NOTES ON MAXIMAL COMMUTATIVE SUBALGEBRAS OF 14 BY 14 MATRICES

Youngkwon Song

Abstract

Let Ω be the set of all commutative k-subalgebras of 14 by 14 matrices over a field k whose dimension is 13 and index of Jacobson radical is 3 . Then we will find the equivalent condition for a commutative subalgebra to be maximal .

1. Introduction

In this paper, k will denote an arbitrary field. We will denote $M_{n \times n}(k)$ by T_{n}. All k-algebras will be assumed to contain a (multiplicative) identity $1 \neq 0$. Let R be a local commutative k-subalgebra of $T_{n} . \quad R$ is called a maximal commutative k-subalgebra of T_{n} if R satisfies the following property : If R^{\prime} is a commutative, k-subalgebra of T_{n} and $R \subseteq R^{\prime}$, then $R=R^{\prime}$. Thus, a maximal, commutative, k subalgebra of T_{n} is a maximal element with respect to inclusion in the set of all maximal, commutative, k-subalgebras of T_{n}. We will denote the set of all maximal, commutative, k-subalgebra of T_{n} by $\mathcal{M}_{n}(k)$.

Thus, if $C_{T_{n}}(S)=\left\{A \in T_{n} \mid A s=s A\right.$, for all $\left.s \in S\right\}$ is the centralizer of a set S in T_{n}, then $R \in \mathcal{M}_{n}(k)$ if and only if $C_{T_{n}}(R)=R$.

We will use the notation $(R, J(R), k) \in \mathcal{M}_{n}(k)$ to denote a local, commutative, k-algebra $R \in \mathcal{M}_{n}(k)$ which has $J(R)$ as its Jacobson radical and k as its residue class field. Let $i(J(R))$ be the index of nilpotency of the ideal $J((R))$ and let $\Omega=\left\{(R, J(R), k) \in \mathcal{M}_{14}(k) \mid\right.$ $\left.\operatorname{dim}_{k}(R)=13, i(J(R))=3\right\}$.

In [3], R.C. Courter constructed an algebra $\mathcal{C} \in \mathcal{M}_{14}(k)$ which is local, $\operatorname{dim}_{k}(\mathcal{C})=13$, and $i(J(\mathcal{C}))=3$. It has been conjectured for a long time that the set Ω has only one isomorphism class $[\mathcal{C}]$. It was

[^0]proved in [4] that the isomorphism class [$\mathcal{C}]$ in Ω is not unique. It is very natural to ask how many nonisomorphic classes are in Ω.

In section 2, we will recall some general properties of $(R, J(R), k) \in$ Ω.

In section 3, we will prove an equivalent condition for a commutative subalgebra R of $M_{14}(k)$ having dimension 13 and $i(J(R))=3$.

2. Algebras in Ω

If $(R, J(R), k) \in \Omega$, then we have the following properties. The proofs can be found in [4].

Theorem 2.1. Suppose that $(R, J(R), k) \in \Omega$. Then there exists $\left(R_{1}, J\left(R_{1}\right), k\right) \in \Omega$ such that R and R_{1} are conjugate and each element $r \in J\left(R_{1}\right)$ is a matrix of the following form

$$
\left(\begin{array}{ccc}
O_{2} & O & O \tag{1}\\
A & O_{10} & O \\
C & B & O_{2}
\end{array}\right) .
$$

Here, O_{n} denotes the zero matrix of size n by $n, A \in M_{10 \times 2}(k), B \in$ $M_{2 \times 10}(k)$, and $C \in T_{2}$.

Recall that the socle of $R, \operatorname{Soc}(R)=\operatorname{Ann}_{R}(J(R))=\{r \in R \mid$ $r J(R)=(0)\}$.

Lemma 2.2. Let R and R_{1} be finite dimensional, commutative, k algebras. If $R \cong R_{1}$ as k-algebras, then $\operatorname{Soc}(R) \cong \operatorname{Soc}\left(R_{1}\right)$.

