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MAXIMALITY OF THE ANALYTIC SUBALGEBRAS OF

C
∗-ALGEBRAS WITH FLOWS

Akitaka Kishimoto

Abstract. Given a faithful flow α on a C∗-algebra A, when A is α-
simple we will show that the closed subalgebra of A consisting of elements
with non-negative Arveson spectra is maximal if and only if the crossed
product of A by α is simple. We will also show how the general case can
be reduced to the α-simple case, which roughly says that any flow with
the above maximality is an extension of a trivial flow by a flow of the
above type in the α-simple case. We also propose a condition of essential
maximality for such closed subalgebras.

1. Introduction

Let α be a flow on a C∗-algebra A, i.e., α is a one-parameter automorphism
group of A such that t 7→ αt(x) is continuous for x ∈ A. We denote by Spα(x)
the Arveson spectrum of x ∈ A and by Sp(α) the Arveson spectrum of α; the
latter being the closure of the union of all Spα(x), x ∈ A. Note that Sp(α)
is a closed subset of R with Sp(α) = −Sp(α) and Sp(α) ∋ 0. We define the
spectral subspaces Aα(Ω) for closed or open subsets Ω of R (see [2] or Chapter
8 of [8]). If α is not trivial, i.e., Sp(α) 6= {0}, then Aα[0,∞) is a proper
closed subalgebra of A, called the analytic subalgebra for α. If B is a closed
subalgebra of A such that B ⊃ Aα[0,∞), then it is known that B is α-invariant
(Corollary 6 of [9]). We would be interested, following [9], in the property that
the analytic subalgebra Aα[0,∞) is maximal, i.e., if B is a closed subalgebra
of A with B ⊃ Aα[0,∞), then either B = Aα[0,∞) or B = A. We note that
the subalgebras are also studied from different perspectives (e.g., [1], [3]).

When α is periodic this problem was completely solved by Peligrad and
Zsidó (see Theorem 13 of [9]). When α is a faithful action of T = R/Z on a
C∗-algebra A such that A is α-simple, i.e., has no α-invariant ideals except for
{0} and A, and Sp(α) has more than three points, i.e., Sp(α) % {1, 0,−1}, the
maximality of Aα[0,∞) is equivalent to the simplicity of the crossed product of
A×αT, which is again equivalent to the fullness of the strong Connes spectrum
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of α (see [4]). Note that this generalizes a classical result for A = C(T) with α
induced by translations on the base space T, due to Wermer [11]. In this case
the analytic subalgebra Aα[0,∞) is identified with the subalgebra of continuous
functions on D = {x ∈ C | |z| ≤ 1} which are analytic in the interior, where
the restriction map to C(T) with T = ∂D is injective, and the crossed product
A×α T is isomorphic to the compact operators on L2(T).

Our result for non-periodic flows is completely parallel to their result (and
also to the result [10] in the von Neumann algebra case): When α is a faithful

action of R on a C∗-algebra A which is α-simple, the maximality of Aα[0,∞) is
equivalent to the simplicity of A×αR, which is again equivalent to the fullness
of the strong Connes spectrum of α (In this case Sp(α) automatically contains
at least five points; so no additional assumption on Sp(α) is necessary). In

the proof we will use the definition of strong Connes spectrum R̃(α), which
is in general a closed subsemigroup of R containing 0: λ belongs to R̃(α) if
for any open interval J containing λ and any non-zero α-invariant hereditary
C∗-subalgebra D the support projection of Dα(J) is 1D, i.e., the hereditary
C∗-subalgebra generated by Dα(J)∗Dα(J) is D.

There are many examples of (A,α) which give simple crossed products.
For example if α is a flow on the Cuntz algebra On generated by n isome-
tries s1, . . . , sn such that αt(si) = eipitsi for some p1, . . . , pn ∈ R and if
p1, . . . , pn,−pi generate R as a closed subsemigroup for all i = 1, . . . , n, then
On ×α R is simple [4]. Hence in this case Oα

n [0,∞) is maximal.
In the next section we will consider the maximality of Aα[0,∞) without

α-simplicity; the result we present can essentially be read from [9] and reduces
the problem to the α-simple case; If Aα[0,∞) is maximal with α faithful, then
A has an α-simple ideal I such that I ×α R is simple and α induces a trivial
flow on A/I (see 2.1 for details). In Section 3 we treat the α-simple case and
prove the result quoted above (see 3.7). In Section 4 we propose the notion of
essential maximality for Aα[0,∞) in case A is not α-simple and Aα[0,∞) does
not include a non-zero ideal of A, i.e., Aα[0,∞) is called essentially maximal if
any closed subalgebra B strictly containing Aα[0,∞) contains a non-zero ideal
of A. We point out some relationship of this notion with the strong Connes
spectrum. When α satisfies additional conditions including the no energy gap

condition [7], we shall show that Aα[0,∞) is essentially maximal if and only
if there is an α-invariant essential ideal I of A such that the strong Connes
spectrum of α|I is full (see 4.9).

2. General case

If α (resp. β) is a flow on a C∗-algebraA (resp. B) and φ is a homomorphism
of A into B such that φαt = βtφ, then we have that Spβ(φ(x)) ⊂ Spα(x) for

x ∈ A. Hence it follows that φ(Aα[0,∞)) ⊂ Bβ [0,∞). We do not know whether
the equality holds when φ is onto.
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Proposition 2.1. Let α be a non-trivial flow on a C∗-algebra A. Then the

following conditions are equivalent.

(1) Aα[0,∞) is maximal.

(2) There is a minimal α-invariant closed ideal I of A such that the induced

flow on the quotient A/I is trivial, the image of Aα[0,∞) is dense

in A/I under the quotient map from A onto A/I, and Iα|I [0,∞) is

maximal.

Proof. Suppose that Aα[0,∞) is maximal. If J is a non-zero α-invariant ideal
of A such that α|J is non-trivial, then the induced flow β = α̇ on A/J must
be trivial. Otherwise B = Q−1((A/J)β [0,∞)) is a proper closed subalgebra
strictly containing Aα[0,∞) because B ⊃ J , where Q is the quotient map of A
onto A/J . In this case we must have Sp(α) = Sp(α|J). If (Ji) is a decreasing
net of α-invariant ideals of A such that α|Ji is non-trivial, then

⋂

i Ji 6= 0.
This is shown as follows. If

⋂

i Ji = 0 and x ∈ A, then αt(x) − x ∈ Ji for
all i and t ∈ R, which implies that αt(x) = x for all t ∈ R, i.e., α is trivial,
a contradiction. Thus we obtain a minimal α-invariant ideal I such that the
induced flow on A/I is trivial and α|I is non-trivial. Suppose that I 6= A;
otherwise there is nothing to prove.

