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SPECTRAL ANALYSIS OF THE MGSS PRECONDITIONER

FOR SINGULAR SADDLE POINT PROBLEMS†

MARYAM RAHIMIAN AND DAVOD KHOJASTEH SALKUYEH∗

Abstract. Recently Salkuyeh and Rahimian in (Comput. Math. Appl.
74 (2017) 2940–2949) proposed a modification of the generalized shift-

splitting (MGSS) method for solving singular saddle point problems. In

this paper, we present the spectral analysis of the MGSS preconditioner
when it is applied to precondition the singular saddle point problems with

the (1, 1) block being symmetric. Some eigenvalue bounds for the spectrum

of the preconditioned matrix are given. We show that all the real eigenval-
ues of the preconditioned matrix are in a positive interval and all nonzero

eigenvalues having nonzero imaginary part are contained in an intersection
of two circles.
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1. Introduction

We consider the following saddle point problem

Au ≡
(
A BT

−B 0

)(
x
y

)
=

(
f
g

)
= b, (1)

where A ∈ Rn×n is a symmetric positive definite (SPD) matrix (A = AT and
xTAx > 0 for all 0 6= x ∈ Rn), B ∈ Rm×n is rank deficient (rank(B) = r <
m 6 n), and f ∈ Rn and g ∈ Rm are two given vectors. Furthermore, we
presume that the matrices A and B are large and sparse. It is not difficult to
see that under the above conditions the matrix A is singular. We also assume
that the singular saddle point problem (1) is consistent. Saddle point problems
of the form (1) appear in a variety of scientific and engineering problems; e.g.,
computational fluid dynamics, constrained optimization [8].
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There are several iterative methods for solving the saddle point problems of
the form (1). Bai et al. in [1], presented the shift-splitting iteration method
for solving systems of linear equations with positive definite (PD) coefficient
matrices. It is noted that the matrix A ∈ Rn×n is called PD if the matrix
A+AT is SPD. Indeed, for solving the system of linear equations Ax = b with
A being PD, the shift-splitting method can be written as

1

2
(αI + A)x(k+1) =

1

2
(αI + A)x(k) + b,

where α is a positive number and I is the identity matrix. It was proved that this
method is unconditionally convergent [1]. Naturally, the shift-splitting method
serves the preconditioner P = (αI + A)/2 for the system Ax = b. In fact,
a Krylov subspace method like GMRES [11] can be employed for solving the
preconditioned system P−1Ax = P−1b

Cao et al. in [5] applied the shift-splitting iteration method for solving the
saddle point problems. Next, Chen and Ma in [7] generalized the shift-splitting
(GSS) method with the shift matrix

Ωα,β =

(
αIn 0

0 βIm

)
,

for solving the saddle point problems where In and Im are the identity matrices
of order n and m, respectively, and α, β > 0. Ren et al. in [9] presented an
spectral analysis of the this method. In [13], Salkuyeh et al. applied the same
method for the generalized saddle point problems, when the (1, 1) and the (2, 2)
blocks of A are, respectively, PD and SPD. Then, they generalized the method
to the case that the matrix A is PD (see [14]). Semi-convergence of this method
has been investigated in [6] and [15] for the cases that the matrix A is SPD and
PD, respectively.

Recently, Salkuyeh et al. in [12] presented a modification of GSS (MGSS)
method for solving singular nonsymmetric saddle point problems. They used

Ω =

(
H 0
0 Q

)
, (2)

as the shift matrix in the shift-splitting method for solving the singular saddle
point problem (1) with the matrix A being PD, where H ∈ Rn×n and Q ∈ Rm×m
are SPD. Moreover, they proved the semi-convergence of the proposed method.
For the convergence of the method for nonsingular saddle point problems see
[2]. Since the eigenvalue distribution of the coefficient matrices of the systems
is very important in the convergence analysis of the Krylov subspace methods
like GMRES, in this paper we present eigenvalue bounds for the spectrum of
the MGSS preconditioned singular saddle point matrices for the case that the
matrix A is symmetric.

Throughout the paper, for a complex matrix A, the conjugate transpose of
A is denoted by A∗. For two square matrices A and B, we write A � B (resp.
A � B) if A−B is SPD (resp. symmetric positive semidefinite). In the same way,
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A ≺ B and A � B are defined. For a nonsigular matrix C, the spectral condition
number of C is denoted by κ(C), i.e., κ(C) = ‖C‖2‖C−1‖2. For a square matrix
Z, the spectral radius of Z is defined by ρ(Z), i.e., ρ(Z) = maxλ∈σ(Z) |λ|, where

σ(Z) is the spectrum of Z. Throughout the paper, the vector z = (xT , yT )T is
denoted by z = (x; y).

