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MAXIMALITY PRESERVING CONSTRUCTIONS OF

MAXIMAL COMMUTATIVE SUBALGEBRAS OF

MATRIX ALGEBRA

Youngkwon Song

Abstract. Let (R,mR, k) be a local maximal commutative subalgebra of
Mn(k) with nilpotent maximal ideal mR. In this paper, we will construct

a maximal commutative subalgebra RST which is isomorphic to R and
study some interesting properties related to RST . Moreover, we will
introduce a method to construct an algebra in MCn(k) with i(mR) = n
and dim(R) = n.

1. Introduction

Throughout this paper, (R,mR, k) is a local maximal commutative subalge-
bra of Mn(k) with nilpotent maximal ideal mR and residue class field k. The
set of all local maximal commutative subalgebras (R,mR, k) of Mn(k) will be
denoted by MCn(k). The socle of the algebra R is denoted by soc(R) and
i(mR) is the index of nilpotency of the maximal ideal mR. Also, we will let
Eij be the (i, j)-th matrix unit.

The next theorem is known as the Kravchuk’s theorem [10].

Theorem 1.1 ([6], [10]). Let (R,mR, k) be an algebra inMCn(k) with i(mR) ≥
3. Then, the matrix r in mR can be assumed to be of the following form:

r =

 Oℓ×ℓ Oℓ×p Oℓ×q

A(r)p×ℓ B(r)p×p Op×q

C(r)q×ℓ D(r)q×p Oq×q

 .

Here, n = ℓ + p + q, ℓ ̸= 0, p ̸= 0, q ̸= 0. Moreover, soc(R) consists of all
matrices of the form:

r =

(
O(n−q)×ℓ O(n−q)×(n−ℓ)

C(r)q×ℓ Oq×(n−ℓ)

)
.

Received October 29, 2010.
2010 Mathematics Subject Classification. 15A27, 15A33.

Key words and phrases. maximal commutative subalgebra, ST-isomorphism.
The present research has been supported by the Research Grant of Kwangwoon University

in 2011.

c⃝2012 The Korean Mathematical Society

295



296 YOUNGKWON SONG

Remark 1.2 ([6], [10]). Let (R,mR, k) be an algebra in MCn(k). If i(mR) = 3,
then the matrix r in mR can be assumed to be of the following form:

r =

 Oℓ×ℓ Oℓ×p Oℓ×q

A(r)p×ℓ Op×p Op×q

C(r)q×ℓ D(r)q×p Oq×q

 ,

where n = ℓ+ p+ q, ℓ ̸= 0, p ̸= 0, q ̸= 0.

Theorem 1.3 ([10]). Let (R,mR, k) be an algebra in MCn(k). Suppose the
matrices ri in mR of the form

ri =

 Oℓ×ℓ Oℓ×p Oℓ×q

A(ri)p×ℓ B(ri)p×p Op×q

C(ri)q×ℓ D(ri)q×p Oq×q

 , i = 1, 2, . . . , t

constitute a basis for mR. Then, the rank of the following p × ℓt matrix H is
p :

H =
(
A(r1) A(r2) · · · A(rt)

)
.

In Section 2, we will construct a maximal commutative subalgebra RST

which is isomorphic to R and study some interesting properties related to RST .
In Section 3, we will find some conditions that the algebra S={r ∈ R | rST =

r} can be an algebra in MCn(k).
In Section 4, we will introduce a method to construct an algebra in MCn(k)

with i(mR) = n and dim(R) = n such that r = rST for all r ∈ R.

2. ST-isomorphism

In this section, we will first define the skew transpose matrix rST of a ma-
trix r in Mm×n(k) and construct some interesting isomorphic algebras RST in
MCn(k).

Definition 2.1. Let A = (aij)m×n ∈ Mm×n(k) be a matrix with aij as its
(i, j)-th entry. Define AST = (bij)n×m ∈Mn×m(k) be the matrix as follows:

bij = a(m−j+1)(n−i+1) (1 ≤ i ≤ n, 1 ≤ j ≤ m).

We will call the matrix AST the skew transpose of A.

Thus, the skew transpose AST of A is the following n×m matrix:

AST =

 amn · · · a1n
...

. . .
...

am1 · · · a11

 .

Let A = (aij)n×n ∈Mn(k) be a square matrix. If we call the line from (1, n)-
th entry to (n, 1)-th entry as the skew-diagonal line, then the skew transpose
AST can be obtained by symmetric moving the entries of A with respect to the
skew-diagonal line of A.

