infty)$ is maximal it follows from 3.3 that either $\operatorname{Sp}(\alpha)=\{\lambda,0,-\lambda\}$ for some $\lambda>0$, $\operatorname{Sp}(\alpha)\cong\mathbb{Z}$, or $\operatorname{Sp}(\alpha)=\mathbb{R}$. Then the first two cases follow from [9] (or 3.8, 3.6) while the third case follow from Lemma 3.6.

Proposition 3.8. Let α be a non-trivial universally weakly inner flow on a C^* -algebra A. If $A^{\alpha}[0,\infty)$ is maximal, then $\mathrm{Sp}(\alpha)=\{\lambda,0,-\lambda\}$ for some $\lambda>0$ and there is a non-zero simple ideal I of A and a projection $E\in M(I)$ such that $\mathrm{Ad}\,\mathrm{e}^{it\lambda E}\pi(x)=\pi\alpha_t(x)$ and $[E,\pi(x)]\in I$ for $x\in A$ and α is trivial on $\mathrm{Ker}(\pi)$, where π is the canonical map of A into M(I).

Proof. Note that all ideals of A are α -invariant. By Proposition 2.1 we have a minimal ideal I of A such that $\alpha|I$ is non-trivial and the induced flow on A/I is trivial, which implies $\operatorname{Sp}(\alpha)=\operatorname{Sp}(\alpha|I)$. Since I is simple and $\alpha|I$ is universally weakly inner, it follows that $\alpha|I$ is inner [5]. Since $I^{\alpha|I}[0,\infty)$ is maximal it follows that $\operatorname{Sp}(\alpha|I)$ consists of only three points, say $\{\lambda,0,-\lambda\}$ for some $\lambda>0$, otherwise we would have $\operatorname{Sp}(\alpha)=\tilde{\mathbb{R}}(\alpha|I)$, which means that $\alpha|I$ is not inner. Thus there is a projection E in the multiplier algebra M(I) such that $\alpha_t|I=\operatorname{Ad}e^{it\lambda E}$. Then it follows that $\pi\alpha_t(x)=\operatorname{Ad}e^{it\lambda E}\pi(x)$ for $x\in A$. Since the induced flow on the quotient A/I is trivial it follows that α is trivial on $\operatorname{Ker}(\pi)$ and $\operatorname{Ad}e^{it\lambda E}\pi(x)-\pi(x)\in I$ for all $x\in A$. The latter condition is simply expressed by $[E,\pi(x)]\in I$ for $x\in A$.

4. Essential maximality

To conclude this note we comment on the case where A is not α -simple. We might want to mitigate the condition that $A^{\alpha}[0,\infty)$ is maximal, e.g., if $A^{\alpha}[0,\infty)$ is a direct sum of maximal subalgebras we might call it essentially maximal. Formally we propose the following definitions.

Given a flow α on A we shall say that $A^{\alpha}[0,\infty)$ is essentially non-self-adjoint if $I \cap A^{\alpha}[0,\infty) \neq I$ or $\alpha|I$ is non-trivial for any non-zero α -invariant ideal I. For such a flow we say that $A^{\alpha}[0,\infty)$ is essentially maximal if any closed

subalgebra B strictly containing $A^{\alpha}[0,\infty)$ there is a non-zero α -invariant ideal I with $I \subset B$. We obtain the following easy results:

Proposition 4.1. Let α be a flow on a C^* -algebra A. If $\tilde{\mathbb{R}}(\alpha) = \mathbb{R}$, then $A^{\alpha}[0,\infty)$ is essentially maximal.

Proof. Let B be a closed subalgebra strictly containing $A^{\alpha}[0,\infty)$. Let $p \in \operatorname{Sp}(\alpha|B)$ with p < 0 and let x be a non-zero element of B such that $\operatorname{Sp}_{\alpha}(x) \subset (p-\delta,p+\delta)$ for $\delta = -p/4$. Let I be the ideal generated by $\alpha_t(x)$, $t \in \mathbb{R}$. Then the support and range projections of $A^{\alpha}(0,\delta)\alpha_t(x)A^{\alpha}(0,\delta)$ are 1_I as in the proof of Proposition 3.2. Since $A^{\alpha}(0,\delta)\alpha_t(x)A^{\alpha}(0,\delta) \subset B^{\alpha}(p-\delta,p+3\delta) \cap I$, it follows that the support and range projections of $B^{\alpha}(-5\delta,-\delta) \cap I$ are 1_I , which implies that the support and range projections of $B^{\alpha}(-5n\delta,-n\delta) \cap I$ are also 1_I for all $n=1,2,\ldots$ Then for any $n\in\mathbb{N}$ we have an approximate identity for I of elements of the form $z=(1+\sum_i x_ix_i^*)^{-1}(\sum_i x_ix_i^*)$ with $x_i\in B^{\alpha}(-5n\delta,-n\delta)\cap I$ for $i=1,\ldots,k$ with k arbitrary. Then as in the proof of Proposition 3.2 one can conclude that $B\supset I$.

