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MODULUS-BASED SUCCESSIVE OVERRELAXATION

METHOD FOR PRICING AMERICAN OPTIONS†
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Abstract. We consider the modulus-based successive overrelaxation met-
hod for the linear complementarity problems from the discretization of
Black-Scholes American options model. The H+-matrix property of the

system matrix discretized from American option pricing which guaran-
tees the convergence of the proposed method for the linear complementar-
ity problem is analyzed. Numerical experiments confirm the theoretical

analysis, and further show that the modulus-based successive overrelax-
ation method is superior to the classical projected successive overrelaxation
method with optimal parameter.
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1. Introduction

The trading of options has grown to tremendous scale, since the Chicago
Board Options Exchange (CBOE) started to operate in 1973. The valuation of
option contracts has been topic of active research and various type of mathemat-
ical models for the prices of different kinds of options are proposed during the
last decades. One of the most famous models for the price of an option is based
on the Black-Scholes partial differential equation introduced by F. Black and M.
Scholes in 1973 [3]. For European options, it is possible to derive the analyti-
cal formulas for their prices directly. However, for American option, a so-called
early exercise constraint is posed in order to avoid arbitrage opportunities since
the option can be exercised anytime before the expiry. Consequently, American
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options pricing lead to free boundary problems in mathematics and numerical
methods are usually required [1, 10, 17, 18].

In general, numerical solution of American option models consists two tasks
including the discretization of the underlying partial differential equation and the
solution of the linear complementarity problem (LCP). A number of discretiza-
tion methods were considered and discussed in the past decades. For example,
Brennan and Schwartz [4] proposed a projected direct method with finite dif-
ference discretization for pricing American options. Finite element method was
presented in [1] for the discretization of Black-Scholes model. Moreover, finite
volume method and penalty methods were considered by Forsyth and Vetzal in
[7]. See also [10, 17, 18] for details. In this work, we take the accurate and stable
finite difference schemes for use.

For the solution of large sparse LCP, one of the favorite approaches is the
projected successive overrelaxation iterative method (PSOR) [5], which was also
widely used for pricing American options [1, 11]. One drawback of these pro-
jected methods is that the projection of the iterated solution is required, which
may be costly and complicated in actual implementations. In addition, by us-
ing an equivalent fixed-point equation, van Bokhoven [19] presented a modulus
method for solving the LCP through solving a system of linear equations at each
iteration, see also Section 9.2 in Murty [15]. Based on the idea of shifted split-
ting techniques, Hadjidimos [8] and Dong [6] accelerated the original modulus
algorithms and studied their convergence conditions when the system matrix is
symmetric positive definite. Recently, by utilizing the idea of matrix splittings
to construct feasible and efficient methods, modulus-based matrix splitting iter-
ation methods were proposed in [2], and its convergence theory was established
when the system matrix is either a positive definite matrix or an H+-matrix.

In this paper, the space and time discretization is performed using central fi-
nite difference schemes and the L-stable Rannacher method, respectively. More-
over, we consider modulus methods, especially modulus-based successive overre-
laxation method (MSOR) for the solution of time-dependent LCPs from Amer-
ican option pricing, which have not appeared in the literature. The H+-matrix
property of the system matrix discretized from Black-Scholes American option
model which guarantees the convergence of the proposed method for the linear
complementarity problem is analyzed in the paper. Numerical experiments fur-
ther verify the convergence and show that MSOR method is superior to PSOR
method when optimal parameter is chosen.

This paper is organized as follows. The Black-Scholes American option model
and the finite difference scheme are briefly reviewed in Section 2. In Section
3, after reviewing projected method for the linear complementarity problem,
we discuss modulus method, especially modulus-based successive overrelaxation
method for pricing American options. The H+-matrix property of the system
matrix discretized from Black-Scholes American option model is shown in Section
4. Numerical experiments are presented in Section 5 and finally in Section 6,
some brief concluding remarks are given.
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2. Black-Scholes American Option Model

In this section, we briefly review Black-Scholes partial differential equation
model for pricing American options and the finite difference discretization method.

