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Streszczenie

We investigate numerical properties of Newton's algorithm for improving an

eigenpair of a real matrix A using only �xed precision arithmetic. We show that

under natural assumptions it produces an eigenpair of a componentwise small rel-

ative perturbation of the data matrix A.

1 Introduction

We are interested in improving the accuracy of a given eigenvalue and its associated

eigenvector. We consider the problem

Ax = �x; x 6= 0(1)

of evaluating a real eigenpair (x�; ��) for a real matrix A 2 Rn�n using only t-digit

oating-point arithmetic (t). We assume that �� is a single eigenvalue and x� is a

corresponding eigenvector of the

matrix A.

Standard procedures produce such an eigenpair (~x; ~�) that

(A + �A) ~x = ~x~�; k �A k� � K k A k;(2)

K being a modest constant depending only on n, very often K = O (n2) and � = 2�t

denotes the machine precision.

Throughout the paper we assume that k k is a spectral vector-matrix norm. Note

that the mere representation of the coe�cients of the matrix A in (t) arithmetic makes

us solve

(A + E)x = �x; j E j� � j A j;(3)
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i.e. j ei;j j� � j ai;j j for i; j = 1; : : : ; n, instead of the original problem (1). Here the

elements of E are small componentwise with respect to the coe�cients of the matrix A.

We ask whether it is possible to achieve the highest accuracy attainable in (t) which

may be characterized as follows. The computed eigenpair (~x; ~�) of the matrix A is the

exact eigenpair of a slightly perturbed matrix A + �A, i.e.

(A + �A) ~x = ~x~�; j �A j� � K j A j;(4)

K being at most of order n2. We call such property componentwise backward stability.

It is well- known [Cf. [9], [8]] that the property (2) is equivalent to the following

relations

r = A~x� ~� ~x; k r k� � k A k k ~x k K:(5)

Since (2) is weaker than (4) we can conclude that it may occur that the normwise

relative backward error

k A~x� ~� ~x k
� k A k k ~x k(6)

might be quite small, whereas the componentwise relative backward error

max
i

j (A~x� ~�~x)
i
j

�(j A jj ~x j)
i

(7)

is very large.

The idea of improving the computed solution is not quite new. The technique used

is very similar to iterative re�nement (IR) of solutions of linear systems Ax = b in �xed

precision arithmetic. For brief survey of recent results see [2] and [8]. In fact, IR is a

variant of Newton's method for solving the system F (x) = 0, where F (x) = Ax � b

(Cf. [12]). The Newton method is widely used for correction of computed solution.

However, sometimes it is necessary to use higher precision (Cf. [1], [5]). A crucial point

of the stability of Newton's method is how accurate the values of F can be computed

in (t) arithmetic.

It is known that also inverse iteration and the Rayleigh quotient iteration were in-

troduced as ways of improving computed eigenpairs of matrices (Cf. [10], [11]). Several

variants of Newton's method for the eigenvalue problem of a matrix were investigated

(Cf. [3]{[5], [7], [11], [13]{[14]). However, only a little is known about numerical prop-

erties of the methods.
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We consider the technique of iterative re�nement proposed by Peters and Wilkinson

(Cf. [11]). We stress that we use �xed precision arithmetic.

Note that the problem of evaluating an eigenpair is equivalent to this of solving the

following nonlinear system F (x; �) = 0, where

F (x; �) =

0
@ Ax� �x

(1� xTx) = 2

1
A :

We apply Newton's method to the function F and investigate the properties of the

resulting algorithm. In Section 2 we de�ne it in detail and consider its theoretical fea-

tures. We show that the above algorithm provides the best solution to the problem (1)

that can be obtained using merely the t-digit oating point arithmetic (t). Precisely,

we prove that for the computed eigenpair (xk; �k) there exist perturbations �Ak, �xk

such that

lim sup
k!1

k (A + �Ak)(xk + �xk)� �k (xk + �xk) k = O(�2)(8)

and

lim sup
k!1

j (xk + �xk)T (xk + �xk) � 1 j = O(�2)(9)

where j �Ak j� � L1 j A j, j �xk j� � L2 j xk j, and L1, L2 are modest constants

depending only on n.

Any algorithm evaluating an eigenpair (xk; �k) that satis�es the above property is

called componentwise backward stable. It means that ignoring terms of order O(�2),

there exists k� such that for all k � k�, the computed eigenpair (xk; �k) is an exact

solution to a slightly perturbed eigenproblem. We show that the above algorithm,

implemented with t-digit oating point arithmetic (t) is componentwise backward

stable. However, the constant which appears in the \O \ notation can be arbitrary, so

we deal only with the asymptotic stability.

