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EXISTENCE OF PERIODIC SOLUTIONS IN
FERROELECTRIC LIQUID CRYSTALS

Jinhae Park*

Abstract. We introduce the Landau-de Gennes model in order
to understand molecular structures in ferroelectric liquid crystals.
We investigate equilibrium configurations of the governing energy
functional by means of bifurcation analysis. In particular, we obtain
periodic solutions of the functional, which is a signature of a rich
variety of applications of ferroelectric materials.

1. Introduction

In this article, we analyze the structure of liquid crystals focusing on
polarizations. We assume that the liquid crystals are of ferroelectric, i.e.
possessing the spontaneous polarization. The presence of the polariza-
tion has a significant effect on the development of technology, such as
a fast switching between the active and inactive state. Mathematically,
the structure of such a material can be understood by equilibrium states
of the Ginzburg-Landau type of energy functional.

Molecules in nematic liquid crystals are described by a traceless sym-
metric second order tensor Q. Shapes of molecules are characterized
by three eigenvalues of Q and the direction field n of a molecule is de-
fined by the unit eigenvector whose corresponding eigenvalue has the
largest magnitude. The order tensor Q is a measure of the local degree
of orientational order in liquid crystals. The liquid crystal is said to be
uniaxial if two eigenvalues of Q are equal, and it is biaxial when Q has
three distinct eigenvalues. The tensor Q is zero in the isotropic phase.
In smectic liquid crystals, centers of mass of molecules are arranged lo-
cally in one-dimensional layers described by a complex field Ψ = ρeiω;
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level sets of the phase function ω denote layer locations, with ∇ω being
parallel to the layer normal. The tensor Q and complex field Ψ describe
molecules of smectic liquid crystals.

As a novel state of matter, many of liquid crystals exhibit ferroelec-
tricity which refers to the permanent or spontaneous polarization [12].
Due to the appearance of the polarization, the structures of these ma-
terials are so complicated that a great deal of effort has been invested
from the viewpoints of both mathematics and physics. A various dif-
ferent patterns of the polarization have been observed in the physics
literature [12, 16]. Among many ferroelectric materials, there are two
typical types, which are called ferroelectric and antiferroelectric phases.
In the ferroelectric phase, the polarization prefers to be aligned to one
direction so that the net polarization is not zero. But if the material
in the antiferroelectric phase, the net polarization is zero because two
opposite neighboring polarizations are canceled. Most of the known anti-
ferroelectric phases appear at lower temperature than ferroelectric ones,
which is opposite to the situation in solid state [12]. However, several
different types of local polarization arrangements, i.e. mixed states of
ferro and antiferroelectric phases are possible. This explains the obser-
vations of multiple periodic phases found in some materials [10, 19]. If
an electric field is applied in such phases, the dipoles which are already
pointed in the direction of the applied field will remain so aligned, but
those which are oriented in the opposite direction to the field will tend to
reverse their orientation. This results in nucleations and domain walls,
and a relation between polarization and applied field, which is the most
important characteristic of ferroelectric materials.

In order to study such phenomena, we introduce a generalized Landau-
de Gennes energy. With a special geometry, we simplify the problem into
a one-dimensional problem governed by the Ginzburg-Landau energy

∫

Ω

{
ε2

2
|∇u|2 + f(u)−Eu

}
dx,(1.1)

where ε > 0 is a fixed number and

f(u) =
1
6
u2[(u2 − 1)2 − α],(1.2)

with a constant α depending on the temperature and an applied field
E. As a macroscopic model, the triple well potential energy f(u) al-
lows for mixed phases of ferro-and antiferroelectric phases. In other
words, u = 0 corresponds to the antiferroelectric phase and u = ±1
represent two uniform ferroelectric phases. In this paper, we apply local



Ferroelectric liquid crystals 573

and global bifurcation theories to the Euler-Lagrange equation corre-
sponding to (1.1) in order to obtain periodic equilibrium configurations.
In particular, application of an electric field yields a nonlocal problem
and it enables us to introduce a bifurcation parameter. The Ginzburg-
Landau energy with a double well potential, f(u) = 1

4(u2 − 1)2, have
been studied extensively by many authors. Although it is impossible to
list all of them, J. Carr, M. Gurtin, and M. Slemrod [3] studied global
minimizers of the energy functional, and Γ− convergence results of the
energy minimizers are found in [13, 14, 20]. To the best knowledge of
the author, results related with f(u) given in (1.2) are not available in
the literature.