This paper is organized as follows. The MGSS iterative method and its semi-
convergence properties are described in Section 2. Section 3 is devoted to the
spectral analysis of the preconditioned matrix. Numerical illustration is pre-
sented in 4. The paper is ended by some concluding remarks in Section 5.

2. A brief description of MGSS iteration method

Considering the modified generalized shift-splitting

A =
1

2
(Ω +A)− 1

2
(Ω−A)

=
1

2

(
H +A BT

−B Q

)
− 1

2

(
H −A −BT
B Q

)
=M−N ,

the MGSS iteration method can be written as (see [12])

Mu(k+1) = Nu(k) + b, (3)

where u(0) is an initial guess. Denoting Γ =M−1N and c =M−1b, the iterative
method (3) can be rewritten as

u(k+1) = Γu(k) + c. (4)

We have

Γ =M−1N = I −M−1A. (5)

From the singularity of A, we have 1 ∈ σ(Γ) and as a result we ρ(Γ) > 1. Hence,
we need to investigate the semi-convergence of the method.

Definition 2.1. (see [4]) The iterative method (4) is semi-convergent if, for any
initial guess (x0; y0), the iteration sequence (xk; yk) produced by (4) converges
to a solution (x?; y?) of (1). Moreover, it holds[

x?
y?

]
= (I − Γ)Dc+ (I − E)

[
x0
y0

]
, (6)

with E = (I − Γ)(I − Γ)D, where I is the identity matrix and (I − Γ)D denotes
the Drazin inverse of I − Γ.

Lemma 2.2. (see [4]) The iterative method (4) is semi-convergent if and only
if the following conditions hold:
(1) Index(I − Γ) = 1, i.e., rank(I − Γ) = rank(I − Γ)2;
(2) The pseudo-spectral radius of Γ satisfies

ϑ(Γ) = max{|λ|, λ ∈ σ(Γ), λ 6= 1} < 1.
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Theorem 2.3. Assume that the matrices A,H ∈ Rn×n and Q ∈ Rm×m are
SPD. B ∈ Rm×n (m 6 n) is rank-deficient. Then, ϑ(Γ) < 1.

Proof. It is a result of Theorem 1 in [12]. �

Theorem 2.4. Suppose that A,H ∈ Rn×n and Q ∈ Rm×m are symmetric
positive definite and the matrix B ∈ Rm×n(m 6 n) is rank-deficient. Then,
rank(I − Γ) = rank(I − Γ)2, where Γ is the iteration matrix of the MGSS
method.

Proof. It is a result of Theorem 2 in [12]. �

According to Lemma 2.2 and Theorems 2.3 and 2.4 the semi-convergence of
the MGSS method is deduced for the saddle point problem (1). The MGSS
method induces the preconditioner M to the saddle point problem Au = b.
From the semi-convergence of the method and Eq. (5), we conclude that the
eigenvalues of the matrixM−1A are clustered in the circle |z−1| 6 1. Therefore,
a Krylov subspace method like GMRES or its restarted version GMRES(`) would
be quite suitable for solving the preconditioned system M−1Au = M−1b (See
[3, Page 420]). In the next section we investigate the eigenvalue distribution of
the preconditioned system in more details.

3. Eigenvalue distribution of the preconditioned matrix

Since the multiplicative factor 1/2 in the preconditioner matrix M, has no
effect on the preconditioned system, we drop it and use K = Ω +A as a precon-
ditioner.

Let λ be an eigenvalue of the preconditioned matrix K−1A. From Eq. (5),
each eigenvalue µ of Γ can be written as µ = 1− 2λ, where λ ∈ σ(Γ). Therefore,

|1− 2λ| = |µ| 6 ρ(Γ) 6 1,

which is equivalent to

|λ− 1

2
| 6 1

2
. (7)

This shows that the eigenvalues of the preconditioned matrix are located in a
circle centered at the point ( 1

2 , 0) with radius 1
2 .

