ALGEBRAS IN $M C_{n}(k)$ WITH $\operatorname{dim}\left(m_{R}^{2}\right)=1$

Youngkwon Song*

Abstract. We introduce a method to construct some algebras $R \in$ $M C_{n}(k)$ with $\operatorname{dim}(R)=n$ and $\operatorname{dim}\left(m_{R}^{2}\right)=1$ for each $n \geq 3$.

1. Introduction

Throughout this paper, $\left(R, m_{R}, k\right)$ is a local maximal commutative subalgebra of matrix algebra $M_{n}(k)$ of size $n \times n$ with nilpotent maximal ideal m_{R} and residue class field k. The set of all local maximal commutative subalgebras $\left(R, m_{R}, k\right)$ of $M_{n}(k)$ will be denoted by $M C_{n}(k)$. We assume the algebra $R \in M C_{n}(k)$ contains the multiplicative identity. The socle of the algebra R is denoted by $\operatorname{soc}(R)$. Furthermore, I_{t} is the identity matrix of size $t \times t$ and $O_{t \times s}$ is the zero matrix of size $t \times s$.

The next theorems are known as the Kravchuk's theorem.
Theorem 1.1. ([5] Kravchuk's first theorem) Let $\left(R, m_{R}, k\right)$ be an algebra in $M C_{n}(k)$. Then, the matrix $r \in m_{R}$ can be assumed to be of the following form :

$$
r=\left(\begin{array}{lll}
O_{\ell \times \ell} & O & O \\
A(r) & B(r) & O \\
C(r) & D(r) & O_{q \times q}
\end{array}\right)
$$

where $B(r) \in M_{p}(k), n=\ell+p+q, \ell \neq 0, p \neq 0, q \neq 0$. Moreover, $\operatorname{soc}(R)$ consists of all matrices of the form :

$$
r=\left(\begin{array}{ll}
O_{(n-q) \times \ell} & O_{(n-q) \times(n-\ell)} \\
C(r) & O_{q \times(n-\ell)}
\end{array}\right)
$$

where $C(r) \in M_{q \times \ell}(k)$.
Received June 22, 2011; Accepted August 13, 2011.
2010 Mathematics Subject Classification: Primary 15A27, 15A33.
Key words and phrases: maximal commutative subalgebra, socle.
The present research has been conducted by the Research Grant of Kwangwoon University in 2010.

Theorem 1.2. ([5] Lemma 6) Let $\left(R, m_{R}, k\right)$ be an algebra in $M C_{n}(k)$. Suppose the matrices $r_{i} \in m_{R}$ which are of the form

$$
r_{i}=\left(\begin{array}{lll}
O_{\ell \times \ell} & O & O \\
A\left(r_{i}\right) & B\left(r_{i}\right) & O \\
C\left(r_{i}\right) & D\left(r_{i}\right) & O_{q \times q}
\end{array}\right), \quad i=1,2, \ldots, t
$$

constitute a basis for m_{R} where $B\left(r_{i}\right) \in M_{p}(k)$. Then, the rank of the following $p \times \ell t$ matrix H is p :

$$
H=\left(\begin{array}{llll}
A\left(r_{1}\right) & A\left(r_{2}\right) & \cdots & A\left(r_{t}\right)
\end{array}\right) .
$$

Theorem 1.3. ([1] Theorem 4) Let $\left(R, m_{R}, k\right)$ be a commutative algebra. Then, R is a C_{1}-construction if and only if there is an ideal N of R satisfying the following conditions :
(1) $A n n_{R}(N)=N$
(2) The exact sequence $0 \rightarrow N \rightarrow R \rightarrow R / N \rightarrow 0$ splits as k-algebras. , where $A n n_{R}(N)$ is the annihilator of N.

Also, theorem 1.4 is an equivalent condition for a algebra R to be an algebra of the C_{2}-construction. The proof can be found in [3].

Theorem 1.4. ([3] Lemma 2.8) Let $\left(R, m_{R}, k\right)$ be a finite dimensional commutative algebra. Then, R is a C_{2}-construction if and only if R contains a subalgebra $\left(B, m_{B}, k\right)$ and an element $x \in m_{R}$ satisfying the following conditions :
(1) $x^{\nu} \neq 0 \in \operatorname{soc}(B)$ for some positive integer $\nu>1$
(2) $m_{B} x=\{0\}$
(3) $\operatorname{dim}_{k}(R)=\operatorname{dim}_{k}(B)+(\nu-1)$

The following theorem 1.5 is an equivalent condition to be a C_{2}^{t} construction that can be found in [9].