First we assert that if 0 is not isolated in Sp(α) the support and range pro-
jections of Aα(0,∞) = Iα|I(0,∞) are 1I (We may simply write α for α|I later).
For example if the hereditary C∗-subalgebra generated by Iα(0,∞)∗Iα(0,∞)
is not I, there is a pure state φ of I such that φ(Iα(0,∞)∗Iα(0,∞)) = 0. Then
φ is an α-invariant state called a ceiling state. Regarding φ as a state of A let
(πφ,Hφ,Ωφ) be the GNS representation triple associated with φ, where πφ is
an irreducible representation on a Hilbert space Hφ and Ωφ ∈ Hφ is a cyclic
vector for πφ(A) such that φ(x) = 〈Ωφ, πφ(x)Ωφ〉, x ∈ A. Define a unitary flow
U on Hφ by Utπφ(x)Ωφ = πφαt(x)Ωφ, x ∈ A. Then the self-adjoint generator
H of U satisfies that H ≤ 0 and HΩφ = 0. If E denotes the spectral measure of
H choose a < b < 0 such that all E(−∞, a], E(a, b], E(b, 0] are non-zero. Then
the closure B of AAα[−b,∞) + Aα[0,∞) gives a non-trivial closed subalgebra
containing Aα[0,∞) as πφ(B)E(b, 0] = E(b, 0]πφ(B)E(b, 0] and πφ(B)E(a, 0] 6=
E(a, 0]πφ(B)E(a, 0] and πφ(A

α[0,∞))E(c, 0] = E(c, 0]πφ(A
α[0,∞))E(c, 0] for

any c ≤ 0. This contradiction shows that if 0 is not isolated in Sp(α) the
support projection of Iα(0,∞) is 1I . Similarly one can show the statement for
the range projection.

If Iα[0,∞) is not maximal, then there is a proper closed subalgebra B of I
such that B strictly contains Iα[0,∞). Since B is α-invariant by [9], Sp(α|B)
contains some p < 0. For any δ ∈ (0,−p/4) there is an x ∈ B such that
Spα(x) ⊂ (p− δ, p+ δ). There are b1, b2 ∈ Iα[0, δ) such that b1xb2 6= 0.

We will show this last claim. Let B1 be the α-invariant hereditary C∗-
subalgebra generated by αt(xx

∗), t ∈ R. If 0 is isolated in Sp(α|B1) there is a
non-zero b1 ∈ B1 such that Spα(b1) = {0}. Since b1 ∈ B1 ⊂ I and b1αt(x) 6= 0
for some t ∈ R, we conclude that b1 satisfies that b1x 6= 0. If 0 is not isolated
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there is a non-zero c1 ∈ B1 such that Spα(c1) ⊂ (0, δ). Since c1αt(x) 6= 0 for
some t ∈ R we may set b1 = α−t(c1) which satisfies b1x 6= 0. Next we set B2 to
be the α-invariant hereditary C∗-subalgebra generated by αt(x

∗b∗1b1x), t ∈ R.
Then one can construct as above an element b2 ∈ B

α|B2

2 [0, δ) ⊂ I such that
b1xb2 6= 0.

Note that Spα(b1xb2) ⊂ (p − δ, p + 3δ) and b1xb2 ∈ B \ Iα|I [0,∞). Let D
denote the closed subalgebra generated by b1xb2 and Aα[0,∞). Since

Aα[0,∞)b1xb2A
α[0,∞) ⊂ Iα[0,∞)xIα[0,∞) ⊂ B

we derive that the subalgebra generated by b1xb2 and Aα[0,∞) is contained
in B + Aα[0,∞). Hence it follows that D is contained in the closure X of
B + Aα[0,∞). We assert that X + I. If X ⊃ I, then for any x ∈ I with
Spα(x) ⊂ (−∞, 0) there is a sequence bn + an with bn ∈ B and an ∈ Aα[0,∞)
such that bn + an → x. But since Spα(x) ⊂ (−∞, 0) and Sp(an) ⊂ [0,∞) it
follows that αf (bn) → x, where f ∈ L1(R) is chosen to be such that αf (x) =
∫

f(t)αt(x)dt = x and αf = 0 on Aα[0,∞); Hence x ∈ B, or B ⊃ Iα(−∞, 0).
Since B ⊃ Iα[0,∞) if 0 is isolated in Sp(α), then B ⊃ I, a contradiction.
Suppose that 0 is not isolated in Sp(α) and let x ∈ I. Then there is a sequence
bn + an with bn ∈ B and Spα(an) ⊂ [0, 1/n) such that bn + an → x because
Aα(0,∞) = Iα(0,∞) ⊂ B. If zi ∈ I satisfies Spα(zi) ⊂ (−∞, 0) for i =
1, 2, . . . , k, we obtain that z∗i zi(an + bn) ∈ B for all large n. Hence z∗i zix ∈ B.
Since the elements of the form (1 +

∑

i z
∗
i zi)

−1
∑

i z
∗
i zi with k arbitrary gives

an approximate identity for I we conclude that B ⊃ I. Thus it follows that
X + I; in particular D is a proper subalgebra.

SinceD containsAα[0,∞) and b1xb2 6∈ Aα[0,∞), it follows thatD is a closed
subalgebra strictly bigger than Aα[0,∞), which contradicts that Aα[0,∞) is
maximal. Thus one can conclude that Iα[0,∞) is maximal.

Suppose that the closure B of Q(Aα[0,∞)) is a proper closed subalgebra of
A/I. Then Q−1(B) is a proper closed subalgebra strictly containing Aα[0,∞)
since B ⊃ I; this contradiction shows B = A/I.

Suppose the second condition holds. If there is a closed subalgebra B of A
strictly containing Aα[0,∞), there is a non-zero x ∈ B such that Spα(x) ⊂
(−∞, 0). Since the induced flow on A/I is trivial we derive that x ∈ I. Since
Iα[0,∞) and x generates I as a closed subalgebra it follows that B ⊃ I. Since
B ⊃ Aα[0,∞), Q(Aα[0,∞)) is dense in A/I, and Q(B) is closed as being the
quotient of B by I ⊂ B, one can conclude that B = A. This contradiction
shows that Aα[0,∞) is maximal. �

3. α-simple case

When α is a flow on a C∗-algebra A we construct another C∗-algebra called
the crossed product A×α R of A by α. We recall the following result: A×α R
is simple if and only if A is α-simple and the strong Connes spectrum R̃(α) is
equal to R [4].
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Lemma 3.1. Let α be a flow on a C∗-algebra A such that A ×α R is simple.