Proposition 4.2. Let α be a flow on a C^* -algebra A. If $\tilde{\mathbb{R}}(\alpha) = \operatorname{Sp}(\alpha) = \lambda \mathbb{Z}$ for some $\lambda > 0$, then $A^{\alpha}[0, \infty)$ is essentially maximal.

Proof. We denote by $A^{\alpha}(n\lambda)$ the spectral subspace $A^{\alpha}(\{n\lambda\})$ for all $n \in \mathbb{Z}$. Note that $A^{\alpha}[0,\infty)$ is the closed linear span of $A^{\alpha}(n\lambda)$ with $n=0,1,2,\ldots$

Let B be a closed subalgebra strictly bigger than $A^{\alpha}[0,\infty)$. Then there is a negative $p \in \mathbb{Z}$ such that $B^{\alpha}(p\lambda) \neq \{0\}$. Let x be a non-zero element of $B^{\alpha}(p\lambda)$. Let I be the ideal generated by x, which is α -invariant. We prove as in the proof of the previous lemma that the range and support projections of $A^{\alpha}(0)xA^{\alpha}(0)$ or $B^{\alpha}(p\lambda)$ are 1_{I} . Then one can show that $B \supset I$.

But there would be much more examples. Let α be a flow on a C^* -algebra A such that A is α -simple and $\tilde{\mathbb{R}}(\alpha) = \mathbb{R}$ and define a flow β on $B = C[-1,1] \otimes A$ by $\beta_t(f)(s) = \alpha_{st}(f(s))$. Then $B^{\beta}[0,\infty)$ is the subalgebra consisting of $f \in B$ such that $f(s) \in A^{\alpha}[0,\infty)$ for s>0 and $f(s) \in A^{\alpha}(-\infty,0]$ for s<0 (and $f(0) \in A^{\alpha}(\{0\})$). One can see that $B^{\beta}[0,\infty)$ is essentially maximal and that $\tilde{\mathbb{R}}(\beta) = \{0\}$. But if we define an ideal I of B consisting of functions vanishing at 0, then $\tilde{\mathbb{R}}(\beta|I) = \mathbb{R}$. If α satisfies $\tilde{\mathbb{R}}(\alpha) = \mathbb{Z} = \mathrm{Sp}(\alpha)$ instead one can see that $B^{\beta}[0,\infty)$ is still essentially maximal and that $\tilde{\mathbb{R}}(\beta|J) = \{0\}$ for any non-zero β -invariant ideal J. Note that $\mathrm{Sp}(\beta) = \mathbb{R}$.

Proposition 4.3. Let α be a flow on a C^* -algebra A such that $A^{\alpha}[0,\infty)$ is essentially non-self-adjoint and I be an essential α -invariant ideal. Then $A^{\alpha}[0,\infty)$ is essentially maximal if and only if $I^{\alpha|I}[0,\infty)$ is essentially maximal. In general if $A^{\alpha}[0,\infty)$ is essentially maximal, then $J^{\alpha|J}[0,\infty)$ is essentially maximal for any non-zero α -invariant ideal J of A.