This paper is organized as follows. In section 2, we present Landau-
de Gennes theory to discuss the governing energy functional for the
system. Some basic properties are presented in section 3. In section
4, we discuss a one-dimensional problem and also introduce a nonlocal
problem with an applied electric field. Periodic solutions of the nonlocal
problem obtained in section 4 are discussed in section 5.

2. An extended Landau - de Gennes energy

In this section, we introduce energy densities for ferroelectric liquid
crystals in the Landau-de Gennes theory. Since the second order tensor,
i.e. 3× 3 matrix Q is a symmetric matrix, all eigenvalues of Q are real
and there exists an orthogonal matrix O such that OTQO is diagonal.
This implies that Q can be expressed by

(2.1) Q = S1

(
m⊗m− 1

3
I
)

+ S2

(
n⊗ n− 1

3
I
)

,

where {m,n,m × n} is an orthonormal basis for R3 consisting of unit
eigenvectors of Q. Three eigenvalues of Q are

1
3
(2S1 − S2), −1

3
(S1 + S2),

1
3
(2S2 − S1).

In the Landau-de Gennes theory, neglecting the higher derivatives and
powers of Q, the free energy density Fsm for smectic liquid crystals [17]
is given by

Fsm =
1
2

(L1Qαβ,γQαβ,γ + L2Qαβ,βQαγ,γ + L3Qαβ,γQαγ,β)

+ fbulk(Q) +
B0

2
|∆Ψ|2 +

B1

2
|∇Ψ|2 +

B2

4
|∇Ψ|4 − δ

2
|Ψ|2trQ2

(2.2)
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− γ

2
(Q∇Ψ) · ∇Ψ∗ +

α

4
(|Ψ|2 − ρ2

0)
2,

where Q = (Qαβ), fbulk(Q) = A
2 trQ2 − B

3 trQ3 + C
4

(
trQ2

)2, and Qαβ,γ

denoting the partial derivative of Qαβ with respect to xγ . The bulk
energy fbulk is a potential function for uniaxial nematic liquid crystals,
meaning that it favors molecules to be uniaxial [15]. For more details
about terms involved in Ψ, we refer the reader to [17]. In order to study
behavior of biaxial liquid crystals, one has to add higher powers of Q
into fbulk. Due to the presence of the polarization field P, we include
the polarization and electrostatic energies into the system

Fpol =
1
2

[
D1(∇ ·P)2 + D2|∇ ×P|2 + a|P|2 + b|P|4 + c|P|6] ,(2.3)

Felec = −1
2
(ε(Q)E) ·E− (Pf + P) ·E.(2.4)

subject to the Maxwell’s equations

∇ · (ε(Q)E) = −∇ · (Pf + P), ∇×E = 0,(2.5)

where Pf = (P f
1 , P f

2 , P f
3 ) with

P f
i = ε0Qi,γγ + ε1QβγQiβ,γ + ε2QiαQαγ,γ

is the flexoelectric polarization vector induced by a splay and bending
distortion [2] being analogous to piezoelectric polarization in solids, and
the dielectric permittivity tensor is given by [2]

ε(Q) = ε0I + ε1Q + ε2Q2.(2.6)

In particular, the order tensor Q can be written as

Q =
3
2
S(n⊗ n− 1

3
I)

for uniaxial nematic liquid crystals. In this case, we have

ε(Q)E ·E =
(
ε0 − ε1

2
S +

ε2
4

S2
)
|E|2 +

3
2
S

(
ε1 +

ε2
2

S
)

(n ·E)2,

Pf = e11(∇ · n)n + e33n×∇× n,

e11 =
3
2
ε3S +

3
4
(2ε5 − ε4)S2, e33 =

3
2
ε3S +

3
4
(2ε4 − ε5)S2.

(2.7)

Then the permittivity ε⊥ and dielectric anisotropic constant εa are de-
fined by

ε⊥ = ε0 − ε1
2

S +
ε2
4

S2, εa =
3
2
S

(
ε1 +

ε2
2

S
)

.(2.8)
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Since some material can have ε1 > 0 and S > 0, we have to include ε2-
term in order to satisfy solvability condition ε⊥ > |εa|. The expression
for Pf in (2.7) agrees with the one in [7, pp. 136].

