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RECOGNITION OF STRONGLY CONNECTED
COMPONENTS BY THE LOCATION OF NONZERO
ELEMENTS OCCURRING IN C(G) = (D — A(G))™*

KOONCHAN KIM* AND YOUNGYUG KANG

ABSTRACT. One of the intriguing and fundamental algorithmic gra-
ph problems is the computation of the strongly connected compo-
nents of a directed graph G. In this paper we first introduce a
simple procedure for determining the location of the nonzero ele-
ments occurring in B~! without fully inverting B, where B = (b;;)
and BT are diagonally dominant matrices with ;; > 0 for all i and
bi; <0, for i # j, and then, as an application, show that all of
the strongly connected components of a directed graph G can be
recognized by the location of the nonzero elements occurring in the
matrix C(G) = (D — A(G))™'. Here A(G) is an adjacency matrix
of G and D is an arbitrary scalar matrix such that (D — A(G))
becomes a diagonally dominant matrix.

1. Introduction

Two vertices u and v in a directed graph G = (V, F) without multiple
arcs are strongly connected(denoted by u < v) if there is a directed path
from u to v and a directed path from v to u. A strongly connected
component(SCC) of G is a maximal vertex set where all pairs of vertices
are strongly connected. The set of all of the SCCs forms a partition
of the vertex set V and its cardinality, the total number of SCCs, is
denoted by 5,(G).

Algorithms and methods have been proposed and developed for com-
puting the SCCs of a directed graph G. Tarjan [8] proposed a linear-time

Received July 14, 2003.

2000 Mathematics Subject Classification: 05C20, 05C50, 65F05.

Key words and phrases: strongly connected components, directed graph, inverse
matrix, diagonally dominant matrix.

*The present research has been conducted by the Attached Research Institutes
Research Grant provided by the Office of Research Affairs of Keimyung University in
1998.



126 Koonchan Kim and Youngyug Kang

algorithm(O(n, m)) and it is based on the depth-first search tree and the
assignment of the ‘lowpoint’ value to each of the vertices in G. Sharir
[7] studied an algorithm that requires two passes over the graph, and
Gabow [4] presented one-pass algorithm that only maintains a represen-
tation of the depth-first search path. The concept of reachability matrix
R(zx;), which is defined as the union of the sets of vertices which are
reachable from z;, with Boolean operations on the adjacency matrix is
used for computing the SCCs in (2, 6]. Recently, Wegener [10] has shown
a more simple correctness proof of one of these algorithms described in
1, 3].

The purpose of this paper is first to present a simple technique that
determines the location of the nonzero elements occurring in B!, where
B = (b;;) and BT are diagonally dominant matrices with b; > 0 for all 7
and b;; <0, for ¢ # j, without fully inverting B and second to show that
all of the SCCs of a directed graph G can also be recognized(computed)
by the location of the nonzero elements occurring in C(G) = (D —
A(G))~!, where A(G) is the usual adjacency matrix of the directed graph
G, D = dI is a scalar matrix, and I is the identity matrix. The diagonal
element d is chosen so that (D — A(G)) becomes a diagonally dominant
matrix and C(G) can be expressed as an infinite sum of the matrix

powers of A(G).

2. A procedure for determining the location of nonzero ele-
ments

Suppose we are given an n X n diagonally dominant matrix B = (b;5)
with b; > 0 for all ¢ and b;; < 0 for ¢ # 5. We suppose BT is also a
diagonally dominant matrix, where 7" denotes the transposition. That
is, by > Z?:l,j;éi Ib’tjl for all ¢ and bjj > Z?:l,i;éj Ib’ljl for all j.

Since B and BT are diagonally dominant and b; > 0 for all i, B is
a positive definite matrix(Golub [5, p.7]). This implies that B can be
decomposed into B = LU, where L is a unit lower triangular matrix
and U is an upper triangular matrix with u; > 0 for all . See Golub
[5, p.86].

One approach for finding B~ is to apply a sequence of elementary
row operations(EROs) on the augmented matrix [B | I] and to transform
it into the form [I | B~!]. The process of reducing B to I consists of
two steps: namely, ‘forward elimination step’ (reducing B to an upper
triangular matrix U and at the same time transforming I to a lower
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triangular matrix L) and ‘backward elimination step’(reducing U to I
and transforming L to B~!).

When applying EROs on the augmented matrix [B | I], the following
properties can be observed:

1. Let LU be a decomposition of B. Then u; > 0 for all 4, as
discussed above. This implies that the pivot elements i.e. the
diagonal elements of B during the forward elimination step are
always positive. Note that U obtained from LU decomposition is
the same as the upper triangular matrix yielded when the forward
elimination step has been completed on this augmented matrix.