Proof. Suppose that $A^{\alpha}[0,\infty)$ is essentially maximal and let J be a non-zero α -invariant ideal of A. If $J^{\alpha}[0,\infty)$ is not essentially maximal, then there is a

closed subalgebra B of J bigger than $J^{\alpha}[0,\infty)$ such that B contains no nonzero ideals. Let $y\in B\setminus J^{\alpha}[0,\infty)$ be a non-zero element of the form b_1xb_2 with $b_1,b_2\in J^{\alpha}[0,\infty)$ and $x\in B$ (see the proof of Proposition 2.1 for the existence of such y). Let B_1 denote the closed subalgebra generated by b_1xb_2 and $A^{\alpha}[0,\infty)$. Since $A^{\alpha}[0,\infty)b_1xb_2A^{\alpha}[0,\infty)\subset J^{\alpha}[0,\infty)xJ^{\alpha}[0,\infty)\subset B$ it follows that B_1 is contained in the closure of $B+A^{\alpha}[0,\infty)$. If B_1 contains a non-zero ideal K of A, then it contains the non-zero ideal $P=K\cap J$ (If $K\cap J=0$, then $K\subset B_1\cap J^\perp=A^{\alpha}[0,\infty)\cap J^\perp$, contradicting $A^{\alpha}[0,\infty)$ is essentially non-self-adjoint). Since B_1 is contained in the closure of $B+A^{\alpha}[0,\infty)$, there are, for any $x\in P$, sequences (b_n) in B and (a_n) in $A^{\alpha}[0,\infty)$ such that $b_n+a_n\to x$. For any $y\in P^{\alpha}[0,\infty)\subset J^{\alpha}[0,\infty)\subset B$ it follows that $(b_n+a_n)y\in B$ as $b_ny\in B$ and $a_ny\in P^{\alpha}[0,\infty)\subset B$, which implies that $xy\in B$. Similarly $x_1yx_2\in B$ for all $x_1,x_2\in P$. If P_1 denotes the ideal generated by $P^{\alpha}[0,\infty)$, this implies that $P_1\subset B$. Since $P_1\neq 0$, this is a contradiction. Thus we conclude that $J^{\alpha}[0,\infty)$ is essentially maximal.

It remains to show that if J is essential and $J^{\alpha}[0,\infty)$ is essentially maximal, then $A^{\alpha}[0,\infty)$ is essentially maximal. This part is easy.

Let α be a flow on a C^* -algebra A. We say α satisfies the *no energy gap* condition if for any non-zero α -invariant hereditary C^* -algebra B and for any $\lambda > 0$ the C^* -subalgebra generated by $B^{\alpha}(-\lambda, \lambda)$ is B (see [7]). We note the following:

Proposition 4.4. Let α be a flow on a C^* -algebra A. Then the following conditions are equivalent for any $\lambda > 0$:

- (1) $A^{\alpha}(-\lambda,\lambda)$ generates A as a closed subalgebra.
- (2) $A^{\alpha}(0,\lambda)$ generates $A^{\alpha}(0,\infty)$ as a closed subalgebra.
- (3) $A^{\alpha}[0,\lambda)$ generates $A^{\alpha}[0,\infty)$ as a closed subalgebra.

Proof. (1) \Rightarrow (2): From the proof of Lemma 2.2 of [7] the linear combinations of monomials $y_1y_2\cdots y_n$ with all $y_i\in A^{\alpha}(0,\lambda)$ or all $y_i\in A^{\alpha}(-\lambda,0)$ and $z\in A^{\alpha}(-\lambda/2,\lambda/2)$ are dense in A. If $x\in A$ is such that $\operatorname{Sp}_{\alpha}(x)$ is a compact subset of $(0,\infty)$ there is, for any $\epsilon>0$, a linear combination z_+ (resp. z_-) of monomials of the form $y_1\cdots y_n$ with $y_i\in A^{\alpha}(0,\lambda)$ (resp. $y_i\in A^{\alpha}(-\lambda,0)$) and $z_0\in A^{\alpha}(-\lambda/2,\lambda/2)$ such that $||x-z_+-z_--z_0||<\epsilon$. Let f be in $L^1(\mathbb{R})$ such that \hat{f} has compact support in $(0,\infty)$ and $\hat{f}=1$ on $\operatorname{Sp}_{\alpha}(x)$. Then $\alpha_f(x)=\int f(t)\alpha_t(x)dt=x$ and $||x-\alpha_f(z_+)-\alpha_f(z_0)||<||f||_{1\epsilon}$. Since $\alpha_f(z_0)\in A^{\alpha}(0,\lambda/2)$ and $\alpha_f(z_+)$ can be approximated by a Riemann sum it follows that the closed subalgebra generated by $A^{\alpha}(0,\lambda)$ includes x.

(2) \Rightarrow (3): Since $A^{\alpha}[0,\infty)$ is the linear span of $A^{\alpha}[0,\lambda)$ and $A^{\alpha}(0,\infty)$ this is obvious.

