• Title/Summary/Keyword: mathematical structures

Search Result 935, Processing Time 0.024 seconds

EXISTENCE OF PERIODIC SOLUTIONS IN FERROELECTRIC LIQUID CRYSTALS

  • Park, Jinhae
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.571-588
    • /
    • 2010
  • We introduce the Landau-de Gennes model in order to understand molecular structures in ferroelectric liquid crystals. We investigate equilibrium configurations of the governing energy functional by means of bifurcation analysis. In particular, we obtain periodic solutions of the functional, which is a signature of a rich variety of applications of ferroelectric materials.

A Study on Mathematical Structures of Major and Minor Triads using Geometrical Model (기하학적 모델을 이용한 장, 단3화음의 수학적 구조 연구)

  • Mun, Jun Hee;Park, Jong Youll
    • Communications of Mathematical Education
    • /
    • v.28 no.2
    • /
    • pp.219-234
    • /
    • 2014
  • Music and mathematics have a lot of structural similarities. Major and minor triads used importantly in music are in a relationship of inversion in which the sequence of the intervals is reversed, which is equivalent to reflection in mathematics. Geometrical expressions help understand structures in music as well as mathematics, and a diagram that shows tonal relationships in music is called Tonnetz. Relationships of reflection between major and minor triads can easily be understood by using Tonnetz, and also, transpositions can be expressed in translation. This study looks into existing Tonnetz and introduces S-Tonnetz newly formed by a mathematical principle.

ON 𝜙-PSEUDO-KRULL RINGS

  • El Khalfi, Abdelhaq;Kim, Hwankoo;Mahdou, Najib
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1095-1106
    • /
    • 2020
  • The purpose of this paper is to introduce a new class of rings that is closely related to the class of pseudo-Krull domains. Let 𝓗 = {R | R is a commutative ring and Nil(R) is a divided prime ideal of R}. Let R ∈ 𝓗 be a ring with total quotient ring T(R) and define 𝜙 : T(R) → RNil(R) by ${\phi}({\frac{a}{b}})={\frac{a}{b}}$ for any a ∈ R and any regular element b of R. Then 𝜙 is a ring homomorphism from T(R) into RNil(R) and 𝜙 restricted to R is also a ring homomorphism from R into RNil(R) given by ${\phi}(x)={\frac{x}{1}}$ for every x ∈ R. We say that R is a 𝜙-pseudo-Krull ring if 𝜙(R) = ∩ Ri, where each Ri is a nonnil-Noetherian 𝜙-pseudo valuation overring of 𝜙(R) and for every non-nilpotent element x ∈ R, 𝜙(x) is a unit in all but finitely many Ri. We show that the theories of 𝜙-pseudo Krull rings resemble those of pseudo-Krull domains.

'Modularised' Closed-Form Mathematical model for predicting the bracing performance of plasterboard clad walls

  • Liew, Y.L.;Gad, E.F.;Duffield, C.F.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.1
    • /
    • pp.45-67
    • /
    • 2005
  • This paper presents a new approach to predict the racking load-displacement response of plasterboard clad walls found in Australian light-framed residential structures under monotonic racking load. The method is based on a closed-form mathematical model, described herein as the 'Modularised' Closed-Form Mathematical model or MCFM model. The model considers the non-linear behaviour of the connections between the plasterboard cladding and frame. Furthermore, the model is flexible as it enables incorporation of different nailing patterns for the cladding. Another feature of this model is that the shape of stud deformation is not assumed to be a specific function, but it is computed based on the strain energy approach to take account of the actual load deformation characteristics of particular walls. Verification of the model against the results obtained from a detailed Finite Element (FE) model is also reported. Very good agreement between the closed form solution and that of the FE model was achieved.

COMMUTATIVE RINGS AND MODULES THAT ARE r-NOETHERIAN

  • Anebri, Adam;Mahdou, Najib;Tekir, Unsal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1221-1233
    • /
    • 2021
  • In this paper, we introduce and investigate a new class of modules that is closely related to the class of Noetherian modules. Let R be a commutative ring and M be an R-module. We say that M is an r-Noetherian module if every r-submodule of M is finitely generated. Also, we call the ring R to be an r-Noetherian ring if R is an r-Noetherian R-module, or equivalently, every r-ideal of R is finitely generated. We show that many properties of Noetherian modules are also true for r-Noetherian modules. Moreover, we extend the concept of weakly Noetherian rings to the category of modules and we characterize Noetherian modules in terms of r-Noetherian and weakly Noetherian modules. Finally, we use the idealization construction to give non-trivial examples of r-Noetherian rings that are not Noetherian.

ON S-MULTIPLICATION RINGS

  • Mohamed Chhiti;Soibri Moindze
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.327-339
    • /
    • 2023
  • Let R be a commutative ring with identity and S be a multiplicatively closed subset of R. In this article we introduce a new class of ring, called S-multiplication rings which are S-versions of multiplication rings. An R-module M is said to be S-multiplication if for each submodule N of M, sN ⊆ JM ⊆ N for some s ∈ S and ideal J of R (see for instance [4, Definition 1]). An ideal I of R is called S-multiplication if I is an S-multiplication R-module. A commutative ring R is called an S-multiplication ring if each ideal of R is S-multiplication. We characterize some special rings such as multiplication rings, almost multiplication rings, arithmetical ring, and S-P IR. Moreover, we generalize some properties of multiplication rings to S-multiplication rings and we study the transfer of this notion to various context of commutative ring extensions such as trivial ring extensions and amalgamated algebras along an ideal.

ON GRADED N-IRREDUCIBLE IDEALS OF COMMUTATIVE GRADED RINGS

  • Anass Assarrar;Najib Mahdou
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1001-1017
    • /
    • 2023
  • Let R be a commutative graded ring with nonzero identity and n a positive integer. Our principal aim in this paper is to introduce and study the notions of graded n-irreducible and strongly graded n-irreducible ideals which are generalizations of n-irreducible and strongly n-irreducible ideals to the context of graded rings, respectively. A proper graded ideal I of R is called graded n-irreducible (respectively, strongly graded n-irreducible) if for each graded ideals I1, . . . , In+1 of R, I = I1 ∩ · · · ∩ In+1 (respectively, I1 ∩ · · · ∩ In+1 ⊆ I ) implies that there are n of the Ii 's whose intersection is I (respectively, whose intersection is in I). In order to give a graded study to this notions, we give the graded version of several other results, some of them are well known. Finally, as a special result, we give an example of a graded n-irreducible ideal which is not an n-irreducible ideal and an example of a graded ideal which is graded n-irreducible, but not graded (n - 1)-irreducible.