An American call (put) option gives a right to buy (sell) the underlying asset
for the exercise price K any time before expiry. Denote u(x, t) be the price of
the option with respect to the underlying asset value x and time t. The value of
the option is obtained by solving the complementarity problem

Lu ≥ 0, u ≥ g and Lu(u− g) = 0 (1)

where the Black-Scholes partial differential operator L is defined as

L := − ∂

∂t
− 1

2
σ2x2 ∂2

∂x2
− rx

∂

∂x
+ r, (2)

where (x, t) ∈ [0,+∞]×[0, T ], r is the risk free interest rate and σ is the constant
volatility. For the call option, the boundary conditions are

u(0, t) = 0 and lim
x→+∞

u(x, t) ∼ x. (3)

For the put option, the boundary conditions are

u(0, t) = K and lim
x→+∞

u(x, t) = 0. (4)

The final condition is

u(x, T ) = g(x),

where payoff function g(x) gives the price at maturity, which is defined as

g(x) = max(x−K, 0) (5)

for the call option and

g(x) = max(K − x, 0) (6)

for the put option. Due to the early exercise possibility of American options,
the price u(x, t) should be larger than the payoff function g(x) in order to avoid
arbitrage possibilities, which leads to an additional constraint

u(x, t) ≥ g(x). (7)

Note that the original option pricing problem is a final value problem, since
the value of the option is known at the expiry. For convenience, it is usually
transformed into a initial value problem by τ = T − t, see [12, 17].

It is well known [9] that there is a curve Sf (t) which divides the domain
(0, X) into two subdomains (0, Sf (t)) and (Sf (t), X), where the price of the
option equals to the payoff function in one of these subdomains while is higher
than the payoff function in the other one. In the region where the constraint (7)
is inactive the price satisfies Black-Scholes partial differential equation. However,
the place where the constraint is active is not known priori, that is to say, the
function Sf (t) is not known beforehand and it has to be found together with
the price of the option. Hence the option pricing problem is a free boundary
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problem. The underlying asset value Sf (t) indicates the time when the option
should be exercised.

In the following, finite difference methods are considered for the space and
time discretization of American put option pricing problem (1). The American
call option pricing problem could be handled in the similar way.

2.1. Discretization of the Black-Scholes Equation. A numerical solution
of the American put option pricing problem (1) requires the discretization of the
Black-Scholes partial differential equation. Here, option pricing problems are
posed in an infinite region [0,+∞) × [0, T ] with Dirichlet boundary conditions
and a final condition. In order to discretize these problems with finite difference
methods, we reformulate problems in a truncated region [0, X] × [0, T ]. The
truncation point X is sufficiently large in order to avoid excessive error due to
the truncation. On the other hand, unnecessarily large value of X will increase
computational cost; see details in [13] for the practical choice of X.

An uniform grid is applied in the computational domain [0, X] × [0, T ]. Let
m and n be the number of grid steps in the x-direction and that in the t-
direction, respectively. Furthermore, the grid point values of the finite difference
approximation are denoted by

uij ≈ u(xi, tj) = u(ih, j∆τ), (8)

where h := X/m, ∆τ := T/n, i = 0, . . . ,m and j = 0, . . . , n.
The second-order central finite differences

∂u

∂x
(xi, tj) ≈

ui+1,j − ui−1,j

2h
and

∂2u

∂x2
(xi, tj) ≈

ui+1,j − 2ui,j + ui−1,j

h2
(9)

are applied for the approximation of the space derivatives of the Black-Scholes
partial differential equation. The space discretization leads to a semi-discrete
equation which has the matrix representation

∂u

∂t
+ Su(j) = f, (10)

where S = tridiag{ai, bi, ci} with
ai = −1

2
(σ2i2 − ri),

bi = σ2i2 + r,

ci = −1

2
(σ2i2 + ri).

and u(j) = [u1,j , u2,j , . . . , um,j ]
T.