Theorem 2.3. Suppose $(R, J, k) \in \Omega$. Then, $\operatorname{dim}_{k}(\operatorname{Soc}(R))=4$. Furthermore, R is conjugate to an $\left(R_{1}, J\left(R_{1}\right), k\right) \in \Omega$ such that each element of $\operatorname{Soc}\left(R_{1}\right)$ has the following form.

$$
r=\left(\begin{array}{ccc}
O_{2} & O & O \tag{2}\\
O & O_{10} & O \\
C & O & O_{2}
\end{array}\right) .
$$

Thus, we can always assume that a specific representative R of an isomorphism class $[R]$ has the following property. Every element $r \in$
$J(R)$ can be written in the form

$$
r=\left(\begin{array}{ccc}
O_{2} & O & O \\
A & O_{10} & O \\
C & B & O_{2}
\end{array}\right)
$$

Furthermore, the socle of R is the set of all matrices of the form

$$
\operatorname{Soc}(R)=\left\{\left.\left(\begin{array}{ccc}
O_{2} & O & O \\
O & O_{10} & O \\
C & O & O_{2}
\end{array}\right) \right\rvert\, C \in T_{2}\right\} .
$$

3. Main Results

If $(R, J(R), k) \in \Omega$, then by Theorem 2.1, we may assume every $r \in$ $J(R)$ has the form in (1). From Theorem 2.3, we may assume every $r \in$ $\operatorname{Soc}(R)$ has the form in (2). We can then write $R=k\left[\lambda_{1}, \ldots, \lambda_{8}, \check{E}_{11}\right.$, $\left.\check{E}_{12}, \check{E}_{21}, \check{E}_{22}\right]$, where

$$
\lambda_{i}=\left(\begin{array}{ccc}
O_{2} & O & O \tag{3}\\
A_{i} & O_{10} & O \\
O & B_{i} & O_{2}
\end{array}\right), \check{E}_{m n}=\left(\begin{array}{ccc}
O_{2} & O & O \\
O & O_{10} & O \\
E_{m n} & O & O_{2}
\end{array}\right)
$$

Here, $E_{m n}$ is the (i, j)-th matrix unit in T_{2}. Conversely, suppose R is a commutative, k-subalgebra of T_{14} of the form $R=k\left[\lambda_{1}, \ldots, \lambda_{8}, \check{E}_{11}\right.$, $\left.\check{E}_{12}, \check{E}_{21}, \check{E}_{22}\right]$, where $\operatorname{dim}_{k} R=13$ and $\lambda_{1}, \ldots, \lambda_{8}$ have the form given in (3). Then, R is a local ring with Jacobson radical given by $J(R)=$ $\left(\lambda_{1}, \ldots, \lambda_{8}, \check{E}_{11}, \check{E}_{12}, \check{E}_{21}, \check{E}_{22}\right)$ and residue class field k. We will give a necessary and sufficient condition on the A_{i} 's and B_{i} 's which will imply $R \in \Omega$.

For a matrix $A \in M_{m \times n}(k)$, we let ker $A=\left\{u \in M_{1 \times m}(k) \mid u A=0\right\}$ and $N S(A)=\left\{v \in M_{n \times 1}(k) \mid A v=0\right\}$.

Theorem 3.1:. Let $R=k\left[\lambda_{1}, \ldots, \lambda_{8}, \check{E}_{11}, \check{E}_{12}, \check{E}_{21}, \check{E}_{22}\right]$ be a commutative, k-subalgebra of T_{14}. We assume $\operatorname{dim}_{k} R=13$ and each λ_{i} has the form given in (3). Suppose $\bigcap_{i=1}^{8} \operatorname{ker}\left(A_{i}\right)=(0)$ and $\bigcap_{i=1}^{8} N S\left(B_{i}\right)=(0)$. If $r \in C_{T_{14}}(R)$, then r has the following form.

