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PATH-CONNECTED AND NON PATH-CONNECTED
ORTHOMODULAR LATTICES

Eunsoon Park and Wonhee Song

Abstract. A block of an orthomodular lattice L is a maximal Boolean
subalgebra of L. A site is a subalgebra of an orthomodular lattice L of
the form S = A ∩ B, where A and B are distinct blocks of L. An ortho-
modular lattice L is called with finite sites if |A∩B| < ∞ for all distinct
blocks A, B of L. We prove that there exists a weakly path-connected
orthomodular lattice with finite sites which is not path-connected and if
L is an orthomodular lattice such that the height of the join-semilattice
[Com L]∨ generated by the commutators of L is finite, then L is path-
connected.

1. Introduction

A path of an orthomodular lattice was defined by Bruns [1] and has been
studied by several authors. We have the following classes of path-connected or-
thomodular lattices: every block-finite orthomodular lattice is path-connected
[1], and every commutator-finite orthomodular lattice is path-connected [2],
and every vertex-finite orthomodular lattice is path-connected [7]. We study
some conditions such that an irreducible orthomodular lattice is to be simple,
and some properties of paths of an orthomodular lattice has been used to prove
that every block-finite irreducible orthomodular lattice is simple [9], and every
vertex-finite irreducible orthomodular lattice is simple [7]. In this paper, we
extend these results, and find some path-connected orthomodular lattices and
some properties of path-connected orthomodular lattices.

An orthomodular poset (abbreviated by OMP) is a partially ordered set P
which satisfies the orthomodular law: if x ≤ y, then y = x ∨ (x′ ∧ y) [6]. An
orthomodular lattice (abbreviated by OML) is an ortholattice L which satisfies
the orthomodular law [6]. A Boolean algebra B is an ortholattice satisfying the
distributive law : x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) ∀x, y, z ∈ B.
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A subalgebra of an OML L is a nonempty subset M of L which is closed
under the operations ∨, ∧ and ′. We write M ≤ L if M is a subalgebra of L. If
M ≤ L and a, b ∈M with a ≤ b, then the relative interval sublattice M [a, b] =
{x ∈ M | a ≤ x ≤ b} is an OML with the relative orthocomplementation ] on
M [a, b] given by c] = (a ∨ c′) ∧ b = a ∨ (c′ ∧ b) ∀c ∈ M [a, b]. In particular,
L[a, b] will be denoted by [a, b] if there is no ambiguity.

The commutator of a and b of an OML L is denoted by a∗b, and is defined by
a∗b = (a∨b)∧(a∨b′)∧(a′∨b)∧(a′∨b′). The set of all commutators of L is denoted
by ComL and L is said to be commutator-finite if |ComL| is finite. For elements
a, b of an OML, we say a commutes with b, in symbols aC b, if a∗b = 0. If M is
a subset of an OML L, the set C(M) = {x ∈ L |xCm ∀m ∈ M} is called
the commutant of M in L and the set Cen(M) = C(M)∩M is called the center
of M . The set C(L) is called the center of L and then C(L) =

⋂ {C(a) | a ∈ L}.
An OML L is called irreducible if C(L) = {0, 1}, and L is called reducible if it
is not irreducible.

A block of an OML L is a maximal Boolean subalgebra of L. The set of all
blocks of L is denoted by AL. Note that

⋃
AL = L and

⋂
AL = C (L). An

OML L is said to be block-finite if |AL| is finite.
For any e in an OML L, the subalgebra Se = [0, e′] ∪ [e, 1] is called the

(principal) section generated by e. Note that for A,B ∈ AL, if e ∈ A ∩ B and
A ∩B = Se ∩ (A ∪B), then A ∩B = Se ∩A = Se ∩B [1].

Definition 1.1. For blocks A, B of an OML L define A wk∼ B if and only if
A ∩ B = Se ∩ (A ∪ B) for some e ∈ A ∩ B; A ∼ B if and only if A 6= B and
A ∪B ≤ L; A ≈ B if and only if A ∼ B and A ∩B 6= C(L).

A path in L is a finite sequence B0, B1, . . . , Bn (n ≥ 0) in AL satisfying
Bi ∼ Bi+1 whenever 0 ≤ i < n. The path is said to join the blocks B0 and
Bn. The number n is said to be the length of the path. A path is said to be
proper if and only if n = 1 or Bi ≈ Bi+1 holds whenever 0 ≤ i < n. A
path is called to be strictly proper if and only if Bi ≈ Bi+1 holds whenever
0 ≤ i < n [1].