Theorem 1.5. ([9] Theorem 3.1) Let $\left(R, m_{R}, k\right)$ be a finite dimensional commutative algebra and let t be a positive integer. Then, R is a C_{2}^{t}-construction if and only if there exist a subalgebra (B, m_{B}, k) of R and elements $x_{i} \in m_{R}, i=1,2, \ldots, t$ satisfying the following properties
(1) $x_{i}^{2}=x_{j}^{2} \in \operatorname{soc}(B)-\{0\}$ for all $1 \leq i, j \leq t$
(2) $x_{i} x_{j}=0$ for all $1 \leq i \neq j \leq t$
(3) $m_{B} x_{i}=\{0\}$ for all $1 \leq i \leq t$
(4) $\operatorname{dim}_{k}(R)=\operatorname{dim}_{k}(B)+t$
2. Algebras in $M C_{n}(k)$ with $\operatorname{dim}(R)=n$ and $\operatorname{dim}\left(m_{R}^{2}\right)=1$

In this section, for each positive integer $n \geq 3$, we will introduce a construction to produce some algebras $R \in M C_{n}(k)$ with $\operatorname{dim}(R)=n$ and $\operatorname{dim}\left(m_{R}^{2}\right)=1$.

From now on, we will consider the case of $\ell=1$ in theorem 1.1. That is, we assume the matrices r_{i} in m_{R} are of the form

$$
r_{i}=\left(\begin{array}{lll}
O_{1 \times 1} & O & O \\
A\left(r_{i}\right) & B\left(r_{i}\right) & O \\
C\left(r_{i}\right) & D\left(r_{i}\right) & O_{q \times q}
\end{array}\right), \quad i=1,2, \ldots, p+q
$$

constitute a basis for m_{R}.
Now, we define θ-relation as follows :
Definition 2.1. Let θ be a subset of a set $\{1,2, \ldots, q\}$. We say the pair $\left(A\left(r_{i}\right), D\left(r_{i}\right)\right)$ are in θ-relation if for each $A\left(r_{i}\right) \in M_{p \times 1}(k)$, the matrix $D\left(r_{i}\right) \in M_{q \times p}(k)$ are defined as follows :

$$
D\left(r_{i}\right)=\left(\begin{array}{c}
D_{1}\left(r_{i}\right) \\
D_{2}\left(r_{i}\right) \\
\vdots \\
D_{q}\left(r_{i}\right)
\end{array}\right), \quad D_{j}\left(r_{i}\right)= \begin{cases}A\left(r_{i}\right)^{T}, & \text { if } j \in \theta \\
O_{1 \times p}, & \text { otherwise }\end{cases}
$$

Here, $A\left(r_{i}\right)^{T}$ is the transpose of $A\left(r_{i}\right)$.
Now, we can construct algebras $R \in M C_{n}(k)$ with $\operatorname{dim}(R)=n$ and $\operatorname{dim}\left(m_{R}^{2}\right)=1$ for each $n \geq 3$ as the following theorem.

Theorem 2.2. Let R be a subalgebra of $M_{n}(k)$ and let m_{R} have a basis consisting of following form of matrices :

$$
r_{i}=\left(\begin{array}{lll}
O_{1 \times 1} & O & O \\
A\left(r_{i}\right) & O_{p \times p} & O \\
C\left(r_{i}\right) & D\left(r_{i}\right) & O_{q \times q}
\end{array}\right), \quad i=1,2, \ldots, p+q
$$

,where $A\left(r_{i}\right) \in M_{p \times 1}(k), C\left(r_{i}\right) \in M_{q \times 1}(k), D\left(r_{i}\right) \in M_{q \times p}(k)$, and $n=p+q+1$. If the pairs $\left(A\left(r_{i}\right), D\left(r_{i}\right)\right)$ are in θ-relation for all $i=$ $1,2, \ldots, p+q$, then R is an algebra in $M C_{n}(k)$.

