• 제목/요약/키워드: matrix problems

검색결과 1,069건 처리시간 0.031초

ML-AHB 버스 매트릭스 구현 방법의 개선 (An Improvement of Implementation Method for Multi-Layer AHB BusMatrix)

  • 황수연;장경선
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제32권11_12호
    • /
    • pp.629-638
    • /
    • 2005
  • 시스템 온 칩 설계에서 온 칩 버스는 전체 시스템의 성능을 결정하는 중요한 요소이다. 특히 프로세서, DSP 및 멀티미디어 IP와 같이 보다 높은 버스 대역폭을 요구하는 IP가 사용될 경우 온 칩 버스의 대역폭 문제는 더욱 심각해진다. 이에 따라 최근 ARM 사에서는 고성능 온 칩 버스 구조인 ML-AHB 버스 매트릭스를 제안하였다. ML-AHB 버스 매트릭스는 시스템 내의 다중 마스터와 다중 슬레이브간의 병렬적인 접근 경로를 제공하여 전체 버스 대역폭을 증가시켜주고, 최근 많은 프로세서 요소들을 사용하는 휴대형 기기 및 통신 기기 등에 적합한 고성능 온 칩 버스 구조이다. 하지만 내부 컴포넌트인 입력 스테이지와 무어 타입으로 구현된 중재 방식으로 인해 마스터가 새로운 전송을 수행할 때 또는 슬레이브 레이어를 변경할 때 마다 항상 1 클럭 사이클 지연 현상이 발생된다. 본 논문에서는 이러한 문제점을 해결하기 위해 기존 ML-AHB 버스 매트릭스 구조를 개선하였다. 기존 버스 매트릭스 구조에서 입력 스테이지를 제거하고, 개선된 구조에 적합하도록 중재 방식을 변경하여 1 클럭 사이클 지연 문제를 해결하였다. 개선된 결과 4-beat incrementing 버스트 타입으로 다수의 트랜잭션을 수행할 경우, 기존 ML-AHB 버스 매트릭스에 비해 전체 버스 트랜잭션 종료 시간 및 평균 지연 시간이 각각 약 $20\%,\;24\%$ 정도 짧아졌다. 또한 FPGA의 슬라이스 수는 기존의 ML-AHB 버스 매트릭스보다 약 $22\%$ 정도 감소하였고, 클럭 주기도 약 $29\%$ 정도 짧아졌다.

Accuracy of Iterative Refinement of Eigenvalue Problems

  • Gluchowska-Jastrzebska, Jolanta;Smoktunowicz, Alicja
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제4권1호
    • /
    • pp.79-92
    • /
    • 2000
  • We investigate numerical properties of Newton's algorithm for improving an eigenpair of a real matrix A using only fixed precision arithmetic. We show that under natural assumptions it produces an eigenpair of a componentwise small relative perturbation of the data matrix A.

  • PDF

MODULUS-BASED SUCCESSIVE OVERRELAXATION METHOD FOR PRICING AMERICAN OPTIONS

  • Zheng, Ning;Yin, Jun-Feng
    • Journal of applied mathematics & informatics
    • /
    • 제31권5_6호
    • /
    • pp.769-784
    • /
    • 2013
  • We consider the modulus-based successive overrelaxation method for the linear complementarity problems from the discretization of Black-Scholes American options model. The $H_+$-matrix property of the system matrix discretized from American option pricing which guarantees the convergence of the proposed method for the linear complementarity problem is analyzed. Numerical experiments confirm the theoretical analysis, and further show that the modulus-based successive overrelaxation method is superior to the classical projected successive overrelaxation method with optimal parameter.

ITERATIVE METHODS FOR LARGE-SCALE CONVEX QUADRATIC AND CONCAVE PROGRAMS

  • Oh, Se-Young
    • 대한수학회논문집
    • /
    • 제9권3호
    • /
    • pp.753-765
    • /
    • 1994
  • The linearly constrained quadratic programming(QP) considered is : $$ min f(x) = c^T x + \frac{1}{2}x^T Hx $$ $$ (1) subject to A^T x \geq b,$$ where $c,x \in R^n, b \in R^m, H \in R^{n \times n)}$, symmetric, and $A \in R^{n \times n}$. If there are bounds on x, these are included in the matrix $A^T$. The Hessian matrix H may be positive definite or negative semi-difinite. For large problems H and the constraint matrix A are assumed to be sparse.

  • PDF

PRECONDITIONED SSOR METHODS FOR THE LINEAR COMPLEMENTARITY PROBLEM WITH M-MATRIX

  • Zhang, Dan
    • 대한수학회논문집
    • /
    • 제34권2호
    • /
    • pp.657-670
    • /
    • 2019
  • In this paper, we consider the preconditioned iterative methods for solving linear complementarity problem associated with an M-matrix. Based on the generalized Gunawardena's preconditioner, two preconditioned SSOR methods for solving the linear complementarity problem are proposed. The convergence of the proposed methods are analyzed, and the comparison results are derived. The comparison results showed that preconditioned SSOR methods accelerate the convergent rate of the original SSOR method. Numerical examples are used to illustrate the theoretical results.