The total energy functional E is given by

E =
∫

Ω
{Fsm + Fpol + Felec}(2.9)

subject to the Maxwell’s equation (2.5). We assume the constitutive
coefficients satisfy

L1 > 0, L1 + L2 + L3 > 0, B0 > 0,

α > 0, C > 0, D1 > 0, D2 > 0, c > 0.
(2.10)

3. Basic properties

Lemma 1. If Q is a traceless, symmetric second order tensor, then
6(trQ3)2 ≤ (trQ2)3 and eigenvalues of Q are represented by





λ1 = 2
√

trQ2
√

6
cosα,

λ2 = 2
√

trQ2
√

6

(
−1

2 cosα−
√

3
2 sinα

)
,

λ3 = 2
√

trQ2
√

6

(
−1

2 cosα +
√

3
2 sinα

)
,

(3.1)

where

cos(3α) = −
√

6trQ3

trQ2
√

trQ2
,

sin(3α) =

√
1− 6(trQ3)2

(trQ2)3
, α ∈

[
0,

π

3

]
.

(3.2)

Proof. If λ is an eigenvalue of Q, then

det(λI−Q) = λ3 − trQλ2 +
1
2

{
(trQ)2 − trQ2

}
λ− det Q = 0.

Since trQ = 0, we have

λ3 − trQ2

2
λ− det Q = 0,

and trQ3 = 3 det Q. Hence the eigenvalues of Q are roots of

f(λ) := λ3 − trQ2

2
λ− 1

3
trQ3.
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Since Q is symmetric, Q has real eigenvalues. The cubic polynomial
f(λ) must have real roots. In order for eigenvalues to be real, f(λ)
satisfies

f(λ∗) = − 1
6
√

6
trQ2

√
trQ2 +

1
2
√

6
trQ2

√
trQ2

− 1
3
trQ3 ≥ 0 if trQ3 ≤ 0,

f(−λ∗) = − 1
6
√

6
trQ2

√
trQ2 +

1
2
√

6
trQ2

√
trQ2

− 1
3
trQ3 ≤ 0 if trQ3 ≥ 0,

where λ∗ = −
√

trQ2

6 .

This implies that 6(trQ3)2 ≤ (trQ2)3.
In order to find explicit forms of eigenvalues, we apply Cardano’s

method. Let p = −trQ2

2 , q = 1
3trQ3. Then the roots are





3

√
− q

2 +
√

q2

4 + p3

27 + 3

√
− q

2 −
√

q2

4 + p3

27 ,

(
−1

2 +
√

3
2 i

)
3

√
− q

2 +
√

q2

4 + p3

27

+
(
−1

2 −
√

3
2 i

)
3

√
− q

2 −
√

q2

4 + p3

27 ,

(
−1

2 −
√

3
2 i

)
3

√
− q

2 +
√

q2

4 + p3

27

+
(
−1

2 +
√

3
2 i

)
3

√
− q

2 −
√

q2

4 + p3

27 .

(3.3)

Let

β2 =
6(trQ3)2

(trQ2)3
, 0 ≤ β ≤ 1.

Then

−q

2
+

√
q2

4
+

p3

27
=

1
6
√

6
trQ2

√
trQ2

(
−

√
6trQ3

trQ2
√

trQ2
+ i

√
1− β2

)
,

−q

2
−

√
q2

4
+

p3

27
=

1
6
√

6
trQ2

√
trQ2

(
−

√
6trQ3

trQ2
√

trQ2
− i

√
1− β2

)
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Let α be such that

cos(3α) = −
√

6trQ3

trQ2
√

trQ2
, sin(3α) =

√
1− β2, 3α ∈ [0, π].

Then

3

√
−q

2
+

√
q2

4
+

p3

27
=

1√
6

√
trQ2eiα,

3

√
−q

2
−

√
q2

4
− p3

27
=

1√
6

√
trQ2e−iα.

(3.4)

Plugging (3.4) into (3.3) we obtain (3.1). This completes the proof.

Corollary 2. The tensor Q is uniaxial if and only if 6(trQ3)2 =
(trQ2)3.