$$
r=\left(\begin{array}{ccc}
O_{2} & O & O \\
P & O_{10} & O \\
Z & Q & O_{2}
\end{array}\right)+a I_{14}, \quad a \in k .
$$

Proof. Let $r=\left(\begin{array}{ccc}X_{1} & X_{2} & X_{3} \\ X_{4} & X_{5} & X_{6} \\ X_{7} & X_{8} & X_{9}\end{array}\right) \in C_{T_{14}}(R)$. Here, $X_{1}, X_{9} \in T_{2}$ and $X_{5} \in T_{10}$. Then $r \check{E}_{i j}=\check{E}_{i j} r$ and

$$
\begin{gathered}
\left(\begin{array}{lll}
X_{1} & X_{2} & X_{3} \\
X_{4} & X_{5} & X_{6} \\
X_{7} & X_{8} & X_{9}
\end{array}\right)\left(\begin{array}{ccc}
O_{2} & O & O \\
A_{i} & O_{10} & O \\
W & B_{i} & O_{2}
\end{array}\right)= \\
\\
\left(\begin{array}{ccc}
O_{2} & O & O \\
A_{i} & O_{10} & O \\
W & B_{i} & O_{2}
\end{array}\right)\left(\begin{array}{lll}
X_{1} & X_{2} & X_{3} \\
X_{4} & X_{5} & X_{6} \\
X_{7} & X_{8} & X_{9}
\end{array}\right)
\end{gathered}
$$

for all $i=1, \ldots, 8$. Thus, we have the following equations.
(a)

$$
X_{2} A_{i}+X_{3} W=0
$$

(b)

$$
X_{3} B_{i}=0
$$

(c)

$$
X_{5} A_{i}+X_{6} W=A_{i} X_{1}
$$

(e)

$$
\begin{equation*}
X_{6} B_{i}=A_{i} X_{2} \tag{d}
\end{equation*}
$$

$$
A_{i} X_{3}=0
$$

$$
\begin{equation*}
X_{8} A_{i}+X_{9} W=W X_{1}+B_{i} X_{4} \tag{f}
\end{equation*}
$$

(h)

$$
\begin{equation*}
X_{9} B_{i}=W X_{2}+B_{i} X_{5} \tag{g}
\end{equation*}
$$

$$
W X_{3}+B_{i} X_{6}=0
$$

These equations hold for all $i=1, \ldots, 8$ and all $W \in T_{2}$. We also have the equations obtained by replacing A_{i} and B_{i} in (a) through (h) with the zero matrix. Since $X_{3} W=0$ for all $W \in T_{2}$, we have $X_{3}=0$. Then, (a) implies $X_{2} A_{i}=0$ for all $i=1, \ldots, 8$. Thus, $X_{2} \in \bigcap_{i=1}^{8} \operatorname{ker}\left(A_{i}\right)=(0)$. Hence, $X_{2}=0$. Equation (h) implies $B_{i} X_{6}=0$ for all $i=1, \ldots, 8$. Thus, $X_{6} \in \bigcap_{i=1}^{8} N S\left(B_{i}\right)=(0)$. Hence, $X_{6}=0$. Since $X_{9} W=W X_{1}$ for all $W \in T_{2}$ from (f), we have the following equations.

$$
\begin{aligned}
& X_{9} E_{11}=E_{11} X_{1}, X_{9} E_{12}=E_{12} X_{1} \\
& X_{9} E_{21}=E_{21} X_{1}, X_{9} E_{22}=E_{22} X_{1} .
\end{aligned}
$$