In the following, the time discretization of the semi-discrete equation (10) is
discussed. The stability property of time discretization scheme is essential in the
option pricing problems as the initial value (6) has discontinuous first derivative.
For example, the popular Crank-Nicolson does not have good damping properties
and it will lead to numerical solutions with excessive oscillations. Instead of it
we employ the second-order accurate and L-stable Rannacher scheme [16].
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In the Rannacher time-stepping scheme a few first time steps are performed
with the implicit Euler method and then the Crank-Nicolson method is used

(
1

∆τ
I + θS)u(j+1) = (

1

∆τ
I − (1− θ)S)u(j) + f, (11)

where

θ =

{
1, j = 0, 1, 2, 3
1
2 , j = 4, 5, . . . , n− 1

Let

B =
1

∆τ
I + θS and C =

1

∆τ
I − (1− θ)S

The space and time discretization of the Black-Scholes model (1) leads to a
sequence of linear complementarity problems

Bu(j+1) ≥ Cu(j) + f,
u(j+1) ≥ g,

(Bu(j+1) − Cu(j) − f)T(u(j+1) − g) = 0,

(12)

which is required to be solved at each time step j, where j = 0, 1, . . . , n− 1.
The linear complementarity problem (12) is usually transformed into the stan-

dard form where the early exercise constraint equals to zero instead of the payoff
function for convenience. Let

z := u(j+1) − g, A := B and q := Bg − Cu(j) − f,

the linear complementarity problem (12) can be reformulated into the standard
linear complementarity problem

w := Az + q ≥ 0, z ≥ 0 and zTw = 0, (13)

which is abbreviated as LCP(q,A).

3. The Solutions of the Linear Complementarity Problem

In this section, we consider numerical methods for the linear complementarity
problem (13). We first briefly review the classical projected methods for the
linear complementarity problem and then discuss modulus methods, especially
modulus-based matrix splitting methods in detail.

3.1. Projected Methods. The projected method is a classical method for
solving the linear complementarity problem [5]. The following theorem indicates
that LCP(q, A) is equivalent to a fixed-point problem.

Theorem 3.1. Let A ∈ Rn×n. Then, the LCP(q, A) (13) is equivalent to the
following fixed-point problem

(z − (Az + q))+ − z = 0, (14)
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We omit the proof here. For a more general results, we refer the reader to
[14].

Based on the above equivalence, the projected method is then defined
as an iterative method for the solution of the fixed-point problem (14). Let
A = D−L−U , where D, L and U are the diagonal, the strictly lower-triangular
and the strictly upper triangular matrices of A, respectively. The projected
iterative method for solving the linear complementarity problem (13) can be
introduced as follows.

Method 3.2 ([14]). Projected Successive Overrelaxation (PSOR)
Given z0 ≥ 0,

zk+1 = (zk − ωD−1(Azk + q − L(zk+1 − zk)))+, (15)

where k = 0, 1, 2, . . . and
0 < ω < 2.

If ω = 1, Method 3.1 leads to the Projected Gauss-Seidel (PGS) method.

Remark 3.1. The PSOR method adds a projection to the original SOR method
at each iteration step. Recall that the SOR iteration scheme for the linear system
of equations Az + q = 0 is

zk+1 = zk − ωD−1(Azk + q − L(zk+1 − zk)), (16)

⇔ (D − ωL)zk+1 = [(1− ω)D + ωU ]zk − ωq, (17)

where (16) is similar to (15) regardless of projection.

The algorithm of projected successive overrelaxation method is described as
follows.

Algorithm 3.3. Projected Successive Overrelaxation Method
1 . Choose m,ω, tol,maxit
2 . For it = 1, 2, . . . ,maxit
3 . For i = 1, . . . ,m
4 . k = [1, 2, . . . ,m];
5 . z(i) = z(i) + ω(b(i)−A(i, k)z(k))/A(i, i);
6 . z(i) = max(z(i), 0);
7 . End For
8 . Res = ∥min(Az + q, z)∥2;
9 . If Res < tol
10. break;
11. End
12. End For

It is obvious that projected iterative methods can take the advantage of sparse
computing, when the coefficient matrix A in linear complementarity problem is
large and sparse. However, the convergence rate of the projected successive
overrelaxation iteration deteriorates when the number of discretization grids
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points increases. On the other hand, the choice of the relaxation parameter has
a significant impact on the convergence rate; for the details, see [12]. For the
convergence of these projected methods, we refer the reader to [14, 15].

3.2. Modulus Methods. The following theorem indicates that LCP(q, A) is
equivalent to another fixed-point problem.

Theorem 3.4 ([15]). Let the matrix I +A is nonsingular. Then the LCP(q,A)
(13) is equivalent to the following fixed-point problem, i.e. finding an x ∈ Rn

such that
x = (I +A)−1(I −A)|x| − (I +A)−1q (18)

in the following sense:

(1) if x is a solution of (18), then

w := |x| − x and z := |x|+ x

defines a solution pair for LCP(q,A) (13).
(2) if w and z solve problem (13), then

x :=
1

2
(z − w)

is a solution of the fixed-point problem (18).