In Section 3 we show the way of obtaining of a version of the method which addi-

tional cost is only of order O(n2) ops. This is the algorithm IREP (Iterative Re�ne-

ment of Eigenvalue Problem).
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2 De�nition of the method and theoretical properties

We consider the problem (1) of evaluating a real eigenpair (x; �) of a real matrix

A 2 Rn�n. It is equivalent to this of solving the nonlinear system F (x; �) = 0 where

F (x; �) =

0
@ Ax� �x

(1� xTx) = 2

1
A :(10)

We apply Newton's method to the function F .

In this case the Jacobian matrix F 0(x; �) is of the form

F 0(x; �) =

0
@ A� �I �x

�xT 0

1
A :(11)

Note that if A is symmetric then the Jacobian matrix F 0(x; �) is also symmetric.

Algorithm IREP.

We construct a sequence (xk; �k) � (x�; ��) as follows.

(i) Start with: (x0; �0) ; x
T
0 x0 = 1;

Set k := 0;

(ii) In the next step verify the termination criterion:

If for any element j Axk � �kxk j> � 10n j A jj xk j then

� calculate

F (xk; �k) =

0
@ Axk � �kxk

(1� xT
k
xk) = 2

1
A ;

� solve a linear system
0
@ A� �kI �xk

�xT
k

0

1
A
0
@ �xk

��k

1
A = �F (xk; �k);

evaluating a correction (�xk;��k);

� update the approximate

xk+1 := xk + �xk;

�k+1 := �k + ��k;
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(iii) Set k := k + 1 and return to (ii).

Convergence can be therefore analysed using the Newton-Kantorovitch Theorem (Cf.

[1], [5], [14]). Such an analysis leads to a result of the following form: if the initial error

is small enough then the iteration converges quadratically.

Now we estimate the condition number of the Jacobian matrix. If �� is a simple

eigenvalue of A then the Jacobian matrix in (11) is nonsigular at (x�; ��), where Ax� =

��x� and k x� k= 1 (Cf. [11], [14]).

Theorem 2.1 Let y� and x�, k x� k=k y� k= 1, be respectively the left and right

eigenvectors corresponding to the simple eigenvalue �� of a real matrix A 2 Rn�n
.

Denote by �(A) = f�1(A); : : : ; �n(A)g the set of the eigenvalues of A, �� = �1(A).

Then the condition number cond(B) =k B kk B�1 k of the Jacobian matrix

B = F 0(x�; ��)(12)

is bounded by the condition number of ��:

cond(B) � k y� kk x� k
j y�Tx� j :(13)

Moreover, if A is symmetric then

cond(B) =
maxi f1; j di jg
mini f1; j di jg

(14)

where di = �i(A)� ��, i = 2; : : : ; n.

Proof. Since (�x�T ; 0)T is a column of B, so k B k�k (�x�T ; 0) k=k x� k.
Let us de�ne

wT = (y�T ; 0):

Then

wTB = (0;�y�Tx�);

hence

k B�1 k� k w k
k wTB k =

k y� k
j y�Tx� j :

From these we obtain the estimation (13).
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Now we assume that A is symmetric. Then there exists an orthogonal matrix

Q such that A = QDQT where D = diag(�1(A); �2(A); : : : ; �n(A)). Without loss of

generality we can assume that k x� k= 1. From this and the assumption that �� is a

simple eigenvalue of A (i.e. Ax� = ��x� and �� 6= �i(A) for i = 2; : : : ; n) it follows that

QTx� = � e1.

Let us de�ne the orthogonal matrix

V =

0
@ Q 0

0T 1

1
A :

Then

V TBV ==

0
@ D � ��I �e1

�e1T 0;

1
A ;

so the eigenvalues of B are equal to �1 and �i(A)���, i = 2; : : : ; n. This immediately

proves (14).

Remark.

If A is symmetric then we can write B�1 as follows:

B�1 =

0
@ (A� ��I)+ �x�

�x�T 0

1
A :(15)

3 Implementation of algorithm IREP

Algorithm IREP may be implemented in several ways. At every stage of IREP we

have to solve a linear system of equations Jz = f where J is the Jacobian matrix:

J =

0
@ A� �I �x

�xT 0

1
A :

Now we propose an e�cient algorithm (S) which is normwise backward stable.

Algorithm S of solving a linear system Jz = f .