Let A,B be two blocks of an OML L. If A ∼ B holds, then there exists a
unique element e ∈ A ∩ B satisfying A ∩ B = (A ∪ B) ∩ Se [1]. Using this
element e, we say that A and B are linked at e (strongly linked at e) if A ∼ B
(A ≈ B), and use the notation A ∼e B (A ≈e B). The element e is called a
vertex of L and it is the commutator of any x ∈ A \B and y ∈ B \A [1]. The
set of all vertices of L is denoted by VL and L is said to be vertex-finite if |VL|
is finite.

Note that A ≈ B implies A ∼ B, and A ∼ B implies A wk∼ B. Some authors,
for example Greechie, use the phrase “A and B meet in the section Se” to
describe A wk∼ B [4].

Definition 1.2. Let L be an OML, and A,B ∈ AL. We will say that A and
B are path-connected in L, strictly path-connected in L if A and B are joined
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by a proper path, a strictly proper path, respectively. An OML S is not path-
connected if there exist two blocks in L which are not path-connected. An
OML L is path-connected in L, strictly path-connected in L if any two blocks
in L are joined by a proper path, a strictly proper path, respectively. An OML
L is called relatively path-connected if and only if each [0, x] is path-connected
for all x ∈ L.

Let L be an OML, and A,B,C ∈ AL. If A and B are joined with a strictly
proper path A = B0 ≈ B1 ≈ · · · ≈ Bm−1 ≈ Bm = B and if B and C are joined
with a strictly proper path B = C0 ≈ C1 ≈ · · · ≈ Cn−1 ≈ Cn = C then A and
C are strictly path-connected by the concatenated path A = B0 ≈ B1 ≈ · · · ≈
Bm−1 ≈ B ≈ C1 ≈ · · · ≈ Cn−1 ≈ Cn = C.

The following lemma is well known [1].

Lemma 1.3. If L1, L2 are OMLs, L = L1×L2, A,B ∈ AL1 and C,D ∈ AL2 ,
then A × C ∼ B × D holds in L if and only if either A = B and C ∼ D or
A ∼ B and C = D. If A and B are linked at a then A × C and B × C are
linked at (a, 0). If C and D are linked at c then A × C and A ×D are linked
at (0, c).

The following four theorems are well known [7].

Theorem 1.4. Let L be an OML, and x ∈ L. Then C(x) is path-connected if
and only if [0, x] and [0, x′] are path-connected.

Proof. We know that C(x) = [0, x]⊕ [0, x′]. First, if [0, x] and [0, x′] are path-
connected, then C(x) is path-connected by Lemma 1.3. Conversely, assume
that C(x) is path-connected and let us prove that [0, x] and [0, x′] are path-
connected. It is sufficient to show that [0, x] is path-connected by symmetry.
Let A,B be distinct blocks in [0, x] and let D ∈ A[0,x′]. We may assume
that A ∪ B 6≤ [0, x], otherwise A and B are path-connected in [0, x]. Then
A⊕D and B ⊕D are blocks in C(x) and hence path-connected in C(x). Let
A ⊕ D = C0 ⊕ E0 ∼ C1 ⊕ E1 ∼ · · · ∼ Cn ⊕ En = B ⊕ D (n ≥ 2) be a
path joining A ⊕ D and B ⊕ D in C(x) where Ci ∈ A[0,x] and Ei ∈ A[0,x′]
∀(0 ≤ i ≤ n). Then the sequence C0, C1, . . . , Cn satisfies Ci ∼ Ci+1 in [0, x]
or Ci = Ci+1 by Lemma 1.3. Let M = {i |Ci ∼ Ci+1, 1 ≤ i ≤ n − 1}. Then
A = C0 ∼ Ci1 ∼ · · · ∼ Cik

∼ Cn = B where ij ∈ M such that 0 = i0 ≤ i1 ≤
i2 ≤ · · · ≤ ik ≤ n − 1. Thus A and B are path-connected in [0, x], and hence
[0, x] is path-connected. This completes the proof. �
Theorem 1.5. Every finite direct product of path-connected orthomodular lat-
tices is path-connected.

Theorem 1.6. Every infinite direct product of path-connected OMLs contain-
ing infinitely many non-Boolean factors is not path-connected.

Theorem 1.7. Let L be an OML. Then the following are equivalent:
(1) L is relatively path-connected;
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(2) C(x) is path-connected ∀x ∈ L;
(3) Sx is path-connected ∀x ∈ L.