In continuation we investigate the eigenvalues of the matrix K−1A. To do so,
we first note that the matrix K can be factorized as

K =

(
I 0

−B(H +A)−1 I

)(
H +A 0

0 S

)(
I (H +A)−1BT

0 I

)
,

where S = Q+B(H +A)−1BT . Hence,

K−1 =

(
I −(H +A)−1BT

0 I

)(
(H +A)−1 0

0 S−1

)(
I 0

B(H +A)−1 I

)
. (8)

Therefore, using the this equation we get

K−1A =

(
L (H +A)−1BT (I −K)

S−1B((H +A)−1A− I) K

)
,
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where

L = (H +A)−1(A−BTS−1B(H +A)−1A+BTS−1B),

K = S−1B(H +A)−1BT .

Now, similar to Theorems 3.2 and 3.3 in [9], we present the following results.

Theorem 3.1. Suppose that the matrices A,H ∈ Rn×n and Q ∈ Rm×m are
SPD and B ∈ Rm×n is rank-deficient. Then all the nonzero eigenvalues having
nonzero imaginary parts of the preconditioned matrix K−1A are located in a

circle centered at (1, 0) with radius
√

λmax(H)
λmax(H)+λmin(A) .

Proof. Let

T0 =

(
H +A 0

0 Q

)
, I0 =

(
I 0
0 −I

)
.

Obviously, the matrix T0 is SPD. Hence, the matrix K−1A is similar to

T
1
2

0 K−1AT
− 1

2
0 =

(
T −

1
2

0 I0KT
− 1

2
0

)−1 (
T −

1
2

0 I0AT
− 1

2
0

)
=

(
I B̄T

B̄ −I

)−1(
Ā B̄T

B̄ 0

)
, (9)

where Ā = (H +A)−
1
2A(H +A)−

1
2 and B̄ = Q−

1
2B(H +A)−

1
2 . Eq. (9) can be

rewritten as

T
1
2

0 K−1AT
− 1

2
0 =

(
I 0
−B̄ I

)−1(
I + B̄T B̄ 0

0 −I

)−1(
I −B̄T
0 I

)−1(
Ā B̄T

B̄ 0

)
,

which is similar to[(
I −B̄T
0 I

)(
I + B̄T B̄ 0

0 −I

)]−1(
Ā B̄T

B̄ 0

)(
I 0
−B̄ I

)−1
=

(
I + B̄T B̄ B̄T

0 −I

)−1(
Ā+ B̄T B̄ B̄T

B̄ 0

)
=: K̂−1Â.

Evidently, the matrix

T1 =

(
I + B̄T B̄ 0

0 I

)
.

is SPD. Therefore, the matrix K̂−1Â is similar to

T
1
2

1 K̂−1ÂT
− 1

2
1 =

(
T −

1
2

1 K̂T −
1
2

1

)−1 (
T −

1
2

1 ÂT −
1
2

1

)
=

(
I B̃T

0 −I

)−1(
Ã B̃T

B̃ 0

)
=: K̃−1Ã,
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where Ã = (I + B̄T B̄)−
1
2 (Ā + B̄T B̄)(I + B̄T B̄)−

1
2 and B̃ = B̄(I + B̄T B̄)−

1
2 .

Hence, we deduce that K−1Ā is similar to K̃−1Ã. Hence, it is enough to analyze
the eigenvalue distribution of K̃−1Ã.

Let (λ, (u; v)) be an eigenpair of the matrix K̃−1Ã. Then, we have(
Ã B̃T

B̃ 0

)(
u
v

)
= λ

(
I B̃T

0 −I

)(
u
v

)
,

which can be rewritten as{
Ãu+ B̃T v = λu+ λB̃T v,

B̃u = −λv.
(10)

If v = 0, then from the first equality of (10), we obtain Ãu = λu. This shows

that λ is real, because Ã is SPD. If u = 0, then from the second equality of (10)
we get −λv = 0. Therefore, we have λ = 0, since v cannot be zero.

Now, we assume that u 6= 0 and v 6= 0 with ‖u‖22 + ‖v‖22 = 1. Multiplying
both sides of the first equality of (10) by u∗ gives

u∗Ãu− λ‖u‖22 = (λ− 1)u∗B̃T v. (11)

Multiplying the second equation of Eq. (10) by v∗ results in u∗B̃T v = −λ̄‖v‖22.
Substituting this into Eq. (11) yields

u∗Ãu+ |λ|2‖v‖22 − λ+ (λ− λ̄)‖v‖22 = 0. (12)

Defining λ = a+ ib, the imaginary part of Eq. (12) is written as

b(2‖v‖22 − 1) = 0.

From this equation we deduce that b = 0 or ‖v‖22 = 1
2 . If b = 0, then λ is real.