2. Since we start with b;; < 0 for all nondiagonal elements and since
all the pivot elements are positive, the following properties can be
observed during forward and backward elimination steps:

(1) In eliminating a nonzero(negative) element, say bj;,j > 1,
below the diagonal element b;;, —bj;/b;; > 0 is multiplied to the
ith row and its result is added to the jth row. Let by < 0,k > ¢
be any nonzero element in the ith row. If bj; = 0, then the
new value at the jkth position becomes negative and if b;; < 0,
then the new value at this jkth position increases negatively since
—bjibik/bii < 0. This implies that whether newly generated or
not nonzero nondiagonal elements of B become always negative.
At the same time, —bj;/b;; > 0 is added to the jith position in
the matrix I, the right-hand side of the augmented matrix. Simi-
larly, it can be seen that nonzero nondiagonal elements below the
diagonal of I become always positive.

(2) At the end of the forward elimination step, B turns into an
upper triangular matrix U = (u;;) in which the diagonal elements
are all positive and nonzero nondiagonal elements(above diagonal)
are all negative and I turns into a lower triangular matrix L = (1;;)
in which the diagonal elements are all equal to 1 and nonzero
nondiagonal elements(below diagonal) are all positive, i.e. the
augmented matrix turns into the form [U | L].

(3) In eliminating a nonzero(negative) element, say u;;,j < ¢,
above the diagonal element w;;, —uj;/u; > 0 is multiplied to the
ith row and its result is added to the jth row. This implies that
—uji/uy > 0 is added to the jith position in L. Let ;5 > 0,k < ¢
be any nonzero element in the ¢th row. If /;4 = 0, then the new
value at the jkth position becomes positive and if /;; > 0, then the
new value at this jkth position increases positively since lj;lix /li; >
0. This implies that diagonal elements and nonzero nondiagonal
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elements above the diagonal of L become always positive. Note
that dividing u;; in each row to make the diagonal elements of U
does not change the sign of each element in the augmented matrix.
At the end of backward elimination step, U turns into I and L
turns into B~1 and all the nonzero elements in B~! are positive.

Below we present a procedure that obtains the location of nonzero
elements occurring in B~} without fully inverting the matrix B. The
procedure mimics the procedure that transforms the augmented matrix
[B | I] to [I | B™!]. However, instead of actually computing numbers,
we only specify where nonzero elements occur and instead of treating
the augmented matrix, we apply directly on B. At the end, the location
of nonzero elements occurring in B~! is marked by ‘1’ in the matrix B.

Procedure 1

1. Given an n x n diagonally dominant matrix B(we assume that BT
is also diagonally dominant) with b;; > 0 for all ¢ and b;; < 0 for
1 # j, replace all the nonzero elements in B by 1.
2. (Forward process)
fori=1,2,...,n—1
forj=i+1,i4+2,...,n
if bj; # 0, then add row 7 to row j and replace nonzero

in row j by 1.
3. (Backward process)
fori=n,n-1,...,2

forj=¢-1,¢-2,...,1
if bj; # 0, then add row i to row j and replace nonzero
in row j by 1.

Proof of the Procedure 1. By the properties observed above (2(1),
(3)), if b;; is nonzero in the given matrix B, then a positive(nonzero)
element also appears at the ijth position of I(i.e., of B~!). Hence, since
the value of the nonzero elements is immaterial, one may replace any
nonzero element in B by 1 and may work on B directly. This justifies
the first item in Procedure 1.

In both forward and backward elimination step, if a zero element
b;; becomes nonzero at a certain point, then it remains nonzero until
the end of the inversion processes and a positive value appears at the
ijth position of B~! because of the properties discussed above (2(1),
(3)). Thus, the forward process in Procedure 1 places ‘1’ at the position
where a zero element becomes nonzero and keeps the status of nonzero
element nonzero. Consequently, the forward process in Procedure 1
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gives the location of nonzero elements occurring in L(i.e., below the
diagonal of B~1). Similarly, the backward process in Procedure 1 gives
the location of nonzero elements occurring below and above the diagonal
of B~1.

When the whole process is terminated, 1’s in B represents the location
of nonzero elements occurring in B!, 0

We illustrate the above procedure using an example below.

EXAMPLE 1. The matrix B given below and BT are diagonally dom-
inant and b;; > 0 for all 4.