Based on the above equivalence, the modulus method can also be defined
as another iterative method for the solution of the fixed-point problem (14).
By generalizing the fixed-point problem (18) with the introduction of an iter-
ation parameter, Hadjidimos [8] and Dong [6] modified the modulus method.
Moreover, Bai [2] established a class of modulus-based matrix splitting iteration
methods, which included the following modulus iterative method.

Method 3.5 ([2]). Modulus-based Successive Overrelaxation (MSOR)
Given x0,

(D +Ω− αL)xk+1 = [(1− α)D + αU ]xk + (Ω− αA)|xk| − αq, (19)

where Ω is a positive diagonal matrix and k = 0, 1, 2, . . . with

zk+1 = |xk+1|+ xk+1 and wk+1 = Ω(|xk+1| − xk+1)

In particular, if α = 1, MSOR method leads to Modulus-based Gauss-Seidel
(MGS) method.

The algorithm of modulus-based successive overrelaxation method is described
as follows.

Algorithm 3.6. Modulus-based Successive Overrelaxation method
1 . Choose x,Ω, α, tol,maxit;
2 . For it = 1, 2, . . . ,maxit
3 . z = |x|+ x;
4 . b = [(1− α)D + αU ]x+ (Ω− αA)|x| − αq;
5 . Res = ∥min(Az + q, z)∥2;



776 N. Zheng and J.-F. Yin

6 . If Res < tol
7 . break;
8 . End
9 . Solve (D +Ω− αL)x = b;
10. End For

Note that the linear system of equations in line 9 of algorithm 3.6 can be
solved exactly, since D+Ω−αL is a lower triangular matrix. Similarly, projected
successive overrelaxation method requires to solve (D−αL)x = b elementwisely.
It is obvious that the coefficient matrix D + Ω − αL can be more diagonal
dominant thanD−αL since Ω is a nonnegative diagonal matrix. Hence modulus-
based successive overrelaxation method may be more efficient than projected
successive overrelaxation method in numerical computation.

Similar to the projected successive overrelaxation method, the projection of
the iterated solution onto the space Rn

+ = {x ∈ Rm|x ≥ 0} is required when |x|
is computed in modulus-based successive overrelaxation method. However, this
projection is vector operation and can use parallel computing.

We should remark that the convergence performance of modulus-based succes-
sive overrelaxation method depends on the choices of Ω and α. These parameters
are often problem dependent and are generally difficult to be determined before-
hand. Hence, the determination of the optimal parameters for modulus-based
successive overrelaxation method could be still an open problem of theoreti-
cal and practical importance [2]. In the next section, theoretical analysis of
the choice of Ω for the convergence of modulus-based successive overrelaxation
method is given.

4. The Convergence of MSOR method

In this section, we establish the convergence theory for modulus-based suc-
cessive overrelaxation method when the system matrix A comes from the dis-
cretization of Black-Scholes American option model. Some necessary notations
and definitions are given as follows.

A matrix A = [ai,j ] ∈ Cn×n is diagonally dominant if |ai,i| ≥
∑n

j=1,j ̸=i |ai,j |,
∀1 ≤ i ≤ n, and it is strictly diagonally dominant if strict inequality is valid.
A matrix A = [ai,j ] ∈ Rn×n is called L-matrix if ai,j ≤ 0 for all i ̸= j and
ai,i > 0 for all 1 ≤ i ≤ n. A nonsingular matrix A = [ai,j ] ∈ Rn×n is called an
M -matrix if it is a L-matrix and A−1 ≥ 0; and an H-matrix if its comparison
matrix ⟨A⟩ = [⟨a⟩i,j ] is an M -matrix, where

⟨a⟩i,j =
{

|ai,i|, for i = j,
−|ai,j |, for i ̸= j,

i, j = 1, 2, . . . , n (20)

In particular, an H-matrix having positive diagonal entries is called an H+-
matrix.

Lemma 4.1. Let L and U be the lower and upper triangular L-matrices respec-
tively. Then, both L−1 and U−1 are nonnegative matrices.