RECOGNITION OF STRONGLY CONNECTED COMPONENTS BY THE LOCATION OF NONZERO ELEMENTS OCCURRING IN C(G) = (D - A(G))-1

  • Kim, Koon-Chan;Kang, Young-Yug
    • 대한수학회보
    • /
    • 제41권1호
    • /
    • pp.125-135
    • /
    • 2004
  • One of the intriguing and fundamental algorithmic graph problems is the computation of the strongly connected components of a directed graph G. In this paper we first introduce a simple procedure for determining the location of the nonzero elements occurring in $B^{-1}$ without fully inverting B, where EB\;{\equiv}\;(b_{ij)\;and\;B^T$ are diagonally dominant matrices with $b_{ii}\;>\;0$ for all i and $b_{ij}\;{\leq}\;0$, for $i\;{\neq}\;j$, and then, as an application, show that all of the strongly connected components of a directed graph G can be recognized by the location of the nonzero elements occurring in the matrix $C(G)\;=\;(D\;-\;A(G))^{-1}$. Here A(G) is an adjacency matrix of G and D is an arbitrary scalar matrix such that (D - A(G)) becomes a diagonally dominant matrix.

곡선보 요소의 고유치 해석에서 질량행렬의 영향 (The Effect of the Mass Matrix in the Eigenvalue Analysis of Curved Beam Elements)

  • 유하상
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.288-296
    • /
    • 1997
  • Curved beam elements with two nodes based on shallow beam geometry and strain interpolations are employed in eigenvalue analysis. In these elements, the displacement interpolation functions and mass matrices are consistent with strain fields. To assess the quality of the element mass matrix in free vibration problems, several numerical experiments are performed. In these analysis, both the inconsistent mass matrices using linear displacement interpolation function and the consistent mass matrices are used to show the difference. The numerical results demonstrate that the accuracy is closely related to the property of the mass matrix as well as that of the stiffness matrix and that the mass matrix consistent with strain fields is very beneficial to eigenvalue analysis. Also, it is proved that the strain based elements are very efficient in a wide range of element aspect ratios and curvature properties.

Matrix-based Chebyshev spectral approach to dynamic analysis of non-uniform Timoshenko beams

  • Wang, W.Y.;Liao, J.Y.;Hourng, L.W.
    • Structural Engineering and Mechanics
    • /
    • 제39권5호
    • /
    • pp.669-682
    • /
    • 2011
  • A Chebyshev spectral method (CSM) for the dynamic analysis of non-uniform Timoshenko beams under various boundary conditions and concentrated masses at their ends is proposed. The matrix-based Chebyshev spectral approach was used to construct the spectral differentiation matrix of the governing differential operator and its boundary conditions. A matrix condensation approach is crucially presented to impose boundary conditions involving the homogeneous Cauchy conditions and boundary conditions containing eigenvalues. By taking advantage of the standard powerful algorithms for solving matrix eigenvalue and generalized eigenvalue problems that are embodied in the MATLAB commands, chebfun and eigs, the modal parameters of non-uniform Timoshenko beams under various boundary conditions can be obtained from the eigensolutions of the corresponding linear differential operators. Some numerical examples are presented to compare the results herein with those obtained elsewhere, and to illustrate the accuracy and effectiveness of this method.

실대칭 행력의 고유쌍에 대한 수치해법 (Numerical Method for Eigen Pairs of a Real Valued Symmetric Matrix)

  • 최성;조영식;백청호
    • 한국정보처리학회논문지
    • /
    • 제5권1호
    • /
    • pp.97-102
    • /
    • 1998
  • 사회과학 분야에 응용되는 고유치 문제의 대상 행렬은 실대칭 행렬인 경우가 대부분이다. 또한, 이 분야에서의 고유치 문제는 데이터에 대한 잠재 구조를 파악하기 위해, 절대치의 크기 순으로 2∼4개의 고유쌍만을 필요로 하는 경우가 대부분이다. 컴퓨터에 의한 수치 계산으로 고유쌍을 구하는 방법들은 행렬에 대한 계산이기 때문에 마무리 오차의 문제가 필연적으로 대두된다. 본 논문은, 실대칭 행렬에 대해서 멱수법을 이용하여, 절대치가 큰 순서로 필요한 만큼의 고유쌍을 구하는 수치해법에 관하여 논술한 것으로서, 고유쌍 전체를 구하는 기존의 방법들에 비해서 계산 횟수를 줄일 수 있다는 이점이 있다.

  • PDF

SPECTRAL ANALYSIS OF THE MGSS PRECONDITIONER FOR SINGULAR SADDLE POINT PROBLEMS

  • RAHIMIAN, MARYAM;SALKUYEH, DAVOD KHOJASTEH
    • Journal of applied mathematics & informatics
    • /
    • 제38권1_2호
    • /
    • pp.175-187
    • /
    • 2020
  • Recently Salkuyeh and Rahimian in (Comput. Math. Appl. 74 (2017) 2940-2949) proposed a modification of the generalized shift-splitting (MGSS) method for solving singular saddle point problems. In this paper, we present the spectral analysis of the MGSS preconditioner when it is applied to precondition the singular saddle point problems with the (1, 1) block being symmetric. Some eigenvalue bounds for the spectrum of the preconditioned matrix are given. We show that all the real eigenvalues of the preconditioned matrix are in a positive interval and all nonzero eigenvalues having nonzero imaginary part are contained in an intersection of two circles.