 $(3)\Rightarrow (1)$: The closed subalgebra generated by $A^{\alpha}(-\lambda,\lambda)$ includes $A^{\alpha}(-\infty,0] \cup A^{\alpha}[0,\infty)$. Since A is the closed linear span of $A^{\alpha}(-\infty,0) \cup A^{\alpha}(-\lambda,\lambda) \cup A^{\alpha}(0,\infty)$ the conclusion follows.

The following is Proposition 1.1 of [7].

Lemma 4.5. Let α be a flow on a C^* -algebra. If $\tilde{\mathbb{R}}(\alpha) = \mathbb{R}$, then α satisfies the no energy gap condition.

There are more flows with the no energy gap condition. Let (λ_n) be a sequence in \mathbb{R} such that $\lim_n \lambda_n = 0$ and $\sum_n \lambda_n^2 = \infty$ and define a flow on the UHF algebra A of type 2^{∞} by

$$\alpha_t = \bigotimes_n \operatorname{Ad} \begin{pmatrix} 1 & 0 \\ 0 & e^{it\lambda_n} \end{pmatrix}.$$

Then for any flow β on a C^* -algebra B the flow $t \mapsto \alpha_t \otimes \beta_t$ on $A \otimes B$ satisfies the no energy gap condition. See Proposition 3.1 of [7].

Lemma 4.6. Let α be a universally weakly inner flow on a C^* -algebra A such that α satisfies the no energy gap condition. Then α is trivial.

Proof. Suppose that α is a universally weakly inner flow on A. By [6] there is a non-zero α -invariant hereditary C^* -subalgebra B of A such that $\alpha|B$ is uniformly continuous. Suppose that there is an α -invariant hereditary C^* -subalgebra B such that $\alpha|B$ is non-trivial and uniformly continuous. Let π be an irreducible representation of B such that $t\mapsto \pi\alpha_t$ is non-trivial. There is a self-adjoint operator h on \mathcal{H}_{π} such that $h\geq 0$, $\operatorname{Sp}(h)\ni 0$, and $\pi\alpha_t=\operatorname{Ad}e^{ith}\pi$. Let $\delta=\|h\|/4>0$ and let D be the hereditary C^* -subalgebra of A generated by $B^{\alpha}(3\delta,\infty)^*B^{\alpha}(3\delta,\infty)+B^{\alpha}(3\delta,\infty)B^{\alpha}(3\delta,\infty)^*$. Then it follows that the C^* -subalgebra D_{δ} generated by $D^{\alpha}(-\delta,\delta)$ is not equal to D as $\pi(D_{\delta})$ is not irreducible on the closure of $\pi(D)\mathcal{H}_{\pi}$. This contradicts the no energy gap condition of α .

Hence we conclude that if $\alpha|B$ is uniformly continuous, then $\alpha|B$ is trivial for all α -invariant hereditary C^* -subalgebras B. One can show that there is a maximal α -invariant hereditary C^* -subalgebra B_0 on which α is trivial. If there is an $x \in AB_0$ such that $\operatorname{Sp}_{\alpha}(x)$ is compact and $\operatorname{Sp}_{\alpha}(x) \not\ni 0$ and if B_1 denotes the hereditary C^* -subalgebra generated by $\alpha_s(x)B_0\alpha_t(x)^*$, $s,t\in\mathbb{R}$, then $B_0B_1=0$ and α is uniformly continuous, and so trivial, on the hereditary C^* -subalgebra generated by B_0 and B_1 as B_0AB_1 is a subset of the closed linear span of $B_0\alpha_t(x)^*$, $t\in\mathbb{R}$. Since this contradicts the maximality of B_0 , we must have that α is trivial on AB_0 . Hence we obtain that $AB_0A \subset B_0$, i.e., B_0 is an ideal. Then B_0 must be essential because otherwise we could apply the same argument to B_0^\perp , contradicting the maximality of B_0 . Then for any $x \in A$ and $b \in B_0$ we have that $\alpha_t(x)b = \alpha_t(xb) = xb$, i.e., $\alpha_t(x) = x$. Hence $B_0 = A$.

Lemma 4.7. Let α be a flow on a C^* -algebra A. If $A^{\alpha}(-\lambda, \lambda)$ generates A for any $\lambda > 0$, then either $\operatorname{Sp}(\alpha) = \{0\}$ or $\operatorname{Sp}(\alpha) = \mathbb{R}$.