Modulus-based Successive Overrelaxation Method for Pricing American Options 777

Theorem 4.2. Let A = [ai,j ] be a real n × n L-matrix with strictly diagonally
dominant property. Then, A is an M -matrix.
Proof. We shall proceed to the final conclusion in three steps:

Step 1.: The real n×n L-matrix A = [ai,j ] is strictly diagonally dominant,
and A = LU is the LU factorization of A. Then, both L and U are L-
matrices.

Step 2.: Let L and U be lower and upper triangular L-matrices respec-
tively. Then, both L−1 and U−1 are nonnegative matrices.

Step 3.: A = [ai,j ] is an L-matrix and A−1 = U−1L−1 ≥ 0. Then, A is
an M -matrix.

The second assertion have been proved in Lemma 4.1 and the final assertion is
valid obviously. Hence, we only need to verify the Step 1.

If n = 1, A = LU = [1][a1,1] and the result is trivial. We proceed by induction
on n and assume that n > 1 and that the result has been proved for A of order
less than n. Suppose

A =


a1,1 −a1,2 · · · −a1,n
−a2,1 a2,2 · · · −a2,n

...
...

. . .
...

−an,1 −an,2 · · · an,n

 =:

[
a11 wT

v B

]

where ai,j ≥ 0 for all i, j = 1, . . . , n and ai,i > 0 for all i = 1, . . . , n. B
is a matrix of order n − 1. Define Mk = I + τke

T
k , k = 1, . . . , n − 1 with

τk = [0, . . . , 0, xk+1, . . . , xn]
T, xi = ai,k/ak,k > 0, i = k + 1, . . . , n. The row

Gaussian elimination is applied to A by left multiplying a matrix

M1A =

[
a1,1 wT

0 A1

]
, where A1 =

 a2,2 − a1,2
a2,1

a1,1
· · · −a2,n − a1,n

a2,1

a1,1

...
...

...
−an,2 − a1,2

an,1

a1,1
· · · an,n − a1,n

an,1

a1,1

 .

Since A is strictly diagonally dominant, we have ai,i > ai,1 > ai,1a1,i/a1,1. Hence
the diagonal elements ai,i − ai,1a1,i/a1,1 of A1 are positive for all i = 2, . . . , n.
Obviously the off-diagonal elements of A1 are non-positive. Observe that

ai,i −
n∑

j=2,j ̸=i

ai,j > ai,1 >
ai,1
a1,1

n∑
j=2

a1,j

⇒ ai,i − a1,i
ai,1
a1,1

>
n∑

j=2,j ̸=i

(ai,j + a1,j
ai,1
a1,1

).

where i = 2, . . . , n. We can draw the conclusion that A1 is still a strictly diago-
nally dominant L-matrix of order n−1. By the induction hypothesis, A1 = L1U1

is the LU factorization of A1 and both L1 and U1 are L-matrices. Hence

A = M−1
1

[
1 0
0 L1

] [
a1,1 wT

0 U1

]
=

[
1 0

−τ̃1 L1

] [
a1,1 wT

0 U1

]
=: LU
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where M−1
1 = I − τ1e

T
1 is an L-matrix and τT1 = [0,−τ̃T1 ]. Therefore, both L

and U are L-matrices obviously. �
The following corollary can be obtained by Theorem 4.2 directly.

Corollary 4.3. Let A = [ai,j ] ∈ Rn×n be a strictly diagonally dominant matrix.
Then, A is an H-matrix. Moreover, A is an H+-matrix if A is strictly diagonally
dominant with positive diagonal elements.

Proposition 4.4. Let S and B be the semi-discretization and discretization
matrix of Black-Scholes partial differential equation (2), respectively. If σ2 > r,
then both S and B are H+-matrices.
Proof. Recall from (10) that S = tridiag{ai, bi, ci} and note that

|bi| = σ2i2 + r > |1
2
(σ2i2 − ri)|+ |1

2
(σ2i2 + ri)| = |ai|+ |ci|

is valid for all i if σ2 > r. Hence S is a strictly diagonal dominant matrix with
positive diagonal elements, and consequently S is an H+-matrix from Corollary
4.3. Obviously, B = (1/∆τ)I + θS is also an H+-matrix in Rannacher scheme.