Proof. Note that by theorem 1.1 and theorem 1.2 , we may assume $A\left(r_{i}\right), A\left(r_{j}\right)$ and $C\left(r_{i}\right), C\left(r_{j}\right)$ are of the following form for $i=1,2, \ldots, p$, $j=p+1, p+2, \ldots, p+q$:

$$
\begin{gathered}
A\left(r_{i}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right) \leftarrow i^{\text {th }} \text { row, } \quad C\left(r_{j}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right) \leftarrow j^{\text {th } \text { row }} \\
A\left(r_{j}\right)=O_{p \times 1}, \quad C\left(r_{i}\right)=O_{q \times 1}
\end{gathered}
$$

Now let

$$
S=\left(\begin{array}{lll}
S_{11} & S_{12} & S_{13} \\
S_{21} & S_{22} & S_{23} \\
S_{31} & S_{32} & S_{33}
\end{array}\right) \in M_{n}(k)
$$

Here, $S_{11} \in k, S_{22} \in M_{p}(k), S_{33} \in M_{q}(k)$.
Then, we have the following equations from the equation $r_{i} S=S r_{i}$ for all i :
(1) $S_{12} A\left(r_{i}\right)+S_{13} C\left(r_{i}\right)=0$
(2) $S_{13} D\left(r_{i}\right)=0$
(3) $S_{22} A\left(r_{i}\right)+S_{23} C\left(r_{i}\right)=A\left(r_{i}\right) S_{11}$
(4) $S_{23} D\left(r_{i}\right)=A\left(r_{i}\right) S_{12}$
(5) $A\left(r_{i}\right) S_{13}=O_{p \times q}$
(6) $S_{32} A\left(r_{i}\right)+S_{33} C\left(r_{i}\right)=C\left(r_{i}\right) S_{11}+D\left(r_{i}\right) S_{21}$
(7) $S_{33} D\left(r_{i}\right)=C\left(r_{i}\right) S_{12}+D\left(r_{i}\right) S_{22}$
(8) $C\left(r_{i}\right) S_{13}+D\left(r_{i}\right) S_{23}=O_{q \times q}$

From the equation (1) and (3), $S_{12}=O_{1 \times p}, S_{13}=O_{1 \times q}, S_{23}=O_{p \times p}$. Thus, we have the following equations :
(3-1) $S_{22} A\left(r_{i}\right)=A\left(r_{i}\right) S_{11}$
(6-1) $S_{33} C\left(r_{i}\right)=C\left(r_{i}\right) S_{11}$
(6-2) $S_{32} A\left(r_{i}\right)=D\left(r_{i}\right) S_{21}$
From the equation (3-1),

$$
S_{22} A\left(r_{i}\right)=\operatorname{Col}_{i}\left(S_{22}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
s_{11} \\
\vdots \\
0
\end{array}\right) \leftarrow i^{\text {th }}=A\left(r_{i}\right) S_{11},
$$

where $S_{11}=\left(s_{11}\right)_{1 \times 1}$ and $\operatorname{Col}_{i}\left(S_{22}\right)$ is the i-th column of S_{22}. Thus, $S_{22}=s_{11} I_{p}$.

From the equation (6-1),

$$
S_{33} C\left(r_{i}\right)=\operatorname{Col}_{i}\left(S_{33}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
s_{11} \\
\vdots \\
0
\end{array}\right) \leftarrow i^{\text {th }}=C\left(r_{i}\right) S_{11}
$$

Thus, $S_{33}=s_{11} I_{q}$.
From the equation (6-2), we have $\operatorname{Col}_{i}\left(S_{32}\right)=S_{32} A\left(r_{i}\right)=D\left(r_{i}\right) S_{21}$. If we let $S_{21}=\left(d_{1}, d_{2}, \ldots, d_{p}\right)^{T}$ for some $d_{i} \in k, i=1,2, \ldots, p$, then

$$
D\left(r_{i}\right) S_{21}=\left(\begin{array}{c}
D_{1}\left(r_{i}\right) \\
D_{2}\left(r_{i}\right) \\
\vdots \\
D_{q}\left(r_{i}\right)
\end{array}\right)\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{p}
\end{array}\right)=\left(\begin{array}{c}
d_{1 i} \\
d_{2 i} \\
\vdots \\
d_{q i}
\end{array}\right),
$$

where $d_{t i}= \begin{cases}d_{i}, & \text { if } t \in \theta, \\ 0, & \text { otherwise }\end{cases}$
Thus,

$$
\operatorname{Col}_{i}\left(S_{32}\right)=\left(\begin{array}{c}
d_{1 i} \\
d_{2 i} \\
\vdots \\
d_{q i}
\end{array}\right)
$$

and so the matrix S is of the form

$$
S=\left(\begin{array}{ccc}
a & O & O \\
S_{21} & a I_{p} & O \\
S_{31} & S_{32} & a I_{q}
\end{array}\right) .
$$

for some $a \in k$, where

$$
S_{21}=\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{p}
\end{array}\right), \quad S_{32}=\left(\begin{array}{c}
S_{1} \\
S_{2} \\
\vdots \\
S_{q}
\end{array}\right)
$$

where

$$
S_{j}= \begin{cases}S_{21}^{T}, & \text { if } j \in \theta, \\ O_{1 \times p}, & \text { otherwise }\end{cases}
$$

Here, S_{21}^{T} is the transpose of S_{21}. This implies $S \in R$ and therefore, we can conclude that $R \in M C_{n}(k)$.