Proof. If $\operatorname{Sp}(\alpha)$ is bounded, then the previous lemma implies that $\operatorname{Sp}(\alpha) = \{0\}$. If $\operatorname{Sp}(\alpha)$ is unbounded and has a gap, say $\operatorname{Sp}(\alpha) \cap (\mu, \mu + \epsilon) = \emptyset$ for some $\mu \geq 0$ and $\epsilon > 0$, then the closed subalgebra generated by $A^{\alpha}(-\epsilon, \epsilon)$ is contained in

 $A^{\alpha}[-\mu,\mu]$, which implies that α does not satisfy the no energy gap condition. Hence if $\mathrm{Sp}(\alpha)$ is unbounded, then $\mathrm{Sp}(\alpha) = \mathbb{R}$.

Proposition 4.8. Let α be a flow on a C^* -algebra A such that α satisfies the no energy gap condition. Then there is a minimal α -invariant ideal I of A such that the induced flow on the quotient A/I is trivial. Moreover I is the ideal generated by $A^{\alpha}(0,\infty)$ and the Connes spectrum $\mathbb{R}(\alpha|I)$ of α is full.

Proof. Let I be the ideal generated by $A^{\alpha}(0,\infty)$. Let $B \in H^{\alpha}(I)$. If $\operatorname{Sp}(\alpha|B) = \{0\}$, then $\operatorname{Sp}(\alpha|J) = \{0\}$ for the ideal generated by B. Since $J \subset I$ we have that $0 \neq JA^{\alpha}(0,\infty) \subset J$, which contradicts that $\alpha|J$ is trivial. Hence $\operatorname{Sp}(\alpha|B) = \mathbb{R}$. Thus one can conclude that $\mathbb{R}(\alpha|I) = \mathbb{R}$. If there is an α -invariant ideal P of A such that the induced flow on A/P is trivial, then $P \supset A^{\alpha}(0,\infty)$, which implies that $P \supset I$.

In the situation of the above proposition let R_0 denote the set of covariant irreducible representations π of A satisfying $\pi \alpha_t = \pi$, $t \in \mathbb{R}$. Then the above I is also defined by $I = \bigcap_{\pi \in R_0} \operatorname{Ker}(\pi)$.

Proposition 4.9. Let α be a flow on a separable C^* -algebra A such that $A^{\alpha}[0,\infty)$ is essentially non-self-adjoint. Suppose that α satisfies the no energy gap condition and that all the α -invariant primitive ideals of A are maximal among the α -invariant ideals. Then $A^{\alpha}[0,\infty)$ is essentially maximal if and only if there is an essential ideal I of A such that $\tilde{\mathbb{R}}(\alpha|I) = \mathbb{R}$.

Proof. The *if* part follows from Propositions 4.1 and 4.3.

Suppose that $A^{\alpha}[0,\infty)$ is essentially maximal. By the previous proposition $A^{\alpha}(0,\infty)$ generates an ideal I such that the induced flow on A/I is trivial. Since $A^{\alpha}[0,\infty)$ is essentially non-self-adjoint, I must be essential. Hence we may assume that $A^{\alpha}(0,\infty)$ generates A.