Let $X_{1}=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ and $X_{9}=\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)$. Here, $a_{i j}, b_{i j} \in$ $k, i, j=1,2$. Then, $a_{11}=a_{22}=b_{11}=b_{22}$ and $a_{12}=a_{21}=b_{12}=$ $b_{21}=0$. Thus, $X_{1}=X_{9}=a_{11} I_{2}$. In (c), let $W=0$. Then, $X_{5} A_{i}=$ $A_{i} X_{1}=A_{i}\left(a_{11} I_{2}\right)=a_{11} A_{i}$. Hence, $\left(X_{5}-a_{11} I_{10}\right) A_{i}=0$, for all $i=1, \ldots, 8$. Thus, $X_{5}-a_{11} I_{10} \in \bigcap_{i=1}^{8} \operatorname{ker}\left(A_{i}\right)=(0)$ which implies $X_{5}=a_{11} I_{10}$. Therefore, the proof is completed.

In the next theorem, we characterize those P 's and Q 's for which $r \in C_{T_{14}}(R)$.

Theorem 3.2. Let $R=k\left[\lambda_{1}, \ldots, \lambda_{8}, \check{E}_{11}, \check{E}_{12}, \check{E}_{21}, \check{E}_{22}\right]$ be the k subalgebra in Theorem 3.1. Let $r=\left(\begin{array}{ccc}O_{2} & O & O \\ P & O_{10} & O \\ Z & Q & O_{2}\end{array}\right)+a I_{14} \in T_{14}$. Then, $r \in C_{T_{14}}(R)$ if and only if $\left(\begin{array}{c}\left(\operatorname{Row}_{1} Q\right)^{T} \\ \operatorname{Col}_{1} P \\ \left.\operatorname{Row}_{2} Q\right)^{T} \\ \operatorname{Col}_{2} P\end{array}\right) \in N S(\Lambda)$. Here, $\operatorname{Row}_{i} Q$ is the i-th row of $Q, \operatorname{Col}_{i} P$ is the i-th column of P, and $\Lambda \in$ $M_{32 \times 40}(k)$ is the following matrix.

Proof. Suppose $r \in C_{T_{14}}(R)$. Then, for all $i=1, \ldots, 8$,

$$
\begin{aligned}
&\left(\begin{array}{ccc}
O_{2} & O & O \\
P & O_{10} & O \\
Z & Q & O_{2}
\end{array}\right)\left(\begin{array}{ccc}
O_{2} & O & O \\
A_{i} & O_{10} & O \\
W & B_{i} & O
\end{array}\right)= \\
&\left(\begin{array}{ccc}
O_{2} & O & O \\
A_{i} & O_{10} & O \\
W & B_{i} & O
\end{array}\right)\left(\begin{array}{ccc}
O_{2} & O & O \\
P & O_{10} & O \\
Z & Q & O_{2}
\end{array}\right) .
\end{aligned}
$$

Therefore, $Q A_{i}=B_{i} P$ for $i=1, \ldots, 8$. Let

$$
A_{i}=\left(\begin{array}{cc}
a_{11}^{(i)} & a_{12}^{(i)} \\
\vdots & \vdots \\
a_{101}^{(i)} & a_{102}^{(i)}
\end{array}\right), B_{i}=\left(\begin{array}{ccc}
b_{11}^{(i)} & \cdots & b_{110}^{(i)} \\
b_{21}^{(i)} & \cdots & b_{210}^{(i)}
\end{array}\right)
$$

for $i=1, \ldots, 8$

$$
P=\left(\begin{array}{cc}
p_{11} & p_{12} \\
\vdots & \vdots \\
p_{101} & p_{102}
\end{array}\right), Q=\left(\begin{array}{ccc}
q_{11} & \cdots & q_{110} \\
q_{21} & \cdots & q_{210}
\end{array}\right) .
$$