Example 2.3. Let R be a subalgebra of $M_{6}(k)$ defined as following:

$$
R=\left\{\left.\left(\begin{array}{cccccc}
a & 0 & 0 & 0 & 0 & 0 \\
a_{1} & a & 0 & 0 & 0 & 0 \\
a_{2} & 0 & a & 0 & 0 & 0 \\
a_{3} & a_{1} & a_{2} & a & 0 & 0 \\
a_{4} & 0 & 0 & 0 & a & 0 \\
a_{5} & a_{1} & a_{2} & 0 & 0 & a
\end{array}\right) \right\rvert\, a, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \alpha \in k\right\}
$$

Then, we may consider as $p=2, q=3, \theta=\{1,3\}$,

$$
\begin{gathered}
A\left(r_{1}\right)=\binom{1}{0}, \quad A\left(r_{2}\right)=\binom{0}{1}, A\left(r_{3}\right)=A\left(r_{4}\right)=A\left(r_{5}\right)=\binom{0}{0} \\
D\left(r_{1}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{c}
A\left(r_{1}\right)^{T} \\
O \\
A\left(r_{1}\right)^{T}
\end{array}\right), D\left(r_{2}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{c}
A\left(r_{2}\right)^{T} \\
O \\
A\left(r_{2}\right)^{T}
\end{array}\right) \\
D\left(r_{3}\right)=D\left(r_{4}\right)=D\left(r_{5}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right) \\
C\left(r_{1}\right)=C\left(r_{2}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \quad C\left(r_{3}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
C\left(r_{4}\right)=C\left(r_{2}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad C\left(r_{5}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
\end{gathered}
$$

Thus, by the theorem 2.2, R should be a subalgebra in $M C_{6}(k)$ with $\operatorname{dim}(R)=6$ and $\operatorname{dim}\left(m_{R}^{2}\right)=1$.

The following lemma 2.4 and theorem 2.5 provides some properties of an algebra $R \in M C_{n}(k)$ in theorem 2.2 and the proof can be obtained by straightforward calculations. The $(i, j)^{t h}$ matrix unit will be denoted by $E_{i j}$.

Lemma 2.4. Suppose $R \in M C_{n}(k)$ is an algebra as in theorem 2.2. Then, $m_{R}^{2}=\left(E_{1+p+\ell_{1}, 1}+\cdots+E_{1+p+\ell_{\mu}, 1}\right)$, where $\ell_{1}, \ldots, \ell_{\mu} \in \theta$ with $\ell_{1}<$ $\cdots<\ell_{\mu}$.

THEOREM 2.5. Suppose $R \in M C_{n}(k)$ is an algebra as in theorem 2.2. Then, the following properties hold:
(1) $\operatorname{dim}(R)=n$
(2) $\operatorname{dim}\left(m_{R}^{2}\right)=1$
(3) $m_{R}^{2} \subseteq \operatorname{soc}(R)$
(4) $\operatorname{dim}(\operatorname{soc}(R))=q$
(5) $\operatorname{dim}\left(\operatorname{soc}(R) / m_{R}^{2}\right)=q-1$
(6) $i\left(m_{R}\right)=3$, where $i\left(m_{R}\right)$ is the index of the nilpotency of m_{R}.

3. Relation with C_{i}-constructions

In this section, we want to prove if the construction in section 2 imply the C_{2}-construction and the C_{2}^{t}-construction but not the $C_{1^{-}}$ construction.

Theorem 3.1. Suppose $R \in M C_{n}(k)$ is an algebra in theorem 2.2. Then, R is not a C_{1}-construction.