Let D be a non-zero α-invariant hereditary C∗-subalgebra of A. Then for any

non-zero open interval I the closed linear span of Aα(I)∗DAα(I) is A.

Proof. Let I = (p− δ, p+ δ) for some p ∈ R and δ > 0. We choose a sequence
(pi) in R such that

⋃

i(pi − δ/2, pi + δ/2) = R. Since A is α-simple, i.e., the α-
invariant ideals are {0} and A only, it follows that the hereditary C∗-subalgebra
generated by all Aα(Ii)

∗DAα(Ii) with Ii = (pi − δ/2, pi + δ/2) for i = 1, 2, . . .

is A. Since R̃(α) = R, the hereditary C∗-subalgebra generated by Dα(−Ii +
p)∗Dα(−Ii + p) is D. Since Dα(−Ii + p)Aα(Ii) ⊂ Aα(I) ∩DA which is in the
closure of DAα(I), it follows by replacing D in Aα(Ii)

∗DAα(Ii) by Dα(−Ii +
p)∗Dα(−Ii+p) that the hereditary C∗-subalgebra generated by Aα(I)∗DAα(I)
is A, which is the same as the closed linear span of Aα(I)∗DAα(I). �

Proposition 3.2. Let α be a flow on a C∗-algebra A such that A ×α R is

simple. Then Aα[0,∞) is maximal.

Proof. Suppose that there is a proper closed subalgebra B of A strictly con-
taining Aα[0,∞). Then B is α-invariant [9] and Sp(α|B) is strictly bigger than
[0,∞). Let p ∈ Sp(α|B)\[0,∞). For δ > 0 we choose x ∈ B such that Spα(x) ⊂
(p−δ, p+δ) and setD to be the α-invariant hereditary C∗-subalgebra generated
by αt(x

∗x), t ∈ R, which is the same as the hereditary C∗-subalgebra generated
by αt(x)

∗Aα(0, δ)∗Aα(0, δ)αt(x), t ∈ R. By the previous lemma the hereditary
C∗-subalgebra generated by Aα(0, δ)∗DAα(0, δ) is A; that is, the support pro-
jection of the family Aα(0, δ)αt(x)A

α(0, δ) with t ∈ R is 1. In the same way
we can conclude that the range projection of the family Aα(0, δ)αt(x)A

α(0, δ),
t ∈ R is 1. Since Aα(0, δ)αt(x)A

α(0, δ) ⊂ Bα(p− δ, p+ 3δ) and δ is arbitrary,
we conclude that the range and support projections of Bα(p− ǫ, p+ ǫ) are 1 for
any ǫ > 0. Then in particular we derive that Sp(α|B) ∋ np for any n = 1, 2, . . ..

Let xi ∈ Bα(p − ǫ, p + ǫ) for i = 1, 2, . . . , n with n arbitrary and p ∈
Sp(α|B)\ [0,∞). Then the elements of the form (1+

∑

i xix
∗
i )

−1(
∑

i xix
∗
i ) ∈ B

constitutes an approximate identity for A (see 1.4 of [8]).
Let y ∈ A be such that Spα(y) is compact. Then there is a p ∈ Sp(α|B)

such that −p + Spα(y) ⊂ (δ,∞) for some δ > 0. Then for any ǫ > 0 there
are xi ∈ Bα(p − δ, p + δ) for i = 1, 2, . . . , n such that ‖zy − y‖ < ǫ for z =
(1 +

∑

i xix
∗
i )

−1(
∑

i xix
∗
i ). Since (

∑

i xix
∗
i )y =

∑

i xi(x
∗
i y) ∈ B it follows that

zy ∈ B. Since ǫ > 0 is arbitrary it follows that y ∈ B. Hence we conclude that
B = A, which shows that Aα[0,∞) is maximal. �

Lemma 3.3. Let α be a flow on a C∗-algebra A such that A is α-simple

and Sp(α) contains more than three points. If Aα[0,∞) is maximal, then the

support and range projections of Aα(p, q) are 1 for all open intervals (p, q) with
0 < p < q ≤ ∞ and Sp(α) ∩ (p, q) 6= ∅. In particular Sp(α) is a group.

Proof. Suppose that the hereditary C∗-subalgebra Sp generated by

Aα(p,∞)∗Aα(p,∞)
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is not A for some p ≥ 0. Let S be the set of positive functionals f on A satisfying
f(Sp) = 0 and ‖f‖ ≤ 1. Since S is a closed face of the compact unit ball of
positive functionals on A, it has a non-zero extreme point which is a pure state
φ. Since the α-spectrum of φ is contained in [−p, p], φ is α-covariant. The GNS
representation πφ associated with φ is a faithful irreducible representation and
there is a unitary flow U on the representation spaceHφ such that Utπφ(x)U

∗
t =

πφαt(x), x ∈ A. If Ωφ is the associated unit vector, i.e., Ωφ is a cyclic vector
satisfying φ(x) = 〈Ωφ, πφ(x)Ωφ〉, x ∈ A, then πφ(A

α(p,∞))Ωφ = 0. Since the
U -spectrum of Ωφ is compact we may assume by adjusting U by a character
on R that the spectrum of U is contained in (−∞, 0] including 0, i.e., if H
is the self-adjoint operator defined by Ut = eitH , then H ≤ 0 with 0 in the
spectrum of H . Let E denote the spectral measure of H . By the assumption
on Sp(α) the support of E has more than two points in addition to 0. We
choose a < b < 0 such that all E(−∞, a], E(a, b], E(b, 0] are non-zero.

Let B be the closed linear span of AAα[−b,∞) + Aα[0,∞). Then B is a
closed subalgebra containing Aα[0,∞). Since πφ(A

α[−b,∞))E(b, 0] = 0 and
πφ(A

α[0,∞))E(b, 0] = E(b, 0]πφ(A
α[0,∞))E(b, 0], it follows that

πφ(B)E(b, 0] = E(b, 0]πφ(B)E(b, 0].

Since E(b, 0] 6= 0, 1 and πφ(A) is irreducible we conclude that B 6= A. Note
that E(a, 0] 6= 0, 1, E(b, 0] and that

πφ(A
α[0,∞))E(a, 0] = E(a, 0]πφ(A

α[0,∞))E(a, 0].

But since the range projection of πφ(B)E(a, 0], which dominates the range
projection of πφ(A)E(a − b, 0], is 1, we derive that

πφ(B)E(a, 0] 6= E(a, 0]πφ(B)E(a, 0].

Thus B is bigger than Aα[0,∞), which contradicts the maximality of Aα[0,∞).
Thus we conclude that the support projection of Aα(p,∞) is 1 for all p ≥ 0.