Here, $a_{m n}^{(i)}, b_{n m}^{(i)}, p_{m n}, q_{n m} \in k, n=1,2, m=1, \ldots, 10$. Since $Q A_{i}=B_{i} P$ for all $i=1, \ldots, 8$, we have (5) $\sum_{j=1}^{10} q_{1 j} a_{j 1}^{(i)}-\sum_{j=1}^{10} b_{1 j}^{(i)} p_{j 1}=0, \quad \sum_{j=1}^{10} q_{1 j} a_{j 2}^{(i)}-\sum_{j=1}^{10} b_{1 j}^{(i)} p_{j 2}=0$ $\sum_{j=1}^{10} q_{2 j} a_{j 1}^{(i)}-\sum_{j=1}^{10} b_{2 j}^{(i)} p_{j 1}=0, \quad \sum_{j=1}^{10} q_{2 j} a_{j 2}^{(i)}-\sum_{j=1}^{10} b_{2 j}^{(i)} p_{j 2}=0$.

It is easy to check (5) is equivalent to

$$
\Lambda\left(\begin{array}{c}
\left(\operatorname{Row}_{1} Q\right)^{T} \tag{6}\\
\operatorname{Col}_{1} P \\
\left(\operatorname{Row}_{2} Q\right)^{T} \\
\operatorname{Col}_{2} P
\end{array}\right)=0 .
$$

Conversely, if P and Q satisfy Equation (6), then $Q A_{i}=B_{i} P$ for all $i=1, \ldots, 8$. Hence, $r \in C_{T_{14}}(R)$.

Theorem 3.3. Let $R=k\left[\lambda_{1}, \ldots, \lambda_{8}, \check{E}_{11}, \check{E}_{12}, \check{E}_{21}, \check{E}_{22}\right]$ be a commutative, k-subalgebra of T_{14}. We assume $\operatorname{dim}_{k} R=13$ and each λ_{i} has the form given in (3). Then, the following two statements are equivalent.
(a) $R \in \Omega$
(b) $\bigcap_{i=1}^{8} \operatorname{ker}\left(A_{i}\right)=(0), \bigcap_{i=1}^{8} N S\left(B_{i}\right)=(0)$, and $\operatorname{rank}(\Lambda)=32$.

In Theorem 3.3, Λ is the 32×40 matrix given in (4).
Proof. (a) \Rightarrow (b) Let $u=\left(u_{1}, \ldots, u_{10}\right) \in \bigcap_{i=1}^{8} \operatorname{ker}\left(A_{i}\right)$. Then,

$$
\left(\begin{array}{ccc}
O_{2} & O & O \\
O & O_{10} & O \\
O & \binom{u}{o} & O_{2}
\end{array}\right) \in \operatorname{Soc}(R)
$$

Theorem 2.3 implies $u=(0)$ and hence $\bigcap_{i=1}^{8} \operatorname{ker}\left(A_{i}\right)=(0)$.
Let $v=\left(v_{1}, \ldots, v_{10}\right)^{T} \in \bigcap_{i=1}^{8} N S\left(B_{i}\right)$. Then,

$$
\left(\begin{array}{ccc}
O_{2} & O & O \\
(v o) & O_{10} & O \\
O & O & O_{2}
\end{array}\right) \in \operatorname{Soc}(R)
$$

Since $\operatorname{Soc}(R)=L\left(\check{E}_{11}, \check{E}_{12}, \check{E}_{21}, \check{E}_{22}\right), v=(0)$. This implies that, $\bigcap_{i=1}^{8} N S\left(B_{i}\right)=(0)$. Let

$$
\alpha_{i}=\left(\begin{array}{c}
\left(\operatorname{Row}_{1} B_{i}\right)^{T} \tag{7}\\
\operatorname{Col}_{1} A_{i} \\
\left(\operatorname{Row}_{2} B_{i}\right)^{T} \\
\operatorname{Col}_{2} A_{i}
\end{array}\right), i=1, \ldots, 8
$$

Since $\lambda_{i} \in R=C_{T_{14}}(R), \alpha_{i} \in N S(\Lambda)$ by Theorem 3.2. Since $\lambda_{1}, \ldots, \lambda_{8}$ are linearly independent, $\alpha_{1}, \ldots, \alpha_{8}$ are linearly independent. Hence, $\operatorname{dim}_{k} N S(\Lambda) \geq 8$. Let $w \in N S(\Lambda)$. Since $w \in M_{40 \times 1}(k)$, we can write w as follows.