For the skew transpose AST of the matrix A, the following properties can
be easily proved.
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Theorem 2.2. Let A,B ∈Mm×n(k) and α ∈ k. Then the following properties
hold:

(1) (A+B)ST = AST +BST ,
(2) (αA)ST = αAST ,
(3) (AST )ST = A,
(4) (AT )ST = (AST )T , where AT is the transpose of A.

Theorem 2.3. Let A ∈ Mm×n(k) and B ∈ Mn×ℓ(k). Then (AB)ST =
BSTAST .

Theorem 2.4. Suppose R is an algebra in MCn(k). Then the algebra RST =
{rST | r ∈ R} is also in MCn(k).

Proof. Define a map f : R → RST by f(r) = rST for all r ∈ R. Then,
straightforward computations show that f is an isomorphism as k-algebras by
the properties in Theorem 2.2 and Theorem 2.3. Thus, the algebra RST is also
in MCn(k). □
Definition 2.5. The isomorphism f in the proof of Theorem 2.4 will be called
an ST-isomorphism as k-algebras.

By Theorem 2.4, the ST-isomorphism as k-algebras is a maximality preserv-
ing map.

Example 2.6. (1) Let R be the following algebra in MC4(k):

R =




a 0 0 0
b a 0 0
c b a 0
d 0 0 a

 | a, b, c, d ∈ k

 .

Then,

RST =




a 0 0 0
0 a 0 0
0 b a 0
d c b a

 | a, b, c, d ∈ k


is also an algebra in MC4(k).

(2) Let R be the following algebra in MC4(k):

R =




a 0 0 0
b a 0 0
c b a 0
d c b a

 | a, b, c, d ∈ k

 .

Then, RST = R and is also an algebra in MC4(k).
More generally, if we let R = k[E21+· · ·+Enn−1, E31+· · ·+Enn−2, . . . , En1]

be an algebra in MCn(k). Then, R
ST = R and is also an algebra in MCn(k).

Using the properties of skew transpose matrix, the following properties can
be proved:
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Theorem 2.7. Suppose R is an algebra in MCn(k). If f : R → RST is the
ST-isomorphism as k-algebras, then the following properties hold:

(1) αf : R −→ RST defined by (αf)(r) = αf(r) for all r ∈ R is a maximality
preserving isomorphism as k-vector spaces for all nonzero α in k.

(2) f−1 : RST −→ R is a maximality preserving isomorphism as k-algebras.
(3) fT : R −→ (RST )T defined by fT (r) = f(r)T = (rST )T for all r ∈ R is

a maximality preserving isomorphism as k-algebras.

Furthermore, we can consider some maximality preserving maps onMCn(k)
as following theorem:

Theorem 2.8. Suppose R is an algebra in MCn(k). Then the following prop-
erties hold:

(1) For an invertible matrix P ∈ Mn(k), the map ψ : R −→ (PRP−1)ST

defined by ψ(r) = (PrP−1)ST for all r ∈ R is a maximality preserving isomor-
phism as k-algebras.

(2) For an invertible matrix P ∈ Mn(k), the map ϕ : R −→ PRSTP−1 de-
fined by ϕ(r) = PrSTP−1 for all r ∈ R is a maximality preserving isomorphism
as k-algebras.

Proof. (1) Since PRP−1 is an algebra in MCn(k), (PRP
−1)ST is an algebra

in MCn(k) by Theorem 2.4. Thus, the map ψ is a well defined maximality
preserving map. Moreover, we can show that ψ is an isomorphism as k-algebras
by using Theorem 2.2 and Theorem 2.3. Also, (2) can be proved by similar
way. □

We can easily prove the following properties.

Lemma 2.9. Suppose (R,mR, k) is an algebra in MCn(k). Then, the set ∆ =
{r1, r2, . . . , rt} is a basis ofmR if and only if the set ∆ST =

{
rST
1 , rST

2 , . . . , rST
t

}
is a basis of mST

R .

By the straightforward calculations using Lemma 2.9, the next properties
hold. We will let mRST be the maximal ideal of RST and i(mRST ) be the index
of nilpotency of maximal ideal mRST .

Theorem 2.10. Suppose (R,mR, k) is an algebra in MCn(k). Then, we have
the following properties:

(1) dim(mR) = dim(mRST ),
(2) dim(soc(R)) = dim(soc(RST )),
(3) i(mR) = i(mRST ).