Let (π_i, U_i) be all covariant irreducible representations of (A, α) such that the kernel of $\pi_i \times U_i$ is not generated by $\text{Ker}(\pi)$ (or equivalently $\text{Ker}(\pi_i \times U_i)$ is not invariant under the dual flow $\hat{\alpha}$). We denote by \mathcal{H}_i the representation space for π_i and by H_i the self-adjoint generator of U_i , i.e., $U_{i,t} = e^{itH_i}$ on \mathcal{H}_i . Then by the no energy gap condition the spectrum of $Sp(H_i|[\pi_i(B)\mathcal{H}_i])$ is connected for all $B \in H^{\alpha}(A)$, where $H^{\alpha}(A)$ is the set of non-zero α -invariant hereditary C^* -subalgebras of A and $[\pi_i(B)\mathcal{H}_i]$ is the closed linear span (or the closure) of $\pi_i(B)\mathcal{H}_i$ (This follows from the definition; see page 455 of [7]). Since $\operatorname{Ker}(\pi_i \times U_i)$ is not $\hat{\alpha}$ -invariant there is no $B \in H^{\alpha}(A)$ such that $\pi_i \times U_i$ is faithful on $B \times_{\alpha} \mathbb{R}$. And there is a $B \in H^{\alpha}(A)$ such that $\pi_i(B) \neq 0$ and $\operatorname{Sp}(H_i|[\pi_i(B)\mathcal{H}_i]) \neq \mathbb{R}$. Hence $\operatorname{Sp}(H_i|[\pi_i(B)\mathcal{H}_i]) = [p,\infty)$ or $(-\infty,p]$ (If $\operatorname{Sp}(H_i[[\pi_i(B)\mathcal{H}_i]))$ is bounded, it must be a singleton, which is excluded from the beginning). If $\operatorname{Sp}(H_i|[\pi_i(B)\mathcal{H}_i]) = [p,\infty)$ for some $B \in H^{\alpha}(A)$, then $\operatorname{Sp}(H_i|[\pi_i(D_\lambda)\mathcal{H}_i])$ is of the form $[q,\infty)$ with $q\in\mathbb{R}$ for the hereditary C^* subalgebra D_{λ} generated by $A^{\alpha}(-\lambda,\lambda)BA^{\alpha}(-\lambda,\lambda)$ for any $\lambda>0$. In this case we call U_i almost bounded below. The same is true for the case $(-\infty, p]$, which will be called almost bounded above.

We denote by R_b (resp. R_a) the set of covariant irreducible representations (π, U) with U almost bounded below (resp. almost bounded above). We will also regard R_b etc. as a set of irreducible representations of A.

Let $J = \bigcap_{\pi \in R_a} \operatorname{Ker}(\pi)$. We shall show that J is an essential ideal. Suppose that J is not essential and let $I = J^{\perp} = \{x \in A \mid xJ = 0\}$. We regard $\pi \in R_a$ as a representation of I.

Since I is separable there is a sequence (π_i, U_i) in R_a such that $\bigcap_i \operatorname{Ker}(\pi_i) = \{0\}$. The closure of $\bigcup_{p \in \mathbb{R}} \hat{\alpha}_p(\operatorname{Ker}(\pi_i \times U_i))$ is given as $I(\pi_i) \times_{\alpha} \mathbb{R}$ for some α -invariant ideal $I(\pi_i)$ of I. Since $I(\pi_i)$ is bigger than the α -invariant primitive ideal $\operatorname{Ker}(\pi_i)$ of I the assumption implies that $I(\pi_i) = I$ (When we regard π_i as a representation of A, $\bigcup_p \hat{\alpha}_p(\operatorname{Ker}(\pi_i \times U_i))$ is dense in $A \times_{\alpha} \mathbb{R}$; take the intersection with $I \times_{\alpha} \mathbb{R}$). Let (x_i) be a dense sequence in the unit sphere of $I \times_{\alpha} \mathbb{R}$. Since $(\pi_i \times U_i)\hat{\alpha}_p = \pi_i \times \chi_p U_i$ where χ_p is the character of \mathbb{R} defined by $\chi_p(t) = e^{ipt}$ and $\operatorname{Ker}(\pi_i \times \chi_p U_i)$ is increasing as p is decreasing, we replace U_i by $\chi_p U_i$ with some $p \in \mathbb{R}$ such that $\|(\pi_i \times U_i)(x_j)\| < 1/i$ for $j = 1, 2, \ldots, i$. Then it follows that $\sup_{i > j} \|(\pi_i \times U_i)(x_j)\| < 1/j$ for all j.

Then it follows that $\sup_{i\geq j}\|(\pi_i\times U_i)(x_j)\|<1/j$ for all j. Let $\rho=\bigoplus_i\pi_i$ and $V=\bigoplus_iU_i$ on the representation space $\mathcal{H}=\bigoplus\mathcal{H}_i$. Since $\inf_p\|(\rho\times\chi_pV)(x_j)\|<1/j$, we obtain that $\bigcup_p\hat{\alpha}_p(\operatorname{Ker}(\rho\times V))$ is dense in $I\times_\alpha\mathbb{R}$. Hence there is a $B\in H^\alpha(I)$ such that $\operatorname{Sp}(H|[\rho(B)\mathcal{H}])=(-\infty,p]$ for some $p\in\mathbb{R}$, where H is the self-adjoint generator of V. We choose a maximal family $\{B_k\}$ in $H^\alpha(I)$ such that $\operatorname{Sp}(H|[\rho(B_k)\mathcal{H}])=(-\infty,p_k]$ for some $p_k\in\mathbb{R}$ and $B_kIB_\ell=0$ for $k\neq\ell$. Let B be the closed linear span of all B_k , which is in $H^\alpha(I)$ and generates an essential ideal I_0 of I.