$$
w=\left(\begin{array}{c}
\left(\operatorname{Row}_{1} Q\right)^{T} \\
\operatorname{Col}_{1} P \\
\left(\operatorname{Row}_{2} Q\right)^{T} \\
\operatorname{Col}_{2} P
\end{array}\right)
$$

for some $P \in M_{10 \times 2}(k)$ and $Q \in M_{2 \times 10}(k)$. Let

$$
r=\left(\begin{array}{ccc}
O_{2} & O & O \\
P & O_{10} & O \\
O & Q & O_{2}
\end{array}\right)
$$

Then, by Theorem 3.2, $r \in C_{T_{14}}(R)=R$. Thus, $r=c_{1} \lambda_{1}+\cdots+c_{8} \lambda_{8}$ for some $c_{i} \in k, i=1, \ldots, 8$. Hence, $w=c_{1} \alpha_{1}+\cdots+c_{8} \alpha_{8}$. Therefore, $\operatorname{dim}_{k} N S(\Lambda) \leq 8$ and hence $\operatorname{dim}_{k} N S(\Lambda)=8$. We conclude $\operatorname{rank}(\Lambda)=$ 32.
(b) \Rightarrow (a) Since $\operatorname{rank}(\Lambda)=32, \operatorname{dim}_{k} N S(\Lambda)=8$. Let α_{i}, be the vectors defined in (7). Since $\operatorname{dim}_{k} R=13, \lambda_{1}, \ldots, \lambda_{8}$ are linearly independent over k. It easily follows that $\alpha_{1}, \ldots, \alpha_{8}$ are linearly independent over k. Thus, $\left\{\alpha_{1}, \ldots, \alpha_{8}\right\}$ is a basis of $N S(\Lambda)$. If $r \in C_{T_{14}}(R)$, then Theorem 3.1 and Theorem 3.2 imply

$$
\left(\begin{array}{c}
\left(\operatorname{Row}_{1} Q\right)^{T} \\
\operatorname{Col}_{1} P \\
\left(\operatorname{Row}_{2} Q\right)^{T} \\
\operatorname{Col}_{2} P
\end{array}\right) \in N S(\Lambda) .
$$

Thus,

$$
\left(\begin{array}{ccc}
O_{2} & O & O \\
P & O_{10} & O \\
O & Q & O_{2}
\end{array}\right) \in L\left(\lambda_{1}, \ldots, \lambda_{8}\right) .
$$

Therefore, $r \in R$ and hence $C_{T_{14}}(R)=R$. We conclude $R \in$ $\mathcal{M}_{14}(k)$.

References

1. W.C.Brown and F.W.Call, Maximal Commutative Subalgebras of $n \times n$ Matrices, Communications in Algebra 21(12), 4439-4460, 1993.
2. W.C.Brown, Two Constructions of Maximal Commutative Subalgebras of $n \times n$ Matrices, Communications in Algebra 22(10), 4051-4066, 1994.
3. R.C.Courter, The Dimension of Maximal Commutative Subalgebras of K_{n}, Duke Mathematical J. 32, 225-232, 1965.
4. Youngkwon Song, On the Maximal Commutative Subalgebras of 14 by 14 Ma trices, Communications in Algebra 25(12), 3823-3840, 1997.
5. Youngkwon Song, Maximal Commutative Subalgebras of Matrix Algebras, Communications in Algebra 27(4), 1649-1663, 1999.

Department of Mathematics
Research Institute of Basic Science
Kwangwoon University
Seoul 139-701, Korea
E-mail: song@math.kwangwoon.ac.kr

[^0]: Received July 12, 1999.
 1991 Mathematics Subject Classification: 15A27, 15A33.
 Key words and phrases: socle, index of Jacobson radical.