(a) Reduction of the matrix A to Hessenberg for by Householder algorithm with

cost O(n3) ops. We obtain A = QHQT where QTQ = I and H being upper

Hessenberg matrix.
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(b) Let us de�ne

V =

0
@ Q 0

0T 1

1
A ; C = V TJV; y = �QTx:(16)

Then

C =

0
@ H � �I y

yT 0

1
A :(17)

Thus the algorithm for solving Jz = f is the following:

� Compute g = V T f ;

if f = (uT ; fn+1)
T then g = (uTQ; fn+1)

T .

� Evaluate w solving a linear system Cw = g.

The matrix C is namely of the form

C =

0
BBBBBBBBBBB@

c1;1 c1;2 c1;3 : : : c1;n y1

c2;1 c2;2 c2;3 : : : c2;n y2

0 c3;2 c3;3 : : : c3;n y3

: : : : : : : : : : : : : : : : : :

0 0 0 cn;n�1 cn;n yn

y1 y2 y3 : : : yn 0

1
CCCCCCCCCCCA

:

We permute the rows of the matrix C (and, respectively, of the right hand

side vector) in such a way that the obtained matrix Ĉ has upper Hessenberg

form with additional co-diagonal. Namely, the matrix Ĉ is of the form

Ĉ =

0
BBBBBBBBBBB@

y1 y2 y3 : : : yn 0

c1;1 c1;2 c1;3 : : : c1;n y1

c2;1 c2;2 c2;3 : : : c2;n y2

: : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : :

0 0 0 cn;n�1 cn;n yn

1
CCCCCCCCCCCA

:

We solve the system under consideration with O(n2) ops using GEPP

(Gaussian elimination with partial pivoting).
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� Find z = V w;

if w = (cT ; wn+1)
T then z = (cT Q;wn+1)

T .

4 Numerical properties of Newton's method

We specify the conditions under which the algorithm IREP is componentwise backward

stable. This is the topic of Theorem 4.2 dealing with numerical properties of Newton's

method. The problem is considered as this of evaluating a simple root z� of the

nonlinear system F (z) = 0, where F : Rm ! R
m. We assume that the function F

depends parametrically on a data vector d, i.e. F (z) = F (z; d), where d 2 D � R
s and

is su�ciently smooth in d and z. It is su�cient to assume that F has a �rst Lipschitz

derivative in a neighbourhood of such a point (z�; d) for which F (z�; d) = 0. In our

problem this assumption is ful�lled (with Lipschitz constant equal to
p

2). It is natural

to assume that data are all coe�cients ai;j of the matrix A. More exactly, we put

d = (a1;1; : : : ; a1;n; a2;1; : : : ; an;n)T .

For the detailed discussion on the data vector choice and on numerical properties

of Newton's iteration in normwise sense see [16].

Recall Newton's method for the function F (Cf. [1]], [16]):

� compute F (zk) and F 0(zk),

� evaluate the correction �k:

F 0(zk)�k = �F (zk),

� update the approximate: zk+1 = zk + �k:

Here and throughout the paper we denote by fl(F (z; d)) a value of F (z; d) which is

computed in t-digit oating point binary arithmetic.

The following Theorem 4.2 can be stated as a modi�cation of Wo�zniakowski's the-

orem (Cf. [16]).

Theorem 4.1 Let

fl(F (zk)) = fl(F (zk; d)) = (I + �Fk)F (zk + �zk; d + �dk);(18)
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where

j �Fk j� �L1I; j �zk j� �L2 j zk j; j �dk j� �L3 j d j;(19)

L1, L2, L3 being some constants dependent on the problem dimension and independent

of k, zk, d and �.

Assume that in every iteration the Jacobian matrix is evaluated in such a way that

fl(F 0(zk; d) = F 0(zk; d) + �F 0k; k �F 0k k= O(�):(20)

At last, let the algorithm for evaluating the correction �k satis�es

(F 0(zk) + �F 0k) �k = �fl(F (zk)); k �F 0k k= O(�)(21)

and the next approximate zk+1 be computed as follows:

zk+1 = (I + Dk)(zk + �k); j Dk j� �I:(22)

Then the Newton algorithm of evaluating a simple zero � is componentwise stable, i.e.

there exist such perturbations fzkg and f�dkg that

lim sup
k!1

k F (zk + �zk; d + �dk k = O(�2);(23)

where for su�ciently large k:

j �zk j� �(L2 + 1) j zk j; j �dk j� �L3 j d j :(24)

The above result shows that for k large enough a slightly perturbed computed value

is the exact one of a slightly perturbed inputs (all perturbations are small component-

wise).

Proof. We prove that \one step is enough\ for Newton's method.

Assume that zk is close enough to a simple zero � of a \smooth\ function F , so

k zk � � k= O(�).