Proof. Suppose R is a C_{1}-construction. Then, R should contain an ideal N satisfying $\operatorname{Ann}_{R}(N)=N$. Let $r \in \operatorname{Ann}(N)$. Then $r=a_{1} r_{1}+$ $a_{2} r_{2}+\cdots+a_{p} r_{p}+b s$ for some $a_{i}, b \in k, i=1,2, \ldots, p$ and $s \in \operatorname{soc}(R)$. Note that $r^{2}=\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{p}^{2}\right) s_{1}$ for some $s_{1} \neq O_{n \times n} \in \operatorname{soc}(R)$. Since $r \in \operatorname{Ann}_{R}(N), r^{2}=O_{n \times n}$ and so $r^{2}=\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{p}^{2}\right) s_{1}=O_{n \times n}$ which implies $a_{i}=0$ for all $i=1,2, \ldots, p$. Thus, $r=b s \in \operatorname{soc}(R)$ and so $A n n_{R}(N) \subseteq \operatorname{soc}(R)$. Since $\operatorname{soc}(R) \subseteq A n n_{R}(N)$, we have $N=$ $A n n_{R}(N)=\operatorname{soc}(R)$. But then $N=A n n_{R}(\operatorname{soc}(R))=m_{R}$ and $m_{R}^{2}=$ $N^{2}=\left\{O_{n \times n}\right\}$ which is impossible since $\operatorname{dim}\left(m_{R}^{2}\right)=1$. Therefore, there doesn't exist an ideal N satisfying $A n n_{R}(N)=N$ and we can conclude that R is not a C_{1}-construction.

Theorem 3.2. Suppose $R \in M C_{n}(k)$ is an algebra in theorem 2.2. Then, R is a C_{2}-construction.

Proof. Let $B=k\left[r_{2}, \ldots, r_{p}\right] \oplus \operatorname{soc}(R)$. Then B is a subalgebra of R and for the element $x=r_{1}$, the following properties holds :
(1) $x^{2} \neq O_{n \times n} \in \operatorname{soc}(B)$
(2) $m_{B} x=\left\{O_{n \times n}\right\}$
(3) $\operatorname{dim}(R)=\operatorname{dim}(B)+1$.

Thus, the algebra R satisfies the conditions in theorem 1.4 and so R is a C_{2}-construction.

Theorem 3.3. Suppose $R \in M C_{n}(k)$ is an algebra in theorem 2.2. Then, R is a C_{2}^{t}-construction.

Proof. Let $B=k[\operatorname{soc}(R)]$ and let $x_{i}=r_{i}$ for all $i=1,2, \ldots, p$. Then B and x_{i} satisfies the following conditions:
(1) $x_{i}^{2}=x_{j}^{2} \in \operatorname{soc}(B)-\left\{O_{n \times n}\right\}$ for all $1 \leq i, j \leq p$
(2) $x_{i} x_{j}=O_{n \times n}$ for all $1 \leq i \neq j \leq p$
(3) $m_{B} x_{i}=\left\{O_{n \times n}\right\}$ for all $1 \leq i \leq p$
(4) $\operatorname{dim}_{k}(R)=\operatorname{dim}_{k}(B)+p$

Thus, by the theorem $1.5, R$ is a C_{2}^{t}-construction for $t=p$.

References

[1] W. C. Brown and F. W. Call, Maximal Commutative Subalgebras of $n \times n$ Matrices, Communications in Algebra 59 (1993), no. 12, 4439-4460.
[2] W. C. Brown, Two Constructions of Maximal Commutative Subalgebras of $n \times n$ Matrices, Communications in Algebra 22 (1994), no. 10, 4051-4066.
[3] \qquad , Constructing Maximal Commutative Subalgebras of Matrix Rings in Small Dimensions, Communications in Algebra 25 (1997), no. 12, 3923-3946.
[4] R. C. Courter, The Dimension of Maximal Commutative Subalgebras of K_{n}, Duke Mathematical Journal 32 (1965), 225-232.
[5] D. A. Suprunenko and R. I. Tyshkevich, Commutative Matrices, Academic Press, 1968.
[6] Youngkwon Song, On the Maximal Commutative Subalgebras of 14 by 14 Matrices, Communications in Algebra 25 (1997), no. 12, 3823-3840.
[7] , Maximal Commutative Subalgebras of Matrix Algebras, Communications in Algebra 27 (1999), no. 4, 1649-1663.
[8] _ , Notes on the Constructions of Maximal Commutative Subalgebra of $M_{n}(k)$, Communications in Algebra 29 (2001), no. 10, 4333-4339.
[9], On C_{2}^{t}-Construction, FJMS 33 (2009), no. 1, 33-40.
*
Department of Mathematics
Kwangwoon University
Seoul 139-701, Republic of Korea
E-mail: yksong@kw.ac.kr