3. Algebras in MCn(k) with rST = r

Let R be an algebra as in Theorem 1.1 and define a set S as follows:

S = {r ∈ R | rST = r}.
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Then, obviously the maximal ideal of S consists of the following form of ma-
trices:

r =

 Oℓ×ℓ Oℓ×p Oℓ×ℓ

A(r)p×ℓ B(r)p×p Op×ℓ

C(r)ℓ×ℓ A(r)ST
ℓ×p Oℓ×ℓ

 ,

where C(r)ST
ℓ×ℓ = C(r)ℓ×ℓ and B(r)ST

p×p = B(r)p×p .

Moreover, we have the following Remark 3.1:

Remark 3.1. Suppose R is an algebra in MCn(k). Then, the algebra S = {r ∈
R | rST = r} is a commutative subalgebra of R but we can not guarantee
that S is an algebra in MCn(k) since S doesn’t contain all the elements of the
following form

r =

 Oℓ×ℓ O O
O Op×p O
C(r) O Oℓ×ℓ


which should be in soc(S). Thus, we can not say S is an algebra in MCn(k).

Example 3.2. Let

R =


 a 0 0

b a 0
c 0 a

 | a, b, c ∈ k

 .

Then, S = {r ∈ R | rST = r} = k[E31] /∈MC3(k).

But, if dimk(soc(R)) = 1, then the algebra S = {r ∈ R | rST = r} can be in
MCn(k) as the following Theorem 3.3.

Theorem 3.3. Suppose (R,mR, k) is an algebra in MCn(k) with i(mR) = 3
as in Remark 1.2 and dim(soc(R)) = 1. Let the maximal ideal of S be mS =
{ri | i = 1, 2, . . . , t}. If the rank of the matrix H = (A(r1), . . . , A(rt)) is p, then
S is an algebra in MCn(k).

Proof. Obviously, the algebra S is a commutative algebra. Now, let L ∈Mn(k)
be a matrix in the centralizer of S. Then, Lri = riL for all ri ∈ mS . Let L
and ri be as following block matrices:

L =

 T1 T2 T3
T4 T5 T6
T7 T8 T9

 , ri =

 O1×1 O O
A(ri) Op×p O
C(ri) A(ri)

ST O1×1

 ,

where T1 ∈ k, T5 ∈ Mp×p(k), T9 ∈ k, i = 1, . . . , t. Then, from the relation,
Lri = riL, the following equations hold:

(1) T2A(ri) + T3C(ri) = 0,
(2) T3A(ri)

ST = O1×q,
(3) T5A(ri) + T6C(ri) = A(ri)T1,
(4) T6A(ri)

ST = A(ri)T2,
(5) A(ri)T3 = Oq×1,
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(6) T8A(ri) + T9C(ri) = C(ri)T1 +A(ri)
STT4,

(7) T9A(ri)
ST = C(ri)T2 +A(ri)

STT5,
(8) C(ri)T3 +A(ri)

STT6 = 0.

In the equation (1), if we let C(ri) = 0 ∈ k, then we have T2A(ri) = 0 for all i.
Thus, we obtain T2 = O1×p since the rank of the matrix H = (A(r1), . . . , A(rt))
is p.

Again, from the equation (1), T3C(ri) = 0 implies T3 = 0 by letting C(ri) ̸=
0 ∈ k. Thus, A(ri)

STT6 = 0 for all i in the equation (8) and so TST
6 A(ri) =

(A(ri)
STT6)

ST = 0. Thus, TST
6 = O1×p and so T6 = Op×1.

Now, by letting A(ri) = Op×1, and C(ri) ̸= 0 ∈ k in the equation (6), we
have T1 = T9 = a ∈ k.

Finally, in the equation (3), by letting C(ri) = 0, we have T5A(ri) =
A(ri)T1 = aA(ri). This implies, if we let Ip be the p × p identity matrix,
we obtain (T5 − aIp)A(ri) = Op×1 for all i. Thus, T5 − aIp = Op×p and so
T5 = aIp. Therefore, the matrix L is of the form

L =

 a O O
T4 aIp O
T7 T8 a

 .

In the equation (6), by letting C(ri) = 0, we obtain

T8A(ri) = A(ri)
STT4 = (A(ri)

STT4)
ST = TST

4 A(ri)

since A(ri)
STT4 ∈ k. Thus, we have (T8 − TST

4 )A(ri) = 0 and so T8 = TST
4 .