Let E be the closure of $IBI^{\alpha}[1,\infty)+I^{\alpha}[0,\infty)$, which is a closed subalgebra of I containing $I^{\alpha}[0,\infty)$. Suppose that E contains a non-zero ideal P of I. Since $P\cap B\neq 0$, there is B_k such that $P\cap B_k\neq 0$. Since $\rho(P\cap B_k)\neq 0$, there is (π_i,U_i) such that $\pi_i(P\cap B_k)\neq 0$. Then there is a $p\in\mathbb{R}$ such that $\mathrm{Sp}(H_i|[\pi_i(B_k)\mathcal{H}_i])=(-\infty,p]$, where H_i is the self-adjoint generator of U_i . Let ξ be a unit vector in $F_i(p-1,p]\mathcal{H}_{\pi}$, where F_i is the spectral measure of H_i . Then it follows that $\pi_i(IBI^{\alpha}[1,\infty))\xi=\pi_i(IB_kI^{\alpha}[1,\infty))\xi=0$, which implies that $\pi_i(E)\xi=\pi_i(I^{\alpha}[0,\infty))\xi\in F_i(p-1,\infty)\mathcal{H}_i$. Since $\pi_i(P)$ is irreducible it follows that $\pi_i(E)\not\supseteq\pi_i(P)$. This contradiction shows that E does not contain a non-zero ideal.

For each B_k there is (π_i, U_i) such that $\pi_i(B_k) \neq 0$. Note that

$$\operatorname{Sp}(H_U|[\pi_i(B_k)\mathcal{H}_i]) = (-\infty, p]$$

for some $p \in \mathbb{R}$ and $\pi_i(I^{\alpha}(-2,-1]B_k) \neq 0$. Let $\xi \in F_i(p-\lambda,p]\mathcal{H}_i \cap [\pi_i(B_k)\mathcal{H}_i]$ and $x \in I^{\alpha}[1,2)$ be such that $\pi_i(x)^*\xi \neq 0$ for some $\lambda > 0$. Then

$$\pi_i(IBI^{\alpha}[1,\infty))\pi_i(x)^*\xi \supset \pi_i(IB_k)\pi_i(xx^*)\xi$$

is the whole space \mathcal{H}_i while $\pi_i(I^{\alpha}[0,\infty))\pi_i(x^*)\xi \subset F_i(p-\lambda-2,\infty)\mathcal{H}_i$. Thus we can conclude that $E \supseteq I^{\alpha}[0,\infty)$. Hence $I^{\alpha}[0,\infty)$ is not essentially maximal, which is a contradiction. Thus $J = \bigcap_{\pi \in R_a} \operatorname{Ker}(\pi)$ must be essential.

In a similar way one concludes that $\bigcap_{\pi \in R_b} \operatorname{Ker}(\pi)$ is essential. Thus

$$J = \bigcap_{\pi \in R_a \cup R_b} \operatorname{Ker}(\pi)$$

is an essential ideal of A and we obtain the following property for $(J, \alpha|J)$: $\operatorname{Ker}(\pi \times U)$ is $\hat{\alpha}$ -invariant or equivalently is generated by $\operatorname{Ker}(\pi)$ for any covariant irreducible representation (π, U) of $(J, \alpha|J)$. We will assert that $\hat{\mathbb{R}}(\alpha|J) = \mathbb{R}$

Suppose that $\mathbb{R}(\alpha|J) \neq \mathbb{R}$. Then there is a primitive ideal P of $J \times_{\alpha} \mathbb{R}$ such that P is not $\hat{\alpha}$ -invariant, by the characterization of $\mathbb{R}(\alpha)$ in terms of the behavior of $\hat{\alpha}$ on the ideals [4]. Let ρ be an irreducible representation of $J \times_{\alpha} \mathbb{R}$ such that $\text{Ker}(\rho) = P$. We express ρ as $\pi \times U$. Since $\pi(A)' \cap \{U_t \mid t \in \mathbb{R}\}' = \mathbb{C}1$ the flow $\beta_t = \text{Ad } U_t$ on the von Neumann algebra $\pi(A)'$ is ergodic, which implies that $\text{Sp}(\beta)$ is a group. Since $\text{Sp}(\beta)$ is closed there are three cases: $\text{Sp}(\beta) = \mathbb{R}$, $\text{Sp}(\beta) = \lambda \mathbb{Z}$ for some $\lambda > 0$, and $\text{Sp}(\beta) = \{0\}$.