Suppose that the hereditary C∗-subalgebra Sr generated by

Aα(p, p+ r)∗Aα(p, p+ r)

is non-zero and not equal to A for some r > p ≥ 0. Suppose that Sp(α) ∩
(0, r) 6= ∅ and let q ∈ Sp(α) ∩ (0, r). Let δ ∈ (0, (r − q)/4) and let x ∈ A
be such that Spα(x) ⊂ (q − δ, q + δ). Let V denote the closed linear span of
ASr + Aα(p+ q + δ,∞) and define B = {x ∈ A | xV ⊂ V }. Note that B is a
closed subalgebra and B ⊃ Aα[0,∞).

Note that Aα(p+q+δ, p+q+r−δ)+Aα(p+q+r−2δ,∞) = Aα(p+r+δ,∞).
Since x∗Aα(p+q+δ, p+q+r−δ)⊂ Aα(p, p+r) and x∗Aα(p+q+r−2δ,∞) ⊂
Aα(p+ r− 3δ,∞) ⊂ Aα(p+ q+ δ,∞), it follows that x∗V ⊂ V and so x∗ ∈ B.
Thus B strictly contains Aα[0,∞). On the other hand there is an s > p+ q+ δ
such that the hereditary C∗-subalgebra generated by Aα(s, s+p+ q)∗Aα(s, s+
p+ q) is not contained in Sr. Let y ∈ Aα(s, s+ p+ q) be such that y∗y 6∈ Sr.
Then y∗y ∈ Aα(−p−q, p+q). Since y ∈ V and y∗y 6∈ V we derive that y∗ 6∈ B.
This contradicts the maximality of Aα[0,∞). Hence if Sp(α) ∩ (p, p + r) 6= ∅
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and Sp(α) ∩ (0, r) 6= ∅, then it follows that Sr = A. If 0 is not isolated in
Sp(α) this implies that whenever Sp(α) ∩ (p, p+ r) 6= ∅ the support projection
of Aα(p, p+ r) is 1.

Suppose that 0 is isolated in Sp(α) and let q = min Sp(α)∩(0,∞) > 0. Then
by the reasoning above we derive that the support projection of Aα(0, q + ǫ)
is 1 for any ǫ > 0. Since Aα(0, q + ǫ) = Aα[q, q + ǫ), it follows that the
support projection of Aα[q, q + ǫ) is 1. If Sp(α) ∩ (q, 2q) is not empty, let
s ∈ Sp(α) ∩ (q, 2q). For a sufficiently small ǫ > 0 let x ∈ A be such that
Spα(x) ⊂ (s − ǫ, s + ǫ). Then as the support projection of Aα[q, q + ǫ) is 1
there is a y ∈ Aα[q, q + ǫ) such that xy∗ 6= 0. This is a contradiction because
Spα(xy

∗) ⊂ (s − q − 2ǫ, s − q + ǫ) which would imply that Sp(α) ∩ (0, q) 6= ∅
as 0 < s− q < q. Hence we deduce that Sp(α) ∩ (q, 2q) = ∅. Since the support
projection of Aα[2q, 2q+ ǫ) ⊃ Aα[q, q+ ǫ/2)Aα[q, q+ ǫ/2) is 1 for any ǫ > 0 we
can repeat this argument to obtain Sp(α) ∩ (2q, 3q) = ∅. Thus we conclude by
induction that Sp(α) = qZ and that the support projection of Aα({nq}) is 1
for all n = 1, 2, . . ..

Suppose that the hereditary C∗-subalgebra Rp generated by

Aα(p,∞)Aα(p,∞)∗

is not A for some p ≥ 0. Then as above there is a pure state φ such that
φ(Rp) = 0. We have a unitary flow U on Hφ such that Utπφ(x)U

∗
t = πφαt(x),

x ∈ A and H ≥ 0 and Sp(H) ∋ 0 for the self-adjoint operator H satisfying
Ut = eitH . We choose 0 < a < b such that E[0, a), E[a, b), E[b,∞) are all
non-zero with E the spectral measure of H , and set B to be the closed linear
span of Aα[a,∞)A + Aα[0,∞). Then it follows that B is a closed subalgebra
containing Aα[0,∞) and E[0, a)πφ(B) = E[0, a)πφ(B)E[0, a). Then we will
reach a contradiction as before, which shows that Rp = A. We omit similar
arguments for the range projections of non-zero Aα(p, q). �

If Sp(α) contains more than three points, then Sp(α) is a group; so either
Sp(α) = λZ for some λ > 0 or Sp(α) = R. In the former case α is periodic.
Since the periodic case is treated by Peligrad and Zsidó, we will concentrate
on the case Sp(α) = R in the next lemma.

Lemma 3.4. Let α be a flow on a C∗-algebra A such that A is α-simple,

Aα[0,∞) is maximal, and Sp(α) = R. If D is a non-zero α-invariant hereditary
C∗-subalgebra of A, then Aα(p, q)∗DAα(p, q) generates A as a hereditary C∗-

subalgebra for all open intervals (p, q).

Proof. First note that for any open interval (p, q) the support and range pro-
jections of Aα(p, q) are 1. This follows from the previous lemma if 0 ≤ p < q
or p < q ≤ 0. If p < 0 < q, then this follows because the support and range
projections of Aα(0, q) are already 1.

Suppose that the hereditary C∗-subalgebra D1 generated by

Aα(p, q)∗DAα(p, q)
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is not equal to A for some open interval (p, q). Let V be the closed linear span
of AD1+Aα(p,∞) and B = {x ∈ A | xV ⊂ V }. Then B is a closed subalgebra
containing Aα[0,∞). Let δ = (q−p)/3 and let d be a non-zero positive element
of D such that Spα(d) ⊂ (−δ, δ). Since the range projection of Aα(δ, 2δ − ǫ) is
1, there is an x ∈ A such that Spα(x) ⊂ (δ, 2δ − ǫ) for some small ǫ > 0 and
dx 6= 0. Since Spα(dx) ⊂ (0, 3δ−ǫ) it follows that x∗dAα(q−ǫ,∞) ⊂ Aα(p,∞).
Combining the fact that x∗dAα(p, q) is contained in the closed linear span of
AD1, we derive that x∗dV ⊂ V , i.e., x∗d ∈ B. Since x∗d 6∈ Aα[0,∞), we
conclude that B is bigger than Aα[0,∞). Let y ∈ Aα(p, 2p) be such that
y∗y 6∈ D1. Since Spα(y

∗y) ⊂ (−p, p) we derive that y∗y 6∈ V . Since y ∈ V
this implies that y∗ 6∈ B. This contradicts the maximality of Aα[0,∞). Hence
D1 = A. �

Remark 3.5. In the above lemma if we assume that Sp(α) is isomorphic to Z
instead of Sp(α) = R, then the statement goes as follows: If D is a non-zero
α-invariant hereditary C∗-subalgebra, then Aα({p})∗DAα({p}) generates A as
a hereditary C∗-subalgebra for all p ∈ Sp(α). To prove this assume that the
hereditary C∗-subalgebra D1 generated by Aα({p})∗DAα({p}) is not equal to
A and then define V to be the closed linear span of AD1 + Aα[p,∞). Then
B = {x ∈ A | xV ⊂ V } is a proper closed subalgebra strictly containing
Aα[0,∞), which is a contradiction.