Therefore, L is of the following form:

L =

 a O O
T4 aIp O
T7 TST

4 a

 ∈ S

and we can conclude that the algebra S is in MCn(k). □
Theorem 3.4. Suppose (R,mR, k) is an algebra in MCn(k) with i(mR) = 3.
If S is an algebra in MCn(k), then dim(soc(R)) = 1.

Proof. Suppose dimk(soc(R)) ̸= 1. Then, dimk(soc(R)) = q2 for some positive
integer q. From the condition r = rST , all the matrices in soc(R) can’t be
contained in soc(S), which contradicts to the fact in Theorem 1.1. Thus we
have the result. □
Corollary 3.5. Suppose (R,mR, k) is an algebra in MCn(k) with i(mR) = 3.
Furthermore, assume rST = r for all r ∈ R. Then R = k[E21 + En(n−1),
. . . , E(n−1)1 + En2, En1].

Proof. Since dimk(soc(R)) = 1 by Theorem 3.4, ℓ = q = 1 in Theorem 1.1.
Also, we may assume R is the algebra of the form in Theorem 1.3. Since
the rank of the matrix H = (A(r1), . . . , A(rt)) is p and A(r1), . . . , A(rt) are
linearly independent, we should have p = t = n − 2 and R = k[E21 +
En(n−1), . . . , E(n−1)1 + En2, En1]. □
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Example 3.6. Suppose (R,mR, k) is an algebra in MC4(k) with i(mR) = 3
and rST = r for all r ∈ R. Then, by Theorem 3.4 and Corollary 3.5, we obtain
dim(soc(R)) = 1 and R = k[E21 + E43, E31 + E42, E41].

Corollary 3.7. Suppose (R,mR, k) is an algebra in MCn(k) with i(mR) = 3
and rST = r for all r ∈ R. Then dimk(R) = n.

Proof. Since R = k[E21 + En(n−1), . . . , E(n−1)1 + En2, En1] by Corollary 3.5,
we obtain dimk(R) = 1 + (n− 2) + 1 = n. □

By Corollary 3.7, we can always construct an algebra R ∈ MCn(k) with
i(mR) = 3 and dim(R) = n. Furthermore, the next corollary holds.

Corollary 3.8. Suppose (R,mR, k) is an algebra inMCn(k) such that rST = r
for all r ∈ R. Then, i(mR) ≥ 3 for all n ≥ 3.

Proof. Suppose i(mR) = 2. Then, mR = soc(R). Since rST = r for all r ∈ R,
C(r)q×ℓ should be square matrix in Theorem 1.1. Hence if r ∈ soc(R), then
C(r)q×q = C(r)ST

q×q and so soc(R) can’t contain all the matrices of the form in
Theorem 1.1 which is impossible. Therefore, i(mR) ≥ 3 for all n ≥ 3. □

4. Algebras in MCn(k) with i(mR) = n = dim(R)

In this section, we will provide a method to construct algebras (R,mR, k) in
MCn(k) that i(mR) = n = dim(R). Specially, r = rST for all r ∈ mR.

Let (B,mB , k) be a finite dimensional commutative local k-algebra with
identity and N a finitely generated faithful B-module. Suppose

B ∼= HomB(N,N)

via the regular representation. Define an algebra R as follows:

R = B[X1, X2, . . . , Xn−2]/I,

where I is the following ideal:

I = (mBX1, . . . ,mBXn−2, X
2
1−X2, X

3
1−X3, . . . , X

n−2
1 −Xn−2, X

n−1
1 −z,Xn

1 ).

Here, z is a nonzero element in soc(B) with dimk(Nz) = 1.

Theorem 4.1. Suppose R is an algebra as in the above statements. If we
let M = N ⊕ (⊕n−2

i=1 Nz), then the k-algebra R is isomorphic to HomR(M,M)
via the regular representation. In other words, R is in MCn(k), where n =
dimk(M).
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Proof. Obviously M = N ⊕ (⊕n−2
i=1 Nz) is a B[X1, X2, . . . , Xn−2]-module via

the following operations:

(u, u1z, . . . , un−2z)b = (bu, u1zb, . . . , un−2zb)
(u, u1z, . . . , un−2z)X1 = (u1z, u2z, . . . , un−2z, uz)
(u, u1z, . . . , un−2z)X2 = (u2z, u3z, . . . , uz, u1z

2)
(u, u1z, . . . , un−2z)X3 = (u3z, u4z, . . . , u1z

2, u2z
2)

...
...