If b 6= 0, then we get ‖v‖22 = ‖u‖22 = 1
2 . This, together with Eq. (12) gives

2u∗Ãu+ |λ|2 − λ− λ̄ = 0.

By some computations and using the Courant-Fisher min-max theorem [10], we
can write

|λ− 1|2 = 1− 2u∗Ãu = 1− u∗Ãu

u∗u
6 1− λmin(Ã). (13)

It is not difficult to verify that the matrix Ã is similar to

J = (H +A+BTQ−1B)−1(A+BTQ−1B).

Suppose that (λ̃, x̃) is an eigenpair of the matrix J . Therefore, we have

(A+BTQ−1B)x̃ = λ̃(H +A+BTQ−1B)x̃. (14)

Multiplying both sides of Eq. (14) by x̃∗ and some simplifications we obtain

λ̃ =
x∗Ax+ x∗BTQ−1Bx

x∗Hx+ x∗Ax+ x∗BTQ−1Bx
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>
x∗Ax

x∗Hx+ x∗Ax
=

x∗Ax
x∗x

x∗Hx
x∗x + x∗Ax

x∗x

>
λmin(A)

λmax(H) + λmin(A)
. (15)

It follows from Eqs. (13) and (15) that

|λ− 1|2 6 1− λmin(A)

λmax(H) + λmin(A)
=

λmax(H)

λmax(H) + λmin(A)
< 1,

which shows that all nonzero eigenvalues having nonzero imaginary parts of the
preconditioned matrix K−1A are located in a circle centered at (1,0) with radius√

λmax(H)
λmax(H)+λmin(A) which is strictly less than one. �

Corollary 3.2. Let the matrices A,H ∈ Rn×n and Q ∈ Rm×m be SPD and
B ∈ Rm×n be rank-deficient. Then, all the nonzero eigenvalues having nonzero
imaginary parts of the preconditioned matrix K−1A are located in the following
domain

D =

{
λ ∈ C : |λ− 1

2
| 6 1

2

}
∩

{
λ ∈ C : |λ− 1| 6

√
λmax(H)

λmax(H) + λmin(A)

}
.

Theorem 3.3. Let A,H ∈ Rn×n and Q ∈ Rm×m be SPD matrices and B ∈
Rm×n be rank-deficient. Let also σmin and σmax be the smallest and the largest
nonzero singular values of the matrix B, respectively. Then, all the nonzero real
eigenvalues of the matrix K−1A are located in[

min

{
λmin(A)

λmax(H) + λmin(A)
,

σ2
min

λmax(Q)(λmax(H) + κ(H)λmax(A)) + σ2
min

}
,

λmin(Q)λmax(A) + σ2
max

λmin(Q)(λmin(H) + λmax(A)) + σ2
max

]
.

Proof. Since K−1A is similar to K̃−1Ã, we only need to study the nonzero real
eigenvalues of the matrix K̃−1Ã which are the same as those of the matrix
ÃK̃−1. Since Ã is symmetric positive definite and it is similar to (H + A +

BTQ−1B)−1(A+BTQ−1B), we deduce that all the eigenvalues of Ã are positive
and less than one. On the other hand,

ÃK̃−1 =

(
Ã B̃T

B̃ 0

)(
I B̃T

0 −I

)−1
=

(
Ã(Ã− I) (Ã− I)B̃T

B̃(Ã− I) B̃B̃T

)(
Ã− I 0

0 I

)−1
=: ĂS̆−1,

where Ă and S̆ are symmetric and S̆ is nonsingular. Then, the eigenvalues of
K̃−1Ã and S̆−1Ă are the same. Assume that Ã = XΛXT with I−Λ � 0, where
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X is an orthogonal matrix. Define

Z =

(
X 0
0 I

)
and D =

(
I − Λ 0

0 I

)
� 0. (16)

Since Z is orthogonal and D is SPD, we deduce that the matrix S̆−1Ă is similar
to D 1

2ZT S̆−1ĂZD− 1
2 . We have

D 1
2ZT S̆−1ĂZD− 1

2 =
(
D− 1

2ZT S̆ZD− 1
2

)−1 (
D− 1

2ZT ĂZD− 1
2

)
. (17)

Let (λ,w) be an eigenpair of the matrix D 1
2ZT S̆−1ĂZD− 1

2 such that λ 6= 0.
Thus, from Eq. (17) it holds that

D− 1
2ZT ĂZD− 1

2w = λD− 1
2ZT S̆ZD− 1

2w,

which is equivalent to (
−Λ QT

Q P

)
w = λ

(
−I 0
0 I

)
w, (18)

where Q = −B̃X(I − Λ)−
1
2 and P = B̃B̃T . Without loss of generality, assume

that w = (u; v) such that ‖u‖22 + ‖v‖22 = 1. Therefore, we can rewrite Eq. (18)
as {

−Λu+QT v = −λu,
Qu+ Pv = λv.