Lemma 3.6. Let α be a flow on a C∗-algebra A such that A is α-simple,

Aα[0,∞) is maximal, and Sp(α) contains more than three points. If D is

a non-zero α-invariant hereditary C∗-subalgebra of A and (p, q) is an open

interval with Sp(α)∩ (p, q) 6= ∅, then the hereditary C∗-subalgebra generated by

Dα(p, q)∗Dα(p, q) is D. In other words R̃(α) = Sp(α).

Proof. We know by Lemma 3.3 that Sp(α) is a closed group.
First we assume that Sp(α) = R. Let D1 be the hereditary C∗-subalgebra

generated by Dα(p, q)∗Dα(p, q). Let δ > 0. Since the hereditary C∗-subalgebra
generated by Aα(−δ, δ)∗D1A

α(−δ, δ) is A by Lemma 3.4, one can conclude that
the hereditary C∗-subalgebra generated by

Dα(−δ, δ)∗Aα(−δ, δ)∗D1A
α(−δ, δ)Dα(−δ, δ)

isD. This implies that the support projection ofDα(p, q)Aα(−δ, δ)Dα(−δ,−δ),
which is a subset ofDα(p−2δ, q+2δ), is 1D. Since p < q and δ > 0 are arbitrary,
this shows that the support projection of Dα(p− ǫ, p+ ǫ) is 1D for any p ∈ R
and ǫ > 0, which implies R̃(α) = R.

The case Sp(α) ∼= Z follows in the same way by using Remark 3.5. �

The following result has an analogous version in the von Neumann algebra
case due to Solel (Theorem 3.7 of [10]), where α-simplicity is replaced by α-

ergodicity on the center and the strong Connes spectrum R̃(α) is replaced by
the (original) Connes spectrum.
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Theorem 3.7. Let α be a non-trivial flow on a C∗-algebra A. Suppose that

A is α-simple. Then Aα[0,∞) is maximal if and only if one of the following

three conditions holds:

(1) Sp(α) = {λ, 0, λ} for some λ > 0; in this case A is simple and there is

a projection E in the multiplier algebra M(A) such that αt = Ad eitλE ;
moreover Aα[0,∞) = EA+ (1− E)A(1 − E).

(2) Sp(α) = R̃(α) = λZ for some λ > 0; in this case α is periodic with

period 1/λ.

(3) Sp(α) = R̃(α) = R.

Proof. The first and second cases were treated in [9] at least under the assump-
tion α is periodic. We will give a slightly more general statement concerning
the first case below.

If one of the three conditions is satisfied, then it follows that Aα[0,∞) is
maximal ([9] for the first two cases and Lemma 3.2 for the third).

If Aα[0,∞) is maximal it follows from 3.3 that either Sp(α) = {λ, 0,−λ} for
some λ > 0, Sp(α) ∼= Z, or Sp(α) = R. Then the first two cases follow from [9]
(or 3.8, 3.6) while the third case follow from Lemma 3.6. �

Proposition 3.8. Let α be a non-trivial universally weakly inner flow on a C∗-

algebra A. If Aα[0,∞) is maximal, then Sp(α) = {λ, 0,−λ} for some λ > 0
and there is a non-zero simple ideal I of A and a projection E ∈ M(I) such

that Ad eitλEπ(x) = παt(x) and [E, π(x)] ∈ I for x ∈ A and α is trivial on

Ker(π), where π is the canonical map of A into M(I).

Proof. Note that all ideals of A are α-invariant. By Proposition 2.1 we have
a minimal ideal I of A such that α|I is non-trivial and the induced flow on
A/I is trivial, which implies Sp(α) = Sp(α|I). Since I is simple and α|I is
universally weakly inner, it follows that α|I is inner [5]. Since Iα|I [0,∞) is
maximal it follows that Sp(α|I) consists of only three points, say {λ, 0,−λ} for

some λ > 0, otherwise we would have Sp(α) = R̃(α|I), which means that α|I
is not inner. Thus there is a projection E in the multiplier algebra M(I) such
that αt|I = Ad eitλE . Then it follows that παt(x) = Ad eitλEπ(x) for x ∈ A.
Since the induced flow on the quotient A/I is trivial it follows that α is trivial
on Ker(π) and Ad eitλEπ(x) − π(x) ∈ I for all x ∈ A. The latter condition is
simply expressed by [E, π(x)] ∈ I for x ∈ A. �

4. Essential maximality

To conclude this note we comment on the case where A is not α-simple.
We might want to mitigate the condition that Aα[0,∞) is maximal, e.g., if
Aα[0,∞) is a direct sum of maximal subalgebras we might call it essentially
maximal. Formally we propose the following definitions.

Given a flow α on A we shall say that Aα[0,∞) is essentially non-self-adjoint

if I ∩ Aα[0,∞) 6= I or α|I is non-trivial for any non-zero α-invariant ideal
I. For such a flow we say that Aα[0,∞) is essentially maximal if any closed
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subalgebra B strictly containing Aα[0,∞) there is a non-zero α-invariant ideal
I with I ⊂ B. We obtain the following easy results:

Proposition 4.1. Let α be a flow on a C∗-algebra A. If R̃(α) = R, then

Aα[0,∞) is essentially maximal.

Proof. Let B be a closed subalgebra strictly containing Aα[0,∞). Let p ∈
Sp(α|B) with p < 0 and let x be a non-zero element of B such that Spα(x) ⊂
(p− δ, p+ δ) for δ = −p/4. Let I be the ideal generated by αt(x), t ∈ R. Then
the support and range projections of Aα(0, δ)αt(x)A

α(0, δ) are 1I as in the
proof of Proposition 3.2. Since Aα(0, δ)αt(x)A

α(0, δ) ⊂ Bα(p − δ, p+ 3δ) ∩ I,
it follows that the support and range projections of Bα(−5δ,−δ) ∩ I are 1I ,
which implies that the support and range projections of Bα(−5nδ,−nδ) ∩ I
are also 1I for all n = 1, 2, . . .. Then for any n ∈ N we have an approximate
identity for I of elements of the form z = (1 +

∑

i xix
∗
i )

−1(
∑

i xix
∗
i ) with

xi ∈ Bα(−5nδ,−nδ)∩ I for i = 1, . . . , k with k arbitrary. Then as in the proof
of Proposition 3.2 one can conclude that B ⊃ I. �

Proposition 4.2. Let α be a flow on a C∗-algebra A. If R̃(α) = Sp(α) = λZ
for some λ > 0, then Aα[0,∞) is essentially maximal.