...
(u, u1z, . . . , un−2z)Xn−2 = (un−2z, uz, . . . , un−3z

2),

where b ∈ B and u, uj ∈ N for j = 1, 2, . . . , n− 2.
Moreover, if we let xj is the image of Xj in R for each j = 1, 2, . . . , n − 2,

then M is an R-module via the following operations:

(u, u1z, . . . , un−2z)b = (bu, u1zb, . . . , un−2zb)
(u, u1z, . . . , un−2z)x1 = (u1z, u2z, . . . , un−2z, uz)
(u, u1z, . . . , un−2z)x2 = (u2z, u3z, . . . , uz, u1z

2)
(u, u1z, . . . , un−2z)x3 = (u3z, u4z, . . . , u1z

2, u2z
2)

...
...

...
(u, u1z, . . . , un−2z)xn−2 = (un−2z, uz, . . . , un−3z

2),

where b ∈ B and u, uj ∈ N for j = 1, 2, . . . , n− 2.
Furthermore, by straightforward calculations, we obtain

I ⊆ AnnB[X1,X2,...,Xn−2](M).

To show the faithfulness of M , let

(u, 0, . . . , 0)(b+ α1x1 + α2x2 + · · ·+ αn−2xn−2) = (0, 0, . . . , 0)

for u ∈ N and αj ∈ k for all j. Then we have

(ub, uαn−2z, . . . , uα1z) = (0, 0, . . . , 0).

Since N is a faithful B-module by assumption, we have

b = 0, αj = 0, j = 1, 2, . . . , n− 2

which implies M is a finitely generated faithful R-module.
Now, let f ∈ HomR(M,M). Define ϕ1 : N →M and ϕ2 :M → N by

ϕ1(u) = (u, 0, . . . , 0), ϕ2(u, u1z, u2z, . . . , un−2z) = u.

Then, obviously ϕ1 and ϕ2 are B-module homomorphisms. Moreover, the map
ϕ : N → N defined by

ϕ = ϕ2fϕ1

is a B-module homomorphism. Since B ∼= HomB(N,N) via the regular rep-
resentation, ϕ = µa for some a ∈ B, where µa : N → N is the natural
homomorphism defined by µa(u) = ua for all u ∈ N . Thus, we have

ϕ2(f(u, 0, . . . , 0)) = ϕ2fϕ1(u) = ϕ(u) = µa(u) = ua.
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By the definition of ϕ2, there exist n−2 number of B-module homomorphisms
ψj ;N → Nz for j = 1, 2, . . . , n− 2 such that

f(u, 0, . . . , 0) = (ua, ψ1(u), ψ2(u), . . . , ψn−2(u)).

Since dimk(Nz) = 1, there exists an element v ∈ N such that {vz} is a
k-vector space basis of Nz. Thus, there exist c1, c2, . . . , cn−2 ∈ k such that

ψj(v) = cjvz, j = 1, 2, . . . , n− 2.

Then, a+ cn−2x1 + cn−2x2 + · · ·+ c1xn−2 ∈ R and we want to show

f = µa+cn−2x1+cn−3x2+···+c1xn−2 .

Since vz generates Nz, we can write

ujz = sjvz, j = 1, 2, . . . , n− 2

for some sj ∈ k, j = 1, 2, . . . , n− 2. Thus,

(u, u1z, u2z, . . . , un−2z) = (u, s1vz, s2vz, . . . , sn−2vz)

and so we want to show that

f(u, s1vz, . . . , sn−2vz)

= µa+cn−2x1+cn−3x2+···+c1xn−2
(u, s1vz, s2vz, . . . , sn−2vz).

Briefly, let

r = a+ cn−2x1 + cn−3x2 + · · ·+ c1xn−2,

w = (u, s1vz, . . . , sn−2vz).

Then, µr(w) is as follows:

µr(w) = (u, s1vz, . . . , sn−2vz)(a+ cn−2x1 + cn−3x2 + · · ·+ c1xn−2)

= (ua, s1vza, . . . , sn−2vza) + (cn−2s1vz, cn−2s2vz, . . . , cn−2uz)

+ · · ·+ (c1sn−2vz, c1uz, . . . , c1sn−3vz
2).

But, for each i and j, we have

ψi(sjv) = sjψi(v) = sjcivz.