We want to �nd perturbations �zk+1 and �dk+1 such that

k F (zk+1 + �zk+1; d + �dk+1) k= O(�2);(25)

where

j �zk+1 j� �(L2 + 1) j zk+1 j; j �dk+1 j� �L3 j d j :(26)
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Let us de�ne

ẑk+1 = (I + Dk)�1zk+1:

Then

F (ẑk+1 + �zk; d + �dk) = F (zk + �k + �zk; d + �dk);

so using the Taylor extension we obtain

F (ẑk+1 + �zk; d + �dk) = F (zk) + F 0(zk)(�k + �zk) + F 0d(zk; d) �dk +O(�2):

Notice that F 0(zk)�k = �fl(F (zk; d)) +O(�2) and F (zk) = O(�), hence from (18) we

have

fl(F (zk; d)) = F (zk) + �FkF (zk) + F 0(zk) �zk + F 0d(zk; d) �dk +O(�2):

This equation may be written as follows

fl(F (zk; d)) = F (zk) + F 0(zk) �zk + F 0d(zk; d) �dk +O(�2):

From this is follows that

F (ẑk+1 + �zk; d + �dk) = O(�2):

Let us de�ne

�dk+1 = �dk

and

ẑk+1 + �zk = zk+1 + �k+1:

We can split �k+1 as follows

�k+1 = �zk+1 +O(�2);

where

j �zk+1 j� �(1 + L2) j zk+1 j :

Then we have (25){(26) which completes the proof. .
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5 Componentwise backward stability of IREP

We show that under some natural assumptions IREP is componentwise stable. We

consider numerical implementation of Newton's method for F de�ned by (10).

Note that we can evaluate F 0(z) in such a way that a value fl(F 0(z)) computed in

fl(t) satis�es

fl(F 0(z)) = F 0(z) + �F 0; j �F 0 j� � j F 0(z) j :

In particular, for the method under consideration the above theorem takes the following

form.

Theorem 5.1 Suppose that the algorithm (solver S) evaluates the correction �k in

such a way that

(F 0(zk) + �F 0k) �k = �fl(F (zk)); k �F 0k k= O(�):(27)

Assume that evaluating F (zk we multiply the matrix A by the vector x in such a way

that

fl(Ax) = (A + E)x j E j� � L j A j;(28)

where L = const.

Then IREP using only (t) arithmetic produces a sequence fzkg such that for each

computed eigenpair (xk; �k) there exist perturbations �Ak, �xk such that

lim sup
k!1

k (A + �Ak)(xk + �xk)� �k (xk + �xk) k = O(�2)(29)

and

lim sup
k!1

j (xk + �xk)T (xk + �xk) � 1 j = O(�2);(30)

where

j �Ak j� � (L + 2) j A j; j �xk j� � (1 +
n

2
) j xk j :(31)

Proof. For the sake of simplicity we omit the step index k putting x = xk and � = �k.
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It is su�cient to show that using fl(t) arithmetic we can compute the value of the

function F (z) in such a way that

fl(F (z)) = (I + �F )

0
@ (A + �A)(x + �x)� �(x + �x)

(1� (x + �x)T (x + �x)) = 2

1
A ;(32)

where

j �F j� � (2 +
n

2
) I; j �A j� � (L + 1) j A j; j �x j� �

n

2
j x j :(33)

Using common algorithm for summation of n numbers we have (Cf. [8], [16]):

fl(xTx) = (xTx)(1 + �); j � j� �n:

We also have

fl(�x) = (I + D1)�x; j D1 j� �I:

From this it follows

fl(F (z)) =

0
@ (I + D2) f(A + E)x� (I + D1)�xg

(1� xTx (1 + �))(1 + �) = 2

1
A ;

where j D2 j� �I; j � j� �:

Let us de�ne

x + �x = x
p

1 + �; A + �A = (I + D1)
�1(A + E);

I + D = (1 + D2)(1 + D1)=
p

1 + �;

and

I + �F =

0
@ I + D 0

0 1 + �

1
A :

This proves the theorem.

6 Concluding remarks

In this paper, we have presented an algorithm IREP for improving an eigenpair of a

real matrix using �xed aritmetic.
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Numerical experiments that were carried out in MATLAB (� = 2:2e � 16) con�rm

theoretical considerations. We observed that the poor performance appeared only as

a result of the closeness of eigenvalues of A and in a case when the componentwise

relative backward error was greater then 1:0e14. The eigenvalues of A were computed

using a function eig.m in MATLAB. The eigenvalues, one at a time, were then been

improved by the iterative re�nement algorithm IREP. Very often, one or two steps were

su�cient to terminate successfully the process.
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