Proof. We denote by Aα(nλ) the spectral subspace Aα({nλ}) for all n ∈ Z.
Note that Aα[0,∞) is the closed linear span of Aα(nλ) with n = 0, 1, 2, . . . .

Let B be a closed subalgebra strictly bigger than Aα[0,∞). Then there is
a negative p ∈ Z such that Bα(pλ) 6= {0}. Let x be a non-zero element of
Bα(pλ). Let I be the ideal generated by x, which is α-invariant. We prove as
in the proof of the previous lemma that the range and support projections of
Aα(0)xAα(0) or Bα(pλ) are 1I . Then one can show that B ⊃ I. �

But there would be much more examples. Let α be a flow on a C∗-algebra A
such that A is α-simple and R̃(α) = R and define a flow β on B = C[−1, 1]⊗A
by βt(f)(s) = αst(f(s)). Then Bβ [0,∞) is the subalgebra consisting of f ∈ B
such that f(s) ∈ Aα[0,∞) for s > 0 and f(s) ∈ Aα(−∞, 0] for s < 0 (and
f(0) ∈ Aα({0})). One can see that Bβ[0,∞) is essentially maximal and that

R̃(β) = {0}. But if we define an ideal I of B consisting of functions vanishing

at 0, then R̃(β|I) = R. If α satisfies R̃(α) = Z = Sp(α) instead one can see that

Bβ [0,∞) is still essentially maximal and that R̃(β|J) = {0} for any non-zero
β-invariant ideal J . Note that Sp(β) = R.

Proposition 4.3. Let α be a flow on a C∗-algebra A such that Aα[0,∞)
is essentially non-self-adjoint and I be an essential α-invariant ideal. Then

Aα[0,∞) is essentially maximal if and only if Iα|I [0,∞) is essentially maxi-

mal. In general if Aα[0,∞) is essentially maximal, then Jα|J [0,∞) is essen-

tially maximal for any non-zero α-invariant ideal J of A.

Proof. Suppose that Aα[0,∞) is essentially maximal and let J be a non-zero
α-invariant ideal of A. If Jα[0,∞) is not essentially maximal, then there is a
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closed subalgebra B of J bigger than Jα[0,∞) such that B contains no non-
zero ideals. Let y ∈ B \ Jα[0,∞) be a non-zero element of the form b1xb2 with
b1, b2 ∈ Jα[0,∞) and x ∈ B (see the proof of Proposition 2.1 for the existence of
such y). Let B1 denote the closed subalgebra generated by b1xb2 and Aα[0,∞).
Since Aα[0,∞)b1xb2A

α[0,∞) ⊂ Jα[0,∞)xJα[0,∞) ⊂ B it follows that B1 is
contained in the closure of B + Aα[0,∞). If B1 contains a non-zero ideal K
of A, then it contains the non-zero ideal P = K ∩ J (If K ∩ J = 0, then
K ⊂ B1 ∩ J⊥ = Aα[0,∞) ∩ J⊥, contradicting Aα[0,∞) is essentially non-self-
adjoint). Since B1 is contained in the closure of B+Aα[0,∞), there are, for any
x ∈ P , sequences (bn) in B and (an) in Aα[0,∞) such that bn + an → x. For
any y ∈ Pα[0,∞) ⊂ Jα[0,∞) ⊂ B it follows that (bn + an)y ∈ B as bny ∈ B
and any ∈ Pα[0,∞) ⊂ B, which implies that xy ∈ B. Similarly x1yx2 ∈ B for
all x1, x2 ∈ P . If P1 denotes the ideal generated by Pα[0,∞), this implies that
P1 ⊂ B. Since P1 6= 0, this is a contradiction. Thus we conclude that Jα[0,∞)
is essentially maximal.

It remains to show that if J is essential and Jα[0,∞) is essentially maximal,
then Aα[0,∞) is essentially maximal. This part is easy. �

Let α be a flow on a C∗-algebra A. We say α satisfies the no energy gap

condition if for any non-zero α-invariant hereditary C∗-algebra B and for any
λ > 0 the C∗-subalgebra generated by Bα(−λ, λ) is B (see [7]). We note the
following:

Proposition 4.4. Let α be a flow on a C∗-algebra A. Then the following

conditions are equivalent for any λ > 0 :

(1) Aα(−λ, λ) generates A as a closed subalgebra.

(2) Aα(0, λ) generates Aα(0,∞) as a closed subalgebra.

(3) Aα[0, λ) generates Aα[0,∞) as a closed subalgebra.

Proof. (1)⇒(2): From the proof of Lemma 2.2 of [7] the linear combinations
of monomials y1y2 · · · yn with all yi ∈ Aα(0, λ) or all yi ∈ Aα(−λ, 0) and
z ∈ Aα(−λ/2, λ/2) are dense in A. If x ∈ A is such that Spα(x) is a compact
subset of (0,∞) there is, for any ǫ > 0, a linear combination z+ (resp. z−)
of monomials of the form y1 · · · yn with yi ∈ Aα(0, λ) (resp. yi ∈ Aα(−λ, 0))
and z0 ∈ Aα(−λ/2, λ/2) such that ‖x − z+ − z− − z0‖ < ǫ. Let f be in

L1(R) such that f̂ has compact support in (0,∞) and f̂ = 1 on Spα(x). Then
αf (x) =

∫

f(t)αt(x)dt = x and ‖x−αf (z+)−αf (z0)‖ < ‖f‖1ǫ. Since αf (z0) ∈
Aα(0, λ/2) and αf (z+) can be approximated by a Riemann sum it follows that
the closed subalgebra generated by Aα(0, λ) includes x.

(2)⇒(3): Since Aα[0,∞) is the linear span of Aα[0, λ) and Aα(0,∞) this is
obvious.

(3)⇒(1): The closed subalgebra generated by Aα(−λ, λ) includes Aα(−∞, 0]
∪Aα[0,∞). Since A is the closed linear span of Aα(−∞, 0) ∪ Aα(−λ, λ) ∪
Aα(0,∞) the conclusion follows. �

The following is Proposition 1.1 of [7].
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Lemma 4.5. Let α be a flow on a C∗-algebra. If R̃(α) = R, then α satisfies

the no energy gap condition.