2. Path-connected orthomodular lattices

A site is a subalgebra of an OML L of the form S = A ∩ B, where A and
B are distinct blocks of L. An OML L is called with uniformly finite sites if
there exists a natural number n such that for all distinct blocks A,B of L,
|A∩B| < n. An OML L is called with finite sites if for all distinct blocks A,B
of L, |A ∩B| <∞.

Using the pasting suggested by Greechie [4] and the inductive limit intro-
duced by Dacey [3], we will present an OML with finite sites which is not
path-connected.

A sublattice M of an OML L is said to be a suborthomodular lattice of L in
case the restriction of the orthocomplementation on L makes M an OML. A
suborthomodular lattice M of an OML L is called subcomplete in case N ⊂M
and

∨
N exists as computed in L implies

∨
N is in M .

In what follows we assume that (L1,≤1,
] ) and (L2,≤2,

+ ) are two disjoint
OMLs, that Si is a proper suborthomodular lattice of Li (i = 1, 2), and that
there exists an orthoisomorphism θ : S1 → S2.

Definition 2.1. (1) Let L0 = L1 ∪ L2.
(2) Let P1 = {(x, y) ∈ L0 × L0 : y = xθ}.
(3) Let ∆ = {(x, x) : x ∈ L0}.
(4) Let P be the equivalence relation defined by P = ∆∪P1∪P1

−1, where
P1
−1 = {(y, x) : (x, y) ∈ P1}.

(5) Let L = L0/P .
(6) For i = 1, 2, let R = {([x], [y]) ∈ L × L : there exist xi ∈ [x]

and yi ∈ [y] such that xi <i yi};
(7) Let ≤ be the relation (R1 ∪R2)2.
(8) Define [0] to be [01] and [1] to be [11], where 01 and 11 are the zero and

unit elements of L1.
(9) Define ′ : L→ L by the following prescription: for [x] ∈ L,

[x]′ =

{
[x1

]], if there exists x1 ∈ L1 such that x1 ∈ [x],
[x2

+], if there exists x2 ∈ L2 such that x2 ∈ [x].

(10) Two sections S1 and S2 are said to be corresponding sections of L1 and
L2 in case there exists Mi ⊂ Si ⊂ Li (i = 1, 2) such that M1θ = M2

and S1 =
⋃{Sm] : m ∈M1} and S2 =

⋃{Sm+ : m ∈M2}.
The following theorem is well known [4].

Theorem 2.2 ([4]). Let S1 and S2 be corresponding sections of L1 and L2.
Let Li be complete and let Si be subcomplete (i = 1, 2). Then L is a complete
OML.
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Definition 2.3. An OML L is said to be obtained by pasting two OMLs L1 and
L2 along the sections S1 and S2 if and only if all the conditions of Definition
2.1 are satisfied, and we write

L = P (L1, L2;S1, S2; θ).

A poset D is called directed if any two elements subset of D has an upper
bound in D.

Definition 2.4. An inductive system (Aα, φ
α
β)D of sets is defined to be a triplet

of the following objects:
(1) a directed partially ordered set (D,≤);
(2) sets Aα for each α ∈ D;
(3) mappings φα

β for all α ≤ β, where φα
β maps Aα into Aβ such that

φβ
γφ

α
β = φα

γ for α ≤ β ≤ γ and φα
α is the identity mapping for all

α ∈ D.
A limit (A, φα) of an inductive system (or an inductive limit) is a set A

together with mappings φα : Aα → A, subject to the following conditions:
φβφα

β = φα for α ≤ β and, if mapping ψα : Aα → B are given with ψβφ
α
β = ψα

for α ≤ β, then there exists a unique ψ : A → B such that ψα = ψφα for
α ∈ D.

Let (D,≤) be a directed set. Assume that for each α ∈ D, Aα is an OMP
and for α ≤ β, there is an ortho-embedding φα

β : Aα → Aβ such that the family
(φα

β) satisfies φα
α = Idα, φ

β
γ ◦ φα

β = φα
γ for α ≤ β ≤ γ. Then (Aα, φ

α
β )D is an

inductive system in the category of OMPs and ortho-embeddings.
Let (Aα, φ

α
β)D be a fixed inductive system in the category of OMPs and

ortho-embeddings. LetX =
⋃

α∈D Aα.Define a relation' onX by: x ' y, x ∈
Aα, y ∈ Aβ if there exists γ ∈ D such that α ≤ γ, β ≤ γ and φα

γ (x) = φβ
γ (y).