�
The convergence theorem of modulus-based successive overrelaxation method

is introduced as follows.

Theorem 4.5 ([2]). Let A ∈ Rn×n be an H+-matrix, and A = M − N be an
H-compatible splitting of the matrix A, i.e., ⟨A⟩ = ⟨M⟩− |N |. Assume that Ω is
a positive diagonal matrix and γ is a positive constant. If the parameter matrix
Ω satisfies Ω ≥ 1

2diag(M), then the iteration sequence {zk}+∞
k=1 ⊂ Rn

+ generated
by Algorithm 3.6 converges to the unique solution z⋆ ∈ Rn

+ of the LCP(q, A) for

any initial vector x(0) ∈ Rn.

Finally, we establish the convergence theorem of Algorithm 3.6 for pricing
American options.

Proposition 4.6. Let S and B be the semi-discretization and discretization
matrix of Black-Scholes partial differential equation (2), respectively. If σ2 > r
and the parameter matrix Ω satisfies Ω ≥ 1

2diag(M), then modulus-based suc-
cessive overrelaxation algorithm 3.6 for Black-Scholes American option pricing
converges to the unique solution for any initial vector.
Proof. According to the Proposition 4.4, the discretization matrix B is an H+-
matrix. Also, B = D−L−U is an H-compatible splitting of the matrix B. From
Theorem 4.5, if Ω ≥ 1

2diag(M), then modulus-based successive overrelaxation
algorithm 3.6 converges to the unique solution for any initial vector. �

5. Numerical Experiments

In this section, a number of numerical experiments are presented to show
the efficient of modulus-based successive overrelaxation method for the linear
complementarity problem resulted from American put options pricing.
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The parameters in American put options are given as follows:

σ = 0.2, r = 0.02, K = 10 and T = 1, (21)

and the computational domain is chosen to be (x, t) ∈ [0, 50]×[0, 1] since artificial
boundary X = 50 is five times of K in order to avoid excessive error. Note that
σ2 > r, Algorithm 3.6 is guaranteed to converge to the unique solution for any
initial vector according to Theorem 4.6.

All of the computations were run on a computer where the CPU is 2.20 GHz
and the memory is 2.00 GB, and the programming language was MATLAB
7.8.0.347 with machine precision ϵ = 1.1 × 10−16. In order to perform a fair
comparison among different methods, in all experiments, we choose the stopping
criterion as

Res(zk) := ∥min(Azk + q, zk)∥2 < tol, (22)

with tol = 10−5, or k reaches the maximal number of iteration steps, e.g., 1000,
where zk represents the kth numerical solution of the linear complementarity
problem LCP(q, A). Res(zk) is called the residual of numerical solution zk in
LCP(q,A).

In the following numerical experiment, we first depict the surface of Ameri-
can put option value on a fine grid, then show the convergence performance of
modulus-based successive overrelaxation method (MSOR), compared with pro-
jected successive overrelaxation method (PSOR) when the parameters and the
number of discretization grids is varying. The number of iteration steps, the
CPU time and the relative error of MSOR and PSOR are reported. Moreover,
the curves of CPU time versus the number of space discretization grids m for
MSOR and PSOR are depicted respectively.

5.1. The Surface of American Put Option Value. In order to report rela-
tive errors for numerical solutions, the reference numerical solution for the Amer-
ican put option problem is computed by a fine grid with (m,n) = (7680, 7680),
the Rannacher scheme and MSOR method numerically.

Numerical results are plotted in Figure 1 where the surface represents Ameri-
can put option price with respect to underlying asset value x and time t, and the
line in the bottom plane indicates the optimal exercise boundary of American
put option.

5.2. Numerical Comparison on MSOR and PSOR. In this section, we
discuss the convergence performance of modulus-based successive overrelaxation
method and projected successive overrelaxation method.

Here, we set Ω = βD in the numerical experiment, where the positive param-
eter β is chosen by minimizing the number of iteration steps. The relative error
(denoted by ‘Error’) is defined as

Error =
∥xk − x∗∥2

∥x∗∥2
, (23)
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Figure 1. The surface of option value and the optimal exercise
boundary curve.

where xk is kth numerical solution and x∗ represents reference solution, ∥ · ∥2 is
the l2-norm of a vector.