(19)

Multiplying both sides of the first and second equality in Eq. (19) by u∗ and v∗,
respectively, leads to

u∗Λu− u∗QT v = λ‖u‖22 and v∗Qu = λ‖v‖22 − v
∗Pv. (20)

Combining the two equations in (20) and using ‖u‖22 + ‖v‖22 = 1, eventuate

u∗Λu+ v∗Pv − λ̄+ (λ̄− λ)‖v‖22 = 0. (21)

By considering the real part of Eq. (21), we see that

a = u∗Λu+ v∗Pv 6 ‖u‖22λmax(Λ) + ‖v‖22λmax(P ) 6 max{λmax(Λ), λmax(P )}.
(22)

In the same way, we deduce that

a > min{λmin(Λ), λmin(P )}. (23)

On the other hand, the eigenvalues of Λ and Ã are the same. Using the proof
of Theorem 3.1 we want to study the upper bound of the eigenvalues of Λ. To
do this, since Λ is symmetric, using the Courant-Fisher min-max theorem we
conclude that

λ(Λ) =
x∗Ax+ x∗BTQ−1Bx

x∗Hx+ x∗Ax+ x∗BTQ−1Bx

6
λmax(A)x∗x+ λmax(Q−1)x∗BTBx

λmin(H)x∗x+ λmax(A)x∗x+ λmax(Q−1)x∗BTBx
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6
λmax(A)x∗x+ λmax(Q−1)λmax(BTB)x∗x

λmin(H)x∗x+ λmax(A)x∗x+ λmax(Q−1)λmax(BTB)x∗x

=
λmin(Q)λmax(A) + σ2

max

λmin(Q)(λmin(H) + λmax(A)) + σ2
max

. (24)

It follows from the proof of Theorem 3.1 and Eq. (24) that

λmin(A)

λmax(H) + λmin(A)
I � Λ � λmin(Q)λmax(A) + σ2

max

λmin(Q)(λmin(H) + λmax(A)) + σ2
max

I. (25)

We can rewrite the matrix P as P = B̃B̃T = B̄(I + B̄T B̄)−1B̄T . Let B̄ =
U [Σ, 0]V T be the singular value decomposition of the matrix B̄ such that U ∈
Rm×m and V ∈ Rn×n are orthogonal matrices and the matrix Σ is of the form
Σ = diag(τ1, τ2, · · · , τr, 0, . . . , 0) ∈ Rm×m, where τ1 > τ2 > · · · > τr > 0 are the
nonzero singular values of the matrix B̄. Hence,

P = UΣ(I + Σ2)−1ΣUT

= Udiag(
τ21

1 + τ21
, . . . ,

τ2r
1 + τ2r

, 0, . . . , 0)UT .

Therefore, the nonzero eigenvalues of P satisfy

τ2r
1 + τ2r

6 λ(P ) 6
τ21

1 + τ21
, (26)

where λ(P ) is a nonzero eigenvalue of P . Obviously, τ21 is the largest eigenvalue

of the matrix B̄B̄T = Q−
1
2B(H +A)−1BTQ−

1
2 . By using Courant-Fisher Min-

Max theorem we obtain

x∗Q−
1
2B(H +A)−1BTQ−

1
2x = x∗Q−

1
2BH−

1
2 (I +H−

1
2AH−

1
2 )−1H−

1
2BTQ−

1
2

6 λmax(I + S)−1x∗Q−
1
2BH−1BTQ−

1
2x

6
1

1 + λmin(S)

1

λmin(H)
x∗Q−

1
2BBTQ−

1
2x

6
1

1 + λmin(S)

1

λmin(H)
σ2
max x

∗Q−1x

6
σ2
max

(1 + λmin(S))λmin(H)λmin(Q)
x∗x, (27)

where S = H−
1
2AH−

1
2 . Furthermore, since S is symmetric, we can write that

x∗Sx = x∗H−
1
2AH−

1
2x

> λmin(A)x∗H−1x

> λmin(H−1)λmin(A) x∗x

=
λmin(A)

λmax(H)
x∗x.
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Thus

λmin(S) >
λmin(A)

λmax(H)
. (28)

Form Eqs. (27) and (28), it is straightforward to see that

τ21 6
σ2
max

λmin(Q)(λmin(H) + 1
κ(H)λmin(A))

.