Then ' is an equivalence relation on X [3]. Let x = {y ∈ X|y ' x} and let
O = {x|x ∈ X}. Define an ordering ≤ on O by: x ≤ y if there exist α ∈ D,
xα ∈ x∩Aα and yα ∈ y ∩Aα such that xα ≤ yα in Aα. For α ∈ D, let 1 = 1α,
0 = 0α and define xα

′ = xα
′. Then ′ is an orthocomplementation on O [3].

The following Theorem 2.5 and Corollary 2.6 are well known [3].

Theorem 2.5 ([3]). If (Aα, φ
α
β )D is an inductive system in the category of

OMPs and ortho-embeddings, then its inductive limit exists in the same category
and equals (O, φα), where O is in the above, and φα : Aα → O is defined by
φα(xα) = xα.

Corollary 2.6. The inductive limit O of an inductive system of OMPs is OML
if and only if Aα is an OML.

Let X = {a1, a2, a3, . . .}, and let ℘(X) be the power set of X. Then the
Boolean algebra B consists of all finite and cofinite elements of the power set
℘(X) of X is denoted by

B = 〈a1, a2, a3, . . .〉.
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The pasting of two disjoint OMLs L1 and L2 along the principal sections Sc1 ≤
L1 and Sc2 ≤ L2 generated by c1, c2 respectively is denoted by

L = P (L1, L2;Sc1 , Sc2 ; θ)

(see Definition 2.3). We may omit the isomorphism θ if there is no difficulty.
Let X = {bkij |1 ≤ i, k < ω, 1 ≤ j ≤ 4} ∪ {c3, c4} be such that bkij 6= blmn

unless (i, j, k) = (m,n, l), and c3 6= c4 and c3, c4 6= bkij ∀i, j, k. In the following
construction each [biij ] represents equivalent class containing biij ∀i, j which have
been defined. Now we are ready to present an OML L with finite sites which
is not path-connected (Figure 1).

B1

b14

b13

b12

b11

b23

b22

b21

b33

b32

b31

b43

b42

b41

B2 B3 B4

A

Figure 1. Greechie Diagram of the OML L in Theorem 2.9

B1

b14

b13

b12

b11

b23

b22

b21

b33

b32

b31

b43

b42

b41

B2

C3

C4

C

B3 B4

A

Figure 2. Greechie Diagram of the OML L0 in Theorem 2.11

In the above two figures, the bars labeling each element and each block are
omitted in order to make the diagrams simple; thus bij (Bi) represents bij (Bi).

Let B1 = 〈b111, b112, b113, b114〉, B2 = 〈b211, b221, b222, b223, b213〉, B3 = 〈b311, b321, b331,
b332, b

3
33, b

3
23〉, . . . , and Bn = 〈bn11, bn21, . . . , bnn1, b

n
n2, b

n
n3, b

n
(n−1)3〉.
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We construct Ln (1 ≤ n < ω) by induction (Figure 1). Let L1 = B1.
Then L1 is an OML. Let L2 = P (L1, B2;Se1 , Se2

1
; θ1), where e1 = (b111 ∨ b113)′,

e21 = (b211 ∨ b213)′ and θ1 is induced by the mapping sending b1ij in L1 to b2ij in
B2 for (i, j) ∈ {(1, 1), (1, 3)}. Then L2 is an OML by Theorem 2.2. Let [b2ij ]
be the equivalent class in L2 containing bkij ∀i, j, k such that 1 ≤ i, k ≤ 2 and
1 ≤ j ≤ 4. Note that b2ij is equivalent to b1ij . Let L3 = P (L2, B3;Se2 , Se3

2
; θ2),

where e2 = ([b211] ∨ [b221] ∨ [b223])
′, e32 = (b311 ∨ b321 ∨ b323)′ and θ2 is induced by

the mapping sending [b2ij ] in L2 to b3ij in B3 for (i, j) ∈ {(1, 1), (2, 1), (2, 3)}.
Then L3 is an OML by Theorem 2.2. Let [b3ij ] be the equivalent class in L3

containing bkij ∀i, j, k such that 1 ≤ i, k ≤ 3 and 1 ≤ j ≤ 4. Note that
b3ij is equivalent to bkij ∀k such that k < 3. L4 = P (L3, B4;Se3 , Se4