Thus, we have the following identities:

f(0, s1vz, . . . , sn−2vz) = f((sn−2v, 0, . . . , 0)x1 + (sn−3v, 0, . . . , 0)x2

+ · · ·+ (s1v, 0, . . . , 0)xn−2)

= (sn−2va, ψ1(sn−2v), . . . , ψn−2(sn−2v))x1

+ (sn−3va, ψ1(sn−3v), . . . , ψn−2(sn−3v))x2

+ · · ·+ (s1va, ψ1(s1v), . . . , ψn−2(s1v))xn−2

= (ψ1(sn−2v), ψ2(sn−2v), . . . , ψn−2(sn−2v), sn−2vaz)

+ (ψ2(sn−3v), ψ3(sn−3v), . . . , sn−3vaz, ψ1(sn−3v)z)

+ · · ·+ (ψn−2(s1v), s1vaz, . . . , ψn−3(s1v)z)
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= (c1sn−2vz, c2sn−2vz, . . . , cn−2sn−2vz, sn−2vaz)

+ (c2sn−3vz, c3sn−3vz, . . . , sn−3vaz, c1sn−3vz
2)

+ · · ·+ (cn−2s1vz, s1vaz, . . . , cn−3s1vz
2)

= (c1sn−2vz + · · ·+ cn−2s1vz, . . . , sn−2vaz).

Since we can rewrite uz = svz for some s ∈ k, we have the following identi-
ties:

(ψ1(u), ψ2(u), . . . , ψn−2(u), uaz) = (ua, ψ1(u), ψ2(u), . . . , ψn−2(u))x1

= f(u, 0, . . . , 0)x1 = f((u, 0, . . . , 0)x1)

= f(0, 0, . . . , 0, uz) = f(0, 0, . . . , 0, svz)

= (c1svz, c2svz, . . . , cn−2svz, svaz)

= (c1uz, c2uz, . . . , cn−2uz, suz).

This implies that
ψj(u) = cjuz

for all j = 1, 2, . . . , n− 2.
From the above results, we have the following identity:

f(u, 0, . . . , 0) = (ua, ψ1(u), . . . , ψn−2(u)) = (ua, c1uz, . . . , cn−2uz).

Therefore, we have proved

f(u, s1vz, . . . , sn−2vz) = µa+cn−2x1+...+c1xn−2(u, s1vz, . . . , sn−2vz)

for all (u, s1vz, . . . , sn−2vz) ∈ N ⊕ (⊕n−2
i=1 Nz), which implies

f = µa+cn−2x1+···+c1xn−2 .

Since M is a faithful R-module, we can conclude R is isomorphic to

HomR(M,M)

via the regular representation and so R is in MCn(k). □
Definition 4.2. We will call the algebra R of the form in Theorem 4.1 a
C3-construction.

Corollary 4.3. Let (R,mR, k) be an algebra as in Theorem 4.1. Then,

(1) dimk(R) = dimk(B) + (n− 2).

(2) xj1 = xj for all j = 1, 2, . . . , n− 2.

(3) xn−1
1 = z.

(4) mR is an ideal generated by x1.
(5) i(mR) = n.

Remark 4.4. If we choose an algebra B with dim(B) = 2 in Theorem 4.1, then
dim(R) = n and so we can always construct algebras (R,mR, k) ∈ MCn(k)
with i(mR) = n = dim(R).

The following is an example of a C3-construction.
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Example 4.5. Let (R,mR, k) be a k-algebra in MCn(k) with mR = (E21 +
E32 + · · ·+En(n−1)), the ideal generated by E21 +E32 + · · ·+En(n−1). Then,
R is the algebra defined as following:

R =





a 0 0 · · · · · · · · · 0 0
a1 a 0 · · · · · · · · · 0 0
a2 a1 a · · · · · · · · · 0 0
a3 a2 a1 · · · · · · · · · 0 0
...

...
...

...
...

...
an−3 an−4 an−5 · · · · · · · · · 0 0
an−2 an−3 an−4 · · · · · · · · · a 0
an−1 an−2 an−3 · · · · · · · · · a1 a


| a, ai ∈ k, i = 1, . . . , n− 1


Note that rST = r for all elements r ∈ R. Moreover, if we let

x1 = E21 + E32 + · · ·+ En(n−1)

x2 = E31 + E42 + · · ·+ En(n−2)

...
...

...
xn−2 = E(n−1)1 + En2,

then

(1) dimk(R) = n.
(2) mR is an ideal generated by x1.

(3) xj1 = xj for all j = 1, 2, . . . , n− 2.

(4) xn−1
1 = En1.

(5) i(mR) = n.
(6) rST = r for all r ∈ R.
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