There are more flows with the no energy gap condition. Let (λn) be a
sequence in R such that limn λn = 0 and

∑

n λ
2
n = ∞ and define a flow on the

UHF algebra A of type 2∞ by

αt =
⊗

n

Ad

(

1 0
0 eitλn

)

.

Then for any flow β on a C∗-algebra B the flow t 7→ αt ⊗ βt on A⊗B satisfies
the no energy gap condition. See Proposition 3.1 of [7].

Lemma 4.6. Let α be a universally weakly inner flow on a C∗-algebra A such

that α satisfies the no energy gap condition. Then α is trivial.

Proof. Suppose that α is a universally weakly inner flow on A. By [6] there
is a non-zero α-invariant hereditary C∗-subalgebra B of A such that α|B is
uniformly continuous. Suppose that there is an α-invariant hereditary C∗-
subalgebra B such that α|B is non-trivial and uniformly continuous. Let π be
an irreducible representation of B such that t 7→ παt is non-trivial. There is a
self-adjoint operator h on Hπ such that h ≥ 0, Sp(h) ∋ 0, and παt = Ad eithπ.
Let δ = ‖h‖/4 > 0 and let D be the hereditary C∗-subalgebra of A generated
by Bα(3δ,∞)∗Bα(3δ,∞) + Bα(3δ,∞)Bα(3δ,∞)∗. Then it follows that the
C∗-subalgebra Dδ generated by Dα(−δ, δ) is not equal to D as π(Dδ) is not
irreducible on the closure of π(D)Hπ . This contradicts the no energy gap
condition of α.

Hence we conclude that if α|B is uniformly continuous, then α|B is trivial
for all α-invariant hereditary C∗-subalgebras B. One can show that there is
a maximal α-invariant hereditary C∗-subalgebra B0 on which α is trivial. If
there is an x ∈ AB0 such that Spα(x) is compact and Spα(x) 6∋ 0 and if B1

denotes the hereditary C∗-subalgebra generated by αs(x)B0αt(x)
∗, s, t ∈ R,

then B0B1 = 0 and α is uniformly continuous, and so trivial, on the hereditary
C∗-subalgebra generated by B0 and B1 as B0AB1 is a subset of the closed
linear span of B0αt(x)

∗, t ∈ R. Since this contradicts the maximality of B0,
we must have that α is trivial on AB0. Hence we obtain that AB0A ⊂ B0, i.e.,
B0 is an ideal. Then B0 must be essential because otherwise we could apply
the same argument to B⊥

0 , contradicting the maximality of B0. Then for any
x ∈ A and b ∈ B0 we have that αt(x)b = αt(xb) = xb, i.e., αt(x) = x. Hence
B0 = A. �

Lemma 4.7. Let α be a flow on a C∗-algebra A. If Aα(−λ, λ) generates A for

any λ > 0, then either Sp(α) = {0} or Sp(α) = R.

Proof. If Sp(α) is bounded, then the previous lemma implies that Sp(α) = {0}.
If Sp(α) is unbounded and has a gap, say Sp(α)∩ (µ, µ+ ǫ) = ∅ for some µ ≥ 0
and ǫ > 0, then the closed subalgebra generated by Aα(−ǫ, ǫ) is contained in
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Aα[−µ, µ], which implies that α does not satisfy the no energy gap condition.
Hence if Sp(α) is unbounded, then Sp(α) = R. �

Proposition 4.8. Let α be a flow on a C∗-algebra A such that α satisfies the

no energy gap condition. Then there is a minimal α-invariant ideal I of A such

that the induced flow on the quotient A/I is trivial. Moreover I is the ideal

generated by Aα(0,∞) and the Connes spectrum R(α|I) of α is full.

Proof. Let I be the ideal generated by Aα(0,∞). Let B ∈ Hα(I). If Sp(α|B) =
{0}, then Sp(α|J) = {0} for the ideal generated by B. Since J ⊂ I we have that
0 6= JAα(0,∞) ⊂ J , which contradicts that α|J is trivial. Hence Sp(α|B) = R.
Thus one can conclude that R(α|I) = R. If there is an α-invariant ideal P
of A such that the induced flow on A/P is trivial, then P ⊃ Aα(0,∞), which
implies that P ⊃ I. �

In the situation of the above proposition let R0 denote the set of covariant
irreducible representations π of A satisfying παt = π, t ∈ R. Then the above I
is also defined by I =

⋂

π∈R0
Ker(π).

Proposition 4.9. Let α be a flow on a separable C∗-algebra A such that

Aα[0,∞) is essentially non-self-adjoint. Suppose that α satisfies the no energy

gap condition and that all the α-invariant primitive ideals of A are maximal

among the α-invariant ideals. Then Aα[0,∞) is essentially maximal if and

only if there is an essential ideal I of A such that R̃(α|I) = R.

Proof. The if part follows from Propositions 4.1 and 4.3.
Suppose that Aα[0,∞) is essentially maximal. By the previous proposition

Aα(0,∞) generates an ideal I such that the induced flow on A/I is trivial.
Since Aα[0,∞) is essentially non-self-adjoint, I must be essential. Hence we
may assume that Aα(0,∞) generates A.

Let (πi, Ui) be all covariant irreducible representations of (A,α) such that
the kernel of πi × Ui is not generated by Ker(π) (or equivalently Ker(πi × Ui)
is not invariant under the dual flow α̂). We denote by Hi the representation
space for πi and by Hi the self-adjoint generator of Ui, i.e., Ui,t = eitHi on
Hi. Then by the no energy gap condition the spectrum of Sp(Hi|[πi(B)Hi]) is
connected for all B ∈ Hα(A), where Hα(A) is the set of non-zero α-invariant
hereditary C∗-subalgebras of A and [πi(B)Hi] is the closed linear span (or
the closure) of πi(B)Hi (This follows from the definition; see page 455 of [7]).
Since Ker(πi ×Ui) is not α̂-invariant there is no B ∈ Hα(A) such that πi ×Ui

is faithful on B ×α R. And there is a B ∈ Hα(A) such that πi(B) 6= 0
and Sp(Hi|[πi(B)Hi]) 6= R. Hence Sp(Hi|[πi(B)Hi]) = [p,∞) or (−∞, p] (If
Sp(Hi|[πi(B)Hi]) is bounded, it must be a singleton, which is excluded from
the beginning). If Sp(Hi|[πi(B)Hi]) = [p,∞) for some B ∈ Hα(A), then
Sp(Hi|[πi(Dλ)Hi]) is of the form [q,∞) with q ∈ R for the hereditary C∗-
subalgebra Dλ generated by Aα(−λ, λ)BAα(−λ, λ) for any λ > 0. In this case
we call Ui almost bounded below. The same is true for the case (−∞, p], which
will be called almost bounded above.
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We denote by Rb (resp. Ra) the set of covariant irreducible representations
(π, U) with U almost bounded below (resp. almost bounded above). We will
also regard Rb etc. as a set of irreducible representations of A.