3
; θ3), where

e3 = ([b311]∨[b321]∨[b331]∨[b333])
′, e43 = (b411∨b421∨b431∨b433)′ and θ3 is induced by the

mapping sending [b3ij ] in L3 to b4ij in B4 for (i, j) ∈ {(1, 1), (2, 1), (3, 1), (3, 3)}.
Then L4 is an OML by Theorem 2.2. Let [b4ij ] be the equivalent class in L4

containing bkij ∀i, j, k such that 1 ≤ i, k ≤ 4 and 1 ≤ j ≤ 4. Note that
b4ij is equivalent to bkij ∀k such that k < 4. Assume that Ln−1 has been
constructed. Let [bn−1

ij ] be the equivalent class in Ln−1 containing bkij ∀i, j, k
such that 1 ≤ i, k ≤ n − 1 and 1 ≤ j ≤ 4. Note that bn−1

ij is equivalent
to bkij ∀k such that k < n − 1. Let Ln = P (Ln−1, Bn;Se(n−1) , Sen

(n−1)
; θn−1),

where e(n−1) = ((
∨n−1

i=1 [b(n−1)
i1 ]) ∨ [b(n−1)

(n−1) 3])
′, en

(n−1) = ((
∨n−1

i=1 b
n
i1) ∨ bn(n−1) 3)

′

and θn−1 is induced by the mapping sending [bn−1
ij ] in Ln−1 to bnij in Bn for

(i, j) ∈ {(1, 1), (2, 1), . . . , ((n − 1), 1), ((n − 1), 3)}. Then Ln is an OML by
Theorem 2.2. Let [bnij ] be an equivalent class in Ln containing bkij ∀i, j, k such
that 1 ≤ i, k ≤ n and 1 ≤ j ≤ 4. Note that bnij is equivalent to bkij ∀k such that
k < n.

Let φi
j be an ortho-embedding from Li into Lj ∀i, j (1 ≤ i ≤ j < ω). Then

(Li, φ
i
j)(1≤i≤j<ω) is an inductive system in the category of orthomodular posets

and ortho-embeddings.
Let X =

⋃
(1≤i<ω) Li. Define a relation ' on X by: x ' y, x ∈ Li,

y ∈ Lj if and only if there exists 1 ≤ k < ω such that 1 ≤ i ≤ k < ω,
1 ≤ j ≤ k < ω and φi

k(x) = φj
k(y). Then ' is an equivalence relation on X [3].

Let x = {y ∈ X|y ' x} and let L = {x |x ∈ X} (Figure 1). Define an ordering
≤ on L by: x ≤ y if and only if there exist i, xi and yi such that 1 ≤ i < ω,
xi ∈ x∩Li, yi ∈ y∩Li and xi ≤ yi in Li. For 1 ≤ i < ω, let 1 = 1i, 0 = 0i, and
define xi

′ = xi
′. Then ′ in an orthocomplementation on L [3]. Thus (L, φi) is

the inductive limit of the inductive system (Li, φ
i
j)1≤i≤j<ω, where φi : Li → L

is defined by φi(xi) = xi by Theorem 2.5. Moreover, L is an OML by Corollary
2.6 since Li is an OML ∀i (1 ≤ i < ω).

Lemma 2.7. AL = {Bi | 1 ≤ i < ω} ∪ {A}.
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Proof. We know that {Bi | 1 ≤ i < ω} ⊂ AL by our inductive construction. Let
[Bi], [Ci] ∈ ALi

. Then φi
j([B

i]) = [Bj ] for some [Bj ] ∈ ALj
∀i, j(1 ≤ i ≤ j < ω)

and φi
j([B

i]) 6= φi
j([C

i]) if [Bi] 6= [Ci].
Let [Bi], [Ci] ∈ ALi

. Then φi([Bi]) = B for some B ∈ AL ∀i(1 ≤ i < ω)
and φi([Bi]) 6= φi([Ci]) if [Bi] 6= [Ci].