In the same way, we derive that

σ2
min

λmax(Q)(λmax(H) + κ(H)λmax(A))
6 τ2r

6 τ21 6
σ2
max

λmin(Q)(λmin(H) + 1
κ(H)λmin(A))

. (29)

From Eq. (26) and (29) for the nonzero eigenvalues of P we have
λmin(P ) >

σ2
min

λmax(Q)(λmax(H) + κ(H)λmax(A)) + σ2
min

,

λmax(P ) 6
σ2
max

λmin(Q)(λmin(H) + 1
κ(H)λmin(A)) + σ2

max

.
(30)

Using Eqs. (22), (23), (25) and (30), for the nonzero real eigenvalues of K−1A
we evaluate that

min

{
λmin(A)

λmax(H) + λmin(A)
,

σ2
min

λmax(Q)(λmax(H) + κ(H)λmax(A)) + σ2
min

}
6 a

6 max{`1, `2},

where

`1 =
λmin(Q)λmax(A) + σ2

max

λmin(Q)(λmin(H) + λmax(A)) + σ2
max

,

`2 =
σ2
max

λmin(Q)(λmin(H) + 1
κ(H)λmin(A)) + σ2

max

.

Now, since `1 > `2, the desired result is obtained. �

4. Numerical illustration

In this section, to illustrate the theoretical results presented in Sections 2 and
3 we have taken the following example from [16]. In this example, we consider
the saddle point problem (1) with

A =

(
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

)
∈ R2l2×2l2 ,

B = (E, b1, b2)T ∈ R(l2+1)×2l2 ,
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where

T =
1

h2
· tridiag(−1, 2,−1) ∈ Rl×l, E =

(
I ⊗ F
F ⊗ I

)
∈ R2l2×l2 ,

b1 = E

(
e
0

)
, b2 = E

(
0
e

)
, e = (1, 1, . . . , 1)T ∈ Rl

2/2,

and

F =
1

h
tridiag(−1, 1, 0) ∈ Rl×l.

Here, h = 1/(l + 1), n = 2l2 and m = l2 + 2. We choose l = 16.
We set H = αdiag(A) and Q = αI + βBBT . Obviously, for α, β > 0, both

of these matrices are SPD. The parameters α and β are set to be α = 0.05 and
β = 0.01. From Corollary 3.2 the eigenvalues of the matrix K−1A are contained
in the intersection of the disks |λ− 0.5| 6 0.5 and

|λ− 1| 6

√
λmax(H)

λmax(H) + λmin(A)
≈ 0.864.

These disks along with the eigenvalues of K−1A have been displayed in Figure
1 (right). Also, the eigenvalue distribution of the matrix A have been presented
in Figure 1 (left). As we observe, all the nonzero eigenvalues having nonzero
imaginary parts of the preconditioned matrix K−1A are located in the intersec-
tion of the disks |λ − 0.5| 6 0.5 and |λ − 1| 6 1. This confirms the Corollary
3.2. Another observation which can be posed here is the semi-convergence of the
GHSS method for this example.

Now, we consider the nonzero real eigenvalues of the preconditioned matrix
K−1A. The eigenvalues of K−1A are contained in the interval [0.042, 0.975]. On
the other hand, we have

t1 =
λmin(A)

λmax(H) + λmin(A)
≈ 0.254,

t2 =
σ2
min

λmax(Q)(λmax(H) + κ(H)λmax(A)) + σ2
min

≈ 4.660× 10−5,

t3 =
λmin(Q)λmax(A) + σ2

max

λmin(Q)(λmin(H) + λmax(A)) + σ2
max

≈ 1.

Hence the interval provided by Theorem 3.3 is equal to [min{t1, t2}, t2] =
[4.660× 10−5, 1]. As we see [0.042, 0.975] ⊆ [4.660× 10−5, 1]. This confirms the
result presented in Theorem 3.3.
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Figure 1. Eigenvalue distribution of the saddle point matrix
A (left) and the preconditioned matrices K−1A (right).

5. Conclusion

We have presented the spectral analysis of the matrix K−1A where the matrix
A is the singular saddle point matrix and K is the modified generalized shift-
splitting preconditioner. We have provided some bounds for the nonzero complex
eigenvalues and nonzero real eigenvalues of the matrix K−1A. Using an example
we have illustrated the presented theoretical results.
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