Table 1. Iteration number and CPU time of two methods with
(m,n) = (250, 250).

PSOR MSOR
α = ω

IT CPU Error IT CPU Error β∗

0.8 10.3 14.45 6.19e-004 8.4 1.97 6.19e-004 0.51
0.9 8.0 11.15 6.19e-004 8.4 1.97 6.19e-004 0.70
1.0 6.0 8.31 6.19e-004 8.4 1.95 6.19e-004 0.89
1.1 4.2 5.79 6.19e-004 8.4 1.71 6.19e-004 1.08
1.2 6.1 8.56 6.19e-004 8.4 1.93 6.19e-004 1.26
1.3 8.3 11.59 6.19e-004 8.4 1.99 6.19e-004 1.45
1.4 11.2 15.66 6.19e-004 8.4 1.92 6.19e-004 1.64
1.5 14.6 20.26 6.19e-004 8.4 1.98 6.19e-004 1.83
1.6 19.7 27.52 6.19e-004 8.7 1.95 6.19e-004 2.03
1.7 27.9 39.11 6.19e-004 9.0 2.09 6.19e-004 2.13
1.8 43.7 60.56 6.19e-004 9.6 2.01 6.19e-004 2.33
1.9 89.2 124.21 6.19e-004 10.1 2.24 6.19e-004 2.49

In Tables 5.2, 2 and 3, we list the the number of iteration steps (denoted by
‘IT’) and the CPU time (denoted by ‘CPU’) in seconds of MSOR and PSOR,
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respectively. In Table 5.2, the parameter α = ω varies from 0.8 to 1.9 while
the optimal β∗ for the least iteration steps is chosen for MSOR. The number of
discretization grids (m,n) is chosen to be (250, 250). Moreover, the number of
iteration steps and the CPU time for MSOR and PSOR on different discretiza-
tion grids (m,n) are reported in Tables 2 and 3. The optimal parameter ω∗ is
chosen by minimizing the number of iteration steps of PSOR.

From Table 5.2, on one hand, it is observed that the iteration steps and
CPU time of PSOR method decrease at first, and then increase with respect
to the parameter ω. The optimal parameter for PSOR on (m,n) = (250, 250)
approximates to 1.1. For MSOR method, the iteration steps and CPU time
keep nearly the same when α = ω and the optimal β∗ is chosen. Moveover, the
relative errors of numerical solutions stay constantly if (m,n) is fixed.

On the other hand, when the optimal parameters ω∗ and β∗ are chosen for
PSOR and MSOR respectively, it can be concluded that the number of itera-
tion steps for MSOR is higher than that of PSOR though, MSOR requires less
CPU time. Moveover, in the non-optimal parameter case, the PSOR method
may require more iteration steps and consequently more CPU time than MSOR
method. We remark that MSOR is superior to PSOR in computational efficiency.

Table 2. Comparison of two methods on different discretiza-
tion grids with α = 1.2. (Option parameters: σ = 0.2 and
r = 0.02)

PSOR MSOR
(m,n)

IT CPU Error ω∗ IT CPU Error β∗

(60,30) 3.2 0.11 6.46e-003 1.02 5.6 0.04 6.46e-003 1.36
(60,60) 3.0 0.22 4.10e-003 1.01 5.0 0.06 4.10e-003 1.35
(60,120) 2.7 0.36 2.95e-003 1.01 4.0 0.10 2.95e-003 1.38
(120,60) 4.1 0.59 2.65e-003 1.07 7.4 0.36 2.65e-003 1.30
(120,120) 3.3 0.95 1.54e-003 1.04 6.0 0.61 1.54e-003 1.33
(120,240) 3.0 1.75 9.92e-004 1.01 5.0 1.18 9.92e-004 1.34
(240,120) 4.8 3.09 1.19e-003 1.16 11.0 1.19 1.19e-003 1.23
(240,240) 3.9 5.09 6.49e-004 1.09 8.3 1.77 6.49e-004 1.26
(240,480) 3.2 8.42 3.80e-004 1.06 6.5 3.07 3.80e-004 1.33
(480,240) 11.8 18.97 5.62e-004 1.30 17.9 4.87 5.62e-004 1.12
(480,480) 9.2 29.55 2.94e-004 1.18 12.3 6.94 2.94e-004 1.20
(480,960) 8.0 50.50 1.61e-004 1.09 9.1 10.86 1.61e-004 1.28
(960,480) 23.4 135.08 2.73e-004 1.46 31.7 25.72 2.73e-004 1.04
(960,960) 17.4 202.02 1.40e-004 1.31 23.0 38.57 1.40e-004 0.97
(960,1920) 14.4 331.28 7.31e-005 1.19 16.0 54.91 7.31e-005 1.02