Therefore ∀i (1 ≤ i < ω) Bi ∈ AL, where Bi is the equivalent class contain-
ing [Bj

i ] ∀j(1 ≤ j < ω). Moreover, L =
⋃{B | B ∈ ALi

}.
Let A = 〈b11, b21, b31, . . . , bn1, . . .〉, and let x, y ∈ A. Then there exists

Bi ∈ AL such that x, y ∈ Bi and hence xCy. Therefore A is a commuting set.
If x 6∈ A, then by our construction there exists Bk ∈ AL such that x ∈ Bk and
hence b(k+2),1 ∈ Bk+2 ∩A with x 6Cb(k+2),1. Hence A is a maximal commuting
set. We claim that AL = {Bi | 1 ≤ i < ω} ∪ {A}. Let C ∈ AL. We may
assume that C 6= A. Thus there exists an atom z ∈ C \ A and hence there
exists Bh ∈ AL such that z ∈ Bh. We have the following three cases: (1) there
exists a unique h such that z ∈ Bh and hence C = Bh; (2) z ∈ Bh ∩ Bh+1

and hence C = Bh or C = Bh+1; (3) z ∈ Bh−1 ∩ Bh and hence C = Bh−1 or
C = Bh. This completes the proof. �

An OML L is called the horizontal sum of a family (Li)i∈I (denoted by
◦(Li)i∈I) of at least two subalgebras, if

⋃
Li = L, and Li ∩ Lj = {0, 1}

whenever i 6= j, and one of the following equivalent conditions is satisfied:

(1) if x ∈ Li \ Lj and y ∈ Lj \ Li, then x ∨ y = 1;
(2) every block of L belongs to some Li;
(3) if Si is a subalgebra of Li, then

⋃
Si is a subalgebra of L [2].

An OML L is said to be the weak horizontal sum of a family (Li)i∈I of
subalgebras if and only if there exists an isomorphism f of L onto a product of
L0×L′ of a Boolean algebra L0 and an OML L′ such that the subalgebras Li of
L correspond via f to subalgebras of the form L0×L′i and L′ is the horizontal
sum of the family (L′i)i∈I [1].

In the following Lemma 2.8, Theorem 2.9, Lemma 2.10 and Theorem 2.11,
the bars labeling each element and each block are omitted in order to make the
notation simple; thus bij and Bi represent bij and Bi, respectively.

Lemma 2.8. Two blocks of the type Bi and Bj (1 ≤ i ≤ j < ω) in L have the
following properties: Bi ∪Bj ≤ L if j = i+ 1 or j ≥ i+ 4, and Bi ∪Bj 6≤ L if
j = i+ 2, i+ 3.

Proof. We know that Bi ∪ Bj ≤ L if j = i + 1 or j ≥ i + 4 since Bi ∪ Bj is a
weak horizontal sum of Bi and Bj . Let us prove that Bi ∪Bj 6≤ L if j = i+ 2
or i+ 3.

Let x = b11∨b21∨· · ·∨b(i+1) 1∨b(i+1) 3 ∈ Bi+2. Then x∨bi3 = b′(i+1) 2 ∈ Bi+1

and x ∨ bi3 = b′(i+1) 2 6∈ L \Bi+1. Thus Bi ∪Bi+2 6≤ L.
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Let y = b11 ∨ b21 ∨ · · · ∨ b(i+2) 1 ∨ b(i+2) 3 ∈ Bi+3. Then y ∨ bi3 = b′(i+1) 3 ∈
Bi+1∩Bi+2 and y∨ bi3 = b′(i+1) 3 6∈ L\ (Bi+1∪Bi+2). Thus Bi∪Bi+3 6≤ L. �

We know that every OML with uniformly finite sites is path-connected [8].
The following theorem shows that there exists an OML with finite sites which
is not path-connected.

Theorem 2.9. There exists a weakly path-connected OML with finite sites
which is not path-connected.

Proof. Let A = 〈b11, b21, b31, . . . , bn1, . . .〉. Then AL = {A} ∪ {Bi|1 ≤ i < ω}
by Lemma 2.7.

First, let us prove that L is with finite sites. Since |A ∩Bi| = |Sfi
| = 2i+1 ,

where fi = (
∨i

k=1 bk1)′ and |Bi ∩ Bj | ≤ 2i+1 ∀ (1 ≤ i ≤ j < ω), L is an OML
with finite sites.

Second, let us prove that A is not path-connected with any Bi ∈ AL ∀i (1 ≤
i < ω). Fix such i and let x =

∨
1≤k≤i+2 bk1 ∈ A, and let y = bi3 ∈ Bi.

Then x ∨ y = b′(i+1) 3 6∈ A ∪ Bi. Thus A ∪ Bi 6≤ L ∀i (1 ≤ i < ω) since
AL = {A} ∪ {Bi|1 ≤ i < ω}. Hence L is not path-connected since A is not
path-connected with any other block of L except itself.