5 0 0 0 -1
~1 5 -1 -1 0
(1) B=| 0 0 5 0 0
0 0 -1 5 0
0 -1 0 -1 5

Replacing nonzero element by 1 gives

10001
11110
B=]100100
00110
01011

In forward process, for 1 = 1, by; # 0. Hence we add row 1 to row 2
and replace nonzero element in row 2 by 1(i.e., we set bys = 1). All other
elements below by; are zero, so we consider for ¢ = 2. Since bs2 # 0, we
add row 2 to row 5 and replace nonzero in row 5 by 1(i.e., we set bg; = 1
and bss = 1). For i = 3,4, no change occurs. This yields

10001
11111
B=}10012020
00110
11111

In backward process, for i = 5, bys # 0 and by5 # 0. Since all the
elements in row 2 in B are already nonzero, we only need to add row
5 to row 1(i.e., we set bjo = b3 = b1y = 1). The backward elimination
process can be stopped at this point since no operation is needed for
i = 4,3,2. Then the location of nonzero elements(represented by 1’s)
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occurring in B! is given by

Bl =

_ 0 O = =
= O O =
= e
— = O =
= O O = =

If we actually compute the inverse of B given in (1), we would obtain

0.2016 0.0081 0.0035 0.0097 0.0403

0.0403 0.2016 0.0487 0.0419 0.0081
Bl= 0 0 0.2000 0 0
0 0  0.0400 0.2000 0

0.0081 0.0403 0.0177 0.0484 0.2016

The above technique is especially useful in a situation where elements
in B~! are extremely small in magnitude such that they are undistin-
guishable from zero.

3. The expansion of C(G) = (D — A(G))~!

Consider an n x n real matrix A = (a;;) with a;; > 0 for all ¢ and j.
If 7, aij < 1 for all j, then the inverse of I — A can be expressed as
an infinite sum of the powers of A:

(2) (T-A)'=T+A+A2+A43+....

A proof of the convergence of the above expansion is described in Waugh
[9].

For a given directed graph G = (V, E') with order n and with the ad-
jacency matrix A(G) = (as;), we let 0 = max; > - aij, 7=1,2,...,n.
Let d > o{or d > n) and D be the scalar matrix whose diagonal elements
are all equal to d, i.e. D = dI. Note that choosing such a d or a suf-
ficiently large d makes B = (D — A(Q)) a strictly diagonally dominant
matrix with b; > 0 for all < and b;; < 0 for ¢ # j since a;; > 0 for all
i 7.

Then,

(D - A@)™ = {d(I - AG)} =
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where A(G) = 1A(G) = (a;;) whose elements satisfy S7 ; a;; < 1 for
all j. Hence by (2),

(D-A@)™ = Z(U+AG)+AGP+++AG) +--)

= S+ ZAG) + ZAG 4+ ACF 4.
Letting C(G) = (D — A(G))™!, we have

1 1 1 1

4. Recognition of SCCs

Let G = (V, E) be a directed graph with adjacency matrix A(G) =
(aij) and vertex set V = {v1,v2,...,v,}. We denote A(G)*F = (afj)
the kth matrix power of A(G). Then the ijth element afj of A(G)¥
represents the number of directed walks of length & from the vertex v;
to v;. Suppose now that d has been chosen as described in the previous
section and C(G) = (D — A(G))™! = (c;;) has been computed. Then

the following is an immediate consequence of (3).

LEMMA 4.1. Two vertices v; and v; in G are strongly connected if
and only if both c;; # 0 and cj; # 0.

Proof. Suppose that v; <> v;. Then there exists a directed path of
length k& from v; to v; and a directed path of length [ from v; to v;.
This implies that there exists a directed walk of length & from v; to v,
and a directed walk of length ! from v; to v;. In other words, afj # 0
and ag-i # 0. From (3), it must be that both ¢;; # 0 and ¢j; # 0.
Conversely, suppose ¢;; # 0 and ¢;; # 0. From (3), it can be seen that
there must exist at least two integers k and [ such that afj #0€ AG)F

and aéi # 0 € A(G)!. This implies that there exists a directed walk of
length k from v; to v; and a directed walk of length [ from v; to v;. In
other words, there exists a directed path of length &’ < k from v; to v;

and a directed path of length I’ < I from v; to v;. Thus, v; < v, in
G. O

REMARK 4.2. Lemma 4.1 implies that if either ¢;; or ¢;; is zero, then
the corresponding vertices v; and v; are not strongly connected and
hence they can not belong to the same SCC. Thus, whenever ¢;; # 0
and c¢j; = 0 happens, one can then set ¢;; = 0.
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REMARK 4.3. It can be also perceived that the value of the nonzero
elements in C(G) is immaterial; what one needs is the location of the
occurrence of nonzero elements of C(G) in order to recognize SCCs.

When C(G) is modified according to the remarks above, then C(G)
becomes a symmetric matrix with elements consisting of 1’s and 0's. In
the rest of this paper, we use the same notation C(G) for the updated
one.

The next Lemma shows that the set of vertices corresponding to the
column indices of nonzero elements given in each row of C(G) forms a

SCC.

LEMMA 4.4. Let T = {cs, Cijy s Cijy» - - -, Cij,,_, } De the set of k nonzero
elements in the ith row of C(G). Then, S = {v;,vj,,vjp,...,Vj_,} CV
forms a SCC of G, with size k.