From Tables 2 and 3, it can be observed that the number of iteration steps
and CPU time for both PSOR and MSOR increase when the number of spatial
discretization grids increase. However, the number of iteration steps decreases
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Table 3. Comparison of two methods on different discretiza-
tion grids with α = 1.2. (Option parameters: σ = 0.3 and
r = 0.03)

PSOR MSOR
(m,n)

IT CPU Error ω∗ IT CPU Error β∗

(60,30) 4.9 0.20 1.00e-002 1.08 8.5 0.04 1.00e-002 1.30
(60,60) 4.0 0.30 5.67e-003 1.04 6.7 0.06 5.67e-003 1.31
(60,120) 3.4 0.45 3.54e-003 1.03 5.5 0.10 3.54e-003 1.35
(120,60) 6.3 0.92 4.46e-003 1.20 14.0 0.53 4.46e-003 1.18
(120,120) 5.0 1.45 2.40e-003 1.12 10.1 0.87 2.40e-003 1.26
(120,240) 4.1 2.42 1.38e-003 1.05 7.7 1.26 1.38e-003 1.34
(240,120) 8.4 5.46 2.10e-003 1.39 25.7 2.32 2.10e-003 1.03
(240,240) 6.5 8.36 1.09e-003 1.23 16.9 3.12 1.09e-003 1.11
(240,480) 5.1 13.35 5.89e-004 1.13 11.7 4.75 5.89e-004 1.16
(480,240) 23.0 36.96 1.02e-003 1.53 50.6 12.59 1.02e-003 0.92
(480,480) 16.8 54.35 5.18e-004 1.40 31.1 15.84 5.18e-004 0.97
(480,960) 13.4 86.02 2.70e-004 1.23 19.8 20.76 2.70e-004 1.06
(960,480) 48.6 284.98 5.00e-004 1.66 104.9 80.53 5.00e-004 0.87
(960,960) 33.9 396.77 2.52e-004 1.55 61.7 96.67 2.52e-004 0.88
(960,1920) 26.1 609.76 1.29e-004 1.40 38.5 122.03 1.29e-004 0.85

as the number of time discretization grids n increase. The reason is that the
coefficient matrix B = (1/τ)I + θS becomes more diagonal dominant as the
increase of n. Since the number of linear complementarity problems doubles as
n doubles, the CPU time of MSOR and PSOR increase. Meanwhile, it is shown
that the numerical solutions of linear complementarity problems from American
put option pricing become more accurate as the relative errors decrease when
the number of discretization grids (m,n) increase. We choose another pairs of
American put option’s parameters (σ, r) = (0.3, 0.03) to do the experiments, and
the similar conclusions can be reached from Table 3.

In Figure 2, the curves of CPU time of MSOR and PSOR versus the number
of space discretization grids m are plotted respectively where m = n. It is
shown that PSOR requires more CPU time than MSOR method on different
discretization grids.

6. Concluding Remarks

Due to the early exercise constraint, the problem of American option pricing
can be discretized into a linear complementarity problem. In this paper, we
consider the modulus-based successive overrelaxation method for the numerical
solution of the linear complementarity problem. The convergence theorem of
modulus-based successive overrelaxation algorithm for the discretized American
option pricing model is given. Numerical experiments further verify the validity
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Figure 2. The CPU time in seconds of PSOR and MSOR with
m = n and α = 1.2.

of convergence conditions and show that the proposed method is much faster
than classical projected successive overrelaxation method with optimal parame-
ter.

We should remark that both PSOR and MSOR are parameter related meth-
ods, which means their convergence performance and practical effectiveness
highly depend on the choice of parameters. However, MSOR can take the advan-
tage of vector operation and can use parallel computing while PSOR requires to
do projection elementwisely. Hence, MSOR may be more effective than PSOR
in practical application.
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