Finally, let us prove that L is weakly path-connected. Bi and Bj are path-
connected for all 1 ≤ i < j < ω by a path Bi ∼ Bi+1 ∼ · · · ∼ Bj by Lemma 2.8
and hence weakly path-connected. A is weakly path-connected with Bi since
A ∩ Bi = Sfi ∩ (A ∪ Bi) (1 ≤ i < ω), where fi = (

∨i
k=1 bk1)′. Therefore L is

weakly path-connected. �

Let {b̃11, b̃21} ∩ {bij | bij ∈ L} = ∅ and C = 〈̃b11, b̃21, c3, c4〉. Let L0 =
P (L, C;S(b11∨b21)′ , S(eb11∨eb21)′ ; θ), where θ is induced by the map sending bij to

b̃ij for (i, j) ∈ {(1, 1), (2, 1)} (Figure 2). Then L0 is an OML by Theorem 2.2
and AL0

∼= AL ∪ C.

Lemma 2.10. Every C(bi1) (1 < i < ω) in L is isomorphic to 2i−1 × L, and
every C(bi1) (2 < i < ω) in L0 is L is isomorphic to 2i−1 × L.

Proof. We know that C(bi1) = C(bi1)[0,
∨i−1

k=1 bk1]⊕C(bi1)[0, (
∨i−1

k=1 bk1)′].
Moreover, C(bi1)[0,

∨i−1
k=1 bk1] ∼= 2i−1, and C(bi1)[0, (

∨i−1
k=1 bk1)′] ∼= L with

the isomorphism φ : C(bi1)[0, (
∨i−1

k=1 bk1)′] → L induced by φ(bkj) = b(k−i+1)j

∀k such that i ≤ k, i.e., φ(Lj [0, (
∨i−1

k=1 bk1)′]) = Lj−i+1 ∀j ≥ i. Similarly, every
C(bi1) in L0 is isomorphic to 2i−1 × L. This completes the proof. �

Let L be an OML. A subalgebra S of L is said to be a full subalgebra if every
blocks of S is a block of L. Note that C(x) is a full subalgebra of L for all
x ∈ L since AC(x) = {B ∈ AL|x ∈ B}.
Theorem 2.11. There exists a path-connected OML such that C(x) is not
path-connected for some x ∈ L.
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Proof. First, let us show that L0 is path-connected. A ∪ C ≤ L0 and A ∩ C =
S(b11∨b21)′ 6= C(L0) = {0, b11, b′11, 1} and hence A ≈ C. Then A is strictly
path-connected with each Bi since A ≈ C ≈ Bi (1 < i < ω), and Bi ∼ C for
all 1 ≤ i ≤ ω. Thus L0 is path-connected.

Finally, C(b31) is a full subalgebra of L0 which is not path-connected since
C(b31) ∼= 22 × L by Lemma 2.10, and AC(b31) = {B ∈ AL0

|b31 ∈ B} =
{A} ∪ {Bi ∈ L | Bi, 3 ≤ i < ω}. Thus A ∈ AC(b31) is not path-connected
in C(b31) with each Bi ∀ (3 ≤ i < ω), by the proof in Theorem 2.9. This
completes the proof. �

We need the following Theorem 2.12 [5] to get a class of path-connected
OMLs.

Theorem 2.12 ([5]). Let L be an OML. Then the set CA(L) of all central
Abelian elements of L is the set of orthocomplements of the upper bounds for the
set ComL, and

∨
CA(L) exists if and only if

∨
ComL exists. If h =

∨
ComL

exists, then CA(L) = [0, h′] and [0, h] contains no nonzero elements which are
central Abelian elements of [0, h] (and, therefore, of L).

We denote the join-semilattice generated by M ⊂ L of a lattice L by [M ]∨.
[M ]∨ consists of all

∨
M0 with M0 a finite subset of M . Then we have the

following structure theorem.

Theorem 2.13. If L is a non-Boolean OML such that the height of the join-
semilattice [ComL]∨ generated by the commutators of L is finite, then L has
a unique orthogonal decomposition L = [0, e0] ⊕ [0, e1] ⊕ · · · ⊕ [0, en], where
e0 is the largest central Abelian element of L, and each [0, ei] (1 ≤ k ≤ n) is
an irreducible non-Boolean OML such that the height of the join-semilattice
[Com [0, ei]]∨ generated by the commutators of [0, ei] is finite.

Proof. Let L be a non-Boolean OML such that the height of the join-semilattice
[ComL]∨ generated by the commutators of L is finite. Then

∨
ComL exists.