Proof. Let T = {cii, Cijy» Ciggs - - - Ciji_, - Note that ¢;; # 0 for all ¢. If
k =1, then T = {¢;;} and hence S = {v;} is a trivial point, i.e., a SCC of
size 1. So we assume that | T |> 2. To show that S is a SCC, it suffices
to show that any pair of vertices in S is strongly connected. Let vy, v,
be an arbitrary pair of vertices in S, where p,q € {7,J1,72,...,Jk-1}
Two cases occur. The first case is that one of the p and ¢ is ¢, say
p = . Consider ¢;; and c;q corresponding to the vertices v; and v,. Since
ciqg # 0, we have cy; # 0. Thus, by Lemma 4.1 v; < v,. The second case
is that neither p nor g¢ is equal to ¢. Consider ¢;, and ¢;q corresponding
to the vertices v, and vg. Since c; # 0 and ¢;q # 0, we have c,; # 0 and
¢y # 0. This implies that v; < v, and v; « v,. Combining, we have
vp <> vg. Therefore, S is a SCC of G with | S |= k. O

REMARK 4.5. Lemma 4.4 implies that each row of C(G) gives a SCC
of G. However, it can be easily observed that row ¢, row j;, row jo, ...,
row jr_1 all give rise to exactly the same SCC since v;, vj;,vjy, ..., Vj,_,
forms a directed cycle. Hence, once one recognizes a SCC from row ¢,
then one can ignore rows j1, jo, . - ., Jx—1 and consider only the remaining
rows to recognize another SCC, and so on.

Combining the above results, it can be seen that all of the SCCs of
a directed graph G can be recognized by computing the location of the
nonzero elements occurring in C(G). A simple procedure for recognizing
all of the SCCs of G based on the location of nonzero elements occurring
in C(G) = (D — A(G))™! is given below. Note that when using the
Procedure 1, we replace nonzero elements in B = (D — A(G)) by 1, so
we could simply set a;; = 1 for all i in A(G) and set B «— A(G).
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Procedure 2

1. Given a directed graph G with its adjacency matrix A(G), set
ai; = 1 for all ¢ and set B — A(G).

2. Use Procedure 1 to compute the location of nonzero elements oc-
curring in B~!, which we denote by C(G).

3. Update C(G) by setting ¢;; = 0 whenever ¢;; = 0 and ¢;; # 0, for
all i # 7.

4. Recognize all of the SCCs from the column indices of nonzero
elements in each row of C(G).

THEOREM 4.6. The above procedure recognizes all of the SCCs of a
directed graph G.

Proof. By Lemma 4.4, each row of C(G) gives a SCC. Then, consid-
ering all the rows of C(G) yields all of the SCCs of G. O

EXAMPLE 2. As an illustration, we consider a directed graph given

in Figure 1.
U1 v2 U3
' )
vy Ug Vg

F1GURE 1. A directed graph G with four SCCs

Setting a;; = 1 for all 7 in A(G) and letting B «— A(G) gives

1 0000O01O00O0
01 1000©O0O00O0
0010100O0O0GO0
11010001090
B=|0000119001
001001000
0 001 00100
0 0000O0O0T11
0 00O0O0CT1O0O0CI1
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Using the Procedure 1, the location of nonzero elements occurring in
B~ is given as

111111111
011011001
001011001
111111111

ce)=1001011001],
001011001
111111111
001011011
001011001

and updating C(G) by setting ¢;; = 0 whenever ¢j; = 0 and ¢;; # 0 for
all 7 # j(e.g., since cp1 = 0 and ¢12 # 0, we set ¢13 = 0) yields

100100100
010000000
001011001
100100100
(4) cG=[001011001
001011001
100100100
000000010
\0 010110071

By considering the column indices of the nonzero elements in row 1 of
C(G) given in (4), we obtain {v1,v4,v7} as a SCC of size 3. Then, row
4 and row 7 can be ignored since they yield the same SCC. Similarly,
we obtain {vz} from row 2, {vs, vs,ve,ve} from row 3(rows 5, 6, and 9
can be ignored), and {vg} from row 8 as the other SCCs of G. That is,

ﬂo(G) =4.

5. Conclusions

In this paper we showed that all of the strongly connected compo-
nents of a directed graph G can be recognized by simply computing the
location of nonzero elements occurring in C(G) = (D — A(G))™! with-
out fully inverting (D — A(G)). To handle this problem, we developed
and presented in the beginning of this paper a simple procedure for
computing the location of nonzero elements occurring in B~! without
fully inverting B, where B and BT are diagonally dominant matrices
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whose diagonal elements are all positive and nondiagonal elements are
all nonpositive. The method presented in this paper for recognizing all of
the SCCs uses different concept comparing with the previously known
methods. It is not linear time method in the order of G. However,
the concept of this approach is easy to understand and the approach is
simple to describe.
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