Let J =
⋂

π∈Ra
Ker(π). We shall show that J is an essential ideal. Suppose

that J is not essential and let I = J⊥ = {x ∈ A | xJ = 0}. We regard π ∈ Ra

as a representation of I.
Since I is separable there is a sequence (πi, Ui) in Ra such that

⋂

iKer(πi) =
{0}. The closure of

⋃

p∈R
α̂p(Ker(πi × Ui)) is given as I(πi) ×α R for some α-

invariant ideal I(πi) of I. Since I(πi) is bigger than the α-invariant primitive
ideal Ker(πi) of I the assumption implies that I(πi) = I (When we regard πi

as a representation of A,
⋃

p α̂p(Ker(πi × Ui)) is dense in A ×α R; take the

intersection with I ×α R). Let (xi) be a dense sequence in the unit sphere of
I ×α R. Since (πi × Ui)α̂p = πi × χpUi where χp is the character of R defined
by χp(t) = eipt and Ker(πi × χpUi) is increasing as p is decreasing, we replace
Ui by χpUi with some p ∈ R such that ‖(πi ×Ui)(xj)‖ < 1/i for j = 1, 2, . . . , i.
Then it follows that supi≥j ‖(πi × Ui)(xj)‖ < 1/j for all j.

Let ρ =
⊕

i πi and V =
⊕

i Ui on the representation space H =
⊕

Hi.
Since infp ‖(ρ × χpV )(xj)‖ < 1/j, we obtain that

⋃

p α̂p(Ker(ρ × V )) is dense

in I×αR. Hence there is a B ∈ Hα(I) such that Sp(H |[ρ(B)H]) = (−∞, p] for
some p ∈ R, where H is the self-adjoint generator of V . We choose a maximal
family {Bk} in Hα(I) such that Sp(H |[ρ(Bk)H]) = (−∞, pk] for some pk ∈ R
and BkIBℓ = 0 for k 6= ℓ. Let B be the closed linear span of all Bk, which is
in Hα(I) and generates an essential ideal I0 of I.

Let E be the closure of IBIα[1,∞)+ Iα[0,∞), which is a closed subalgebra
of I containing Iα[0,∞). Suppose that E contains a non-zero ideal P of I.
Since P ∩ B 6= 0, there is Bk such that P ∩ Bk 6= 0. Since ρ(P ∩ Bk) 6= 0,
there is (πi, Ui) such that πi(P ∩ Bk) 6= 0. Then there is a p ∈ R such that
Sp(Hi|[πi(Bk)Hi]) = (−∞, p], where Hi is the self-adjoint generator of Ui. Let
ξ be a unit vector in Fi(p − 1, p]Hπ, where Fi is the spectral measure of Hi.
Then it follows that πi(IBIα[1,∞))ξ = πi(IBkI

α[1,∞))ξ = 0, which implies
that πi(E)ξ = πi(I

α[0,∞))ξ ∈ Fi(p − 1,∞)Hi. Since πi(P ) is irreducible it
follows that πi(E) # πi(P ). This contradiction shows that E does not contain
a non-zero ideal.

For each Bk there is (πi, Ui) such that πi(Bk) 6= 0. Note that

Sp(HU |[πi(Bk)Hi]) = (−∞, p]

for some p ∈ R and πi(I
α(−2,−1]Bk) 6= 0. Let ξ ∈ Fi(p− λ, p]Hi ∩ [πi(Bk)Hi]

and x ∈ Iα[1, 2) be such that πi(x)
∗ξ 6= 0 for some λ > 0. Then

πi(IBIα[1,∞))πi(x)
∗ξ ⊃ πi(IBk)πi(xx

∗)ξ

is the whole space Hi while πi(I
α[0,∞))πi(x

∗)ξ ⊂ Fi(p−λ−2,∞)Hi. Thus we
can conclude that E % Iα[0,∞). Hence Iα[0,∞) is not essentially maximal,
which is a contradiction. Thus J =

⋂

π∈Ra
Ker(π) must be essential.
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In a similar way one concludes that
⋂

π∈Rb
Ker(π) is essential. Thus

J =
⋂

π∈Ra∪Rb

Ker(π)

is an essential ideal of A and we obtain the following property for (J, α|J):
Ker(π×U) is α̂-invariant or equivalently is generated by Ker(π) for any covari-

ant irreducible representation (π, U) of (J, α|J). We will assert that R̃(α|J) =
R.

Suppose that R̃(α|J) 6= R. Then there is a primitive ideal P of J ×α R
such that P is not α̂-invariant, by the characterization of R̃(α) in terms of the
behavior of α̂ on the ideals [4]. Let ρ be an irreducible representation of J×αR
such that Ker(ρ) = P . We express ρ as π×U . Since π(A)′∩{Ut | t ∈ R}′ = C1
the flow βt = AdUt on the von Neumann algebra π(A)′ is ergodic, which implies
that Sp(β) is a group. Since Sp(β) is closed there are three cases: Sp(β) = R,
Sp(β) = λZ for some λ > 0, and Sp(β) = {0}.

For each B ∈ Hα(A) with π(B) 6= 0 it follows that Sp(U |[π(B)Hπ ]) +
Sp(β) = Sp(U |π(B)Hπ ]). If Sp(β) = R, then Sp(U |[π(B)Hπ ]) = R for all
B ∈ Hα(A) with π(B) 6= 0, which implies that P = Ker(ρ) is left invariant
under α̂. This contradiction shows that the case Sp(β) = R cannot arise.
If Sp(β) = λZ for some λ > 0, then it follows that Sp(U |[π(B)Hπ) is left
invariant under the addition of λ for any B ∈ Hα(A) with π(B) 6= 0. Since
the no energy gap condition implies that Sp(U |[π(B)Hπ) is connected this
implies that Sp(U |[π(B)Hπ ]) = R. This shows again that P is α̂-invariant, a
contradiction. Hence we are left with the case Sp(β) = 0 or π is irreducible.
Since the π ×U is not faithful, U is almost bounded below or almost bounded
above. Hence (π, U) ∈ Rb ∪ Ra. But then π(J) = 0 by the definition of J , a

contradiction. Hence we must have that R̃(α|J) = R. �

We imposed a technical assumption on the α-invariant primitive ideals in the
above proposition. What we needed was the property that

⋂

i I(πi) is essential
for the ideals I(πi) of I defined through

⋃

p Ker(π × χpUi), which may hold in
general.
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