Let e′0 =
∨
ComL. Since e0 is central, L = [0, e0] ⊕ [0, e′0]. Thus ComL =

Com [0, e′0] by Theorem 2.12. If [0, e′0] =
⊕

i∈I [0, ei] with each ei > 0, then
each summand has at least two commutators since each [0, ei] is a non-Boolean
OML and hence the height h([Com [0, ei]]∨) ≥ 1. We may assume that I has
the maximal cardinality among all such decompositions of [0, e′0]. Then |I| <∞
and each interval [0, ei] is irreducible. Moreover, each ei (i ≥ 1) is an atom of
C(L). Since any such decomposition of [0, e′0] is determined by the atoms of
Cen([0, e′0]), the decomposition is unique. �

We need the following Lemma 2.14 to prove Theorem 2.15.

Lemma 2.14. Let L be an OML, and A,B ∈ AL. If A ∩ B = C(L) and
A∪B 6≤ L, then there exist C,D ∈ AL such that A∩C 6= C(L), C ∩D 6= C(L)
and D ∩B 6= C(L).
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Proof. There exist c, d such that c, d ∈ A∪B and c∨d 6∈ A∪B since A∪B 6≤ L.
Hence c ∨ d 6∈ C(L) =

⋂
AL. We may assume that c ∈ A \ B and d ∈ B \ A.

Therefore there exist C,D ∈ AL such that c, c ∨ d ∈ C and d, c ∨ d ∈ D. Then
c, d, c ∨ d 6∈ C(L) with c ∈ A ∩ C, c ∨ d ∈ C ∩D and d ∈ D ∩B. �

We can find the following class of path-connected OMLs which contains all
commutator-finite OMLs [5] and all block-finite OMLs [1]. This containment
is proper as may be proved simply by considering any orthocomplemented
projective plane.

Theorem 2.15. If L is an OML such that the height of the join-semilattice
[ComL]∨ generated by the commutators of L is finite, then L is path-connected.

Proof. Let L be an OML such that the height of the join-semilattice [ComL]∨
generated by the commutators of L is finite. Then we may assume that L is
irreducible by Theorem 2.13 and Theorem 1.5. Let us prove that L is path-
connected by induction on the height k of [ComL]∨ (with the ordering inherited
from L). If k = 0, then L is path-connected since L is a Boolean algebra.
Assume that the conclusion of the theorem is true for each OML such that the
height of the join-semilattice generated by the commutators of that OML is
less than or equal to n − 1. If k = n ≥ 1, then L is not a Boolean algebra.
Thus there exist two distinct blocks A,B of L.

Assume first that A∩B 6= {0, 1} = C(L). Letm ∈ A∩B\{0, 1}. If the height
of the join-semilattice [ComC(m)]∨ generated by ComC(m) is less than the
height of the join-semilattice [ComL]∨, then A and B are path-connected in
C(m) and hence in L by the inductive hypothesis. Thus we may assume that
h([ComC(m)]∨) = h([ComL]∨). Suppose

∨
ComC(m) <

∨
ComL. Then

h([ComC(m)]∨)<h([ComL]∨) contradicting h([ComC(m)]∨)=h([ComL]∨).
Hence

∨
ComC(m) =

∨
ComL = 1 since L is irreducible. Thus C(m)

has no nontrivial Boolean factors by Theorem 2.12. Therefore C(m)[0,m](=
[0,m] ) and C(m)[0,m′](= [0,m′]) are non-Boolean. Then [0,m], [0,m′] are
path-connected since h([Com [0,m]]∨) < h([ComL]∨) and h([Com [0,m′]]∨)
< h([ComL]∨) by the inductive hypothesis. Thus C(m) = [0,m] ⊕ [0,m′] is
path-connected by Theorem 1.4. Therefore A and B are path-connected in the
full subalgebra C(m) of L. Thus A,B are path-connected in L.

Assume finally that A ∩B = {0, 1}. If A ∪B ≤ L, then A and B are path-
connected. If A∪B 6≤ L, then there exist C,D ∈ AL such that A∩C 6= {0, 1},
C ∩ D 6= {0, 1} and D ∩ B 6= {0, 1} by Lemma 2.14. Thus A and B are
path-connected with a concatenated path by the first case. �

As a special case of Theorem 2.15, if L is an OML such that α ∨ β = 1 for
any distinct commutators α, β 6∈ {0, 1}, then L is path-connected. The fact
that every commutator-finite OML is path-connected [2], is also a corollary of
this theorem.
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