For each $B \in H^{\alpha}(A)$ with $\pi(B) \neq 0$ it follows that $\operatorname{Sp}(U|[\pi(B)\mathcal{H}_{\pi}]) + \operatorname{Sp}(\beta) = \operatorname{Sp}(U|\pi(B)\mathcal{H}_{\pi}])$. If $\operatorname{Sp}(\beta) = \mathbb{R}$, then $\operatorname{Sp}(U|[\pi(B)\mathcal{H}_{\pi}]) = \mathbb{R}$ for all $B \in H^{\alpha}(A)$ with $\pi(B) \neq 0$, which implies that $P = \operatorname{Ker}(\rho)$ is left invariant under $\hat{\alpha}$. This contradiction shows that the case $\operatorname{Sp}(\beta) = \mathbb{R}$ cannot arise. If $\operatorname{Sp}(\beta) = \lambda \mathbb{Z}$ for some $\lambda > 0$, then it follows that $\operatorname{Sp}(U|[\pi(B)\mathcal{H}_{\pi}))$ is left invariant under the addition of λ for any $B \in H^{\alpha}(A)$ with $\pi(B) \neq 0$. Since the no energy gap condition implies that $\operatorname{Sp}(U|[\pi(B)\mathcal{H}_{\pi}))$ is connected this implies that $\operatorname{Sp}(U|[\pi(B)\mathcal{H}_{\pi}]) = \mathbb{R}$. This shows again that P is $\hat{\alpha}$ -invariant, a contradiction. Hence we are left with the case $\operatorname{Sp}(\beta) = 0$ or π is irreducible. Since the $\pi \times U$ is not faithful, U is almost bounded below or almost bounded above. Hence $(\pi, U) \in R_b \cup R_a$. But then $\pi(J) = 0$ by the definition of J, a contradiction. Hence we must have that $\tilde{\mathbb{R}}(\alpha|J) = \mathbb{R}$.

We imposed a technical assumption on the α -invariant primitive ideals in the above proposition. What we needed was the property that $\bigcap_i I(\pi_i)$ is essential for the ideals $I(\pi_i)$ of I defined through $\bigcup_p \operatorname{Ker}(\pi \times \chi_p U_i)$, which may hold in general.

References

- [1] W. B. Arveson, Analyticity in operator algebras, Amer. J. Math. 89 (1967), 578–642.
- [2] _____, On groups of automorphisms of operator algebras, J. Funct. Anal. 15 (1974), 217–243.
- [3] S. Kawamura and J. Tomiyama, On subdiagonal algebras associated with flows in operator algebras, J. Math. Soc. Japan 29 (1977), no. 1, 73–90.
- [4] A. Kishimoto, Simple crossed products of C*-algebras by locally compact abelian groups, Yokohama Math. J. 28 (1980), no. 1-2, 69-85.
- [5] ______, Universally weakly inner one-parameter automorphism groups of simple C*-algebras, Yokohama Math. J. 29 (1981), no. 2, 89–100.
- [6] ______, Universally weakly inner one-parameter automorphism groups of C*-algebras, Yokohama Math. J. 30 (1982), no. 1-2, 141–149.

- [7] $\frac{}{451-473}$, C^* -crossed products by \mathbb{R} . II, Publ. Res. Inst. Math. Sci. **45** (2009), no. 2,
- [8] G. K. Pedersen, C^* -Algebras and Their Automorphism Groups, Academic Press, 1979.
- [9] C. Peligrad and L. Zsidó, Maximal subalgebras of C^* -algebras associated with periodic flows, J. Funct. Anal. **262** (2012), no. 8, 3626–3637.
- [10] B. Solel, Maximality of analytic operator algebras, Israel J. Math. 62 (1988), no. 1, 63–89.
- [11] J. Wermer, On algebras of continuous functions, Proc. Amer. Math. Soc. 4 (1953), 866–899.

HOKKAIDO UNIVERSITY, SAPPORO, JAPAN *E-mail address*: aki.ksmt@jcom.home.ne.jp