Proof. If 6(trQ3)2 = (trQ2)3, then sinα = 0 and thus Q is uniaxial.
Suppose that 6(trQ3)2 6= (trQ2)3. Then sin 3α 6= 0, i.e. α 6= 0, π

3 , and
thus α ∈ (0, π

3 ) by Lemma 1 and λ2 6= λ3. If Q is uniaxial, then either
λ1 = λ2 or λ1 = λ3. It follows that α satisfies either tanα = −√3 or
tanα =

√
3. This is a contradiction because α should be an angle in(

0, π
3

)
.

Let A be the set of (Q,P,Ψ, ϕ) such that

Q ∈ W 1,2(Ω,S),P ∈ W 1,2(Ω,R3), Ψ ∈ W 2,2(Ω,C), ϕ ∈ W 1,2(Ω,R),

satisfying (2.5) with E = ∇ϕ where S is the set of 3 × 3 traceless
symmetric real matrices. By the standard theory of calculus of variations
together with the same arguments in [18], the energy functional E allows
a minimizer in A.

Theorem 3. There exists a minimizer of the energy functional E in
A.

4. A one-dimensional problem

In this section, we consider a system of polar uniaxial smectic liquid
crystals with uniform smectic layers∇ω = (1, 0, 0) in which the direction
field takes only two vectors ±n,n = (n1, n2, 0) and P = (0, 0, P ) where
n is a fixed unit vector. Since Q = 3

2S
(
n⊗ n− 1

3I
)

for uniaxial liquid
crystals, the values of the order parameter Q corresponding to ±n are
the same. Roughly speaking, such a system can be considered as a
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limiting problem when L = L1 = L2 = L3 → 0 and C →∞. Hence, we
shall drop the energy terms involved with Q. We further assume that
D1 = D2 = D and the system depends only on x. The structure of
the system is determined by the energy associated with the polarization
field

(4.1)
1
2

∫ L

0

{
D

(
dP

dx

)2

+ aP 2 + bP 4 + cP 6 − ẼP

}
dx,

where (0, 0, Ẽ) is an applied electric field.

4.1. Periodic solutions in the absence of electric field

Let us assume that Ẽ = 0. We seek periodic solutions of the Euler-
Lagrange equation corresponding to (4.1)

(4.2)
d2P

dx2
= βP + γP 3 + δP 5 in R

where β = a
D , γ = 2b

D , δ = 3c
D > 0. In order to obtain periodic solutions,

we introduce the following Morse lemma [21].

Lemma 4. Suppose that x = 0 is a non-degenerate critical point, i.e.
det

(∇2H(0)
) 6= 0, of the C∞ function

H(x) = H(0)−c1x
2
1−c2x

2
2−· · ·−cix

2
i +ci+1x

2
i+1+· · ·+cnx2

n+ higher order term,

with coefficients cl > 0, l = 1, 2, · · · , n. Then there is a diffeomorphism
ψ from U to V which transforms H(x) to the form

H(ψ−1(y)) = G(y) = G(0)− y2
1 − · · · − y2

i + y2
i+1 + · · ·+ y2

n,

where U and V are open neighborhoods of 0.

The equation (4.2) can be written as a system of first order equations
{

P ′ = Q,
Q′ = βP + γP 3 + δP 5.

(4.3)

In order to apply lemma 4, we define

H(Q,P ) =
1
2
Q2 − β

2
P 2 − γ

4
P 4 − δ

6
P 6.

If β < 0, then (Q,P ) = (0, 0), (0,±P0) are critical points, where

P0 =

√√√√1
2

(
−γ

δ
+

√
γ2 − 4βδ

δ2

)
.
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At (0, 0), by lemma 4 we get a diffeomorphism that transforms H into
y2
1 + y2

2. This results in closed orbits in the phase plane because (0, 0) is
a center. Hence we obtain a one-parameter family of periodic solutions.
Similarly, we can prove that there are two one-parameter families of
periodic solutions for γ2 > 4βδ > 0, γ < 0, and there is no periodic
solutions for γ2 − 4βδ < 0 or β > 0, γ > 0.

Theorem 5. If either β < 0 or γ2 > 4βδ > 0, γ < 0 is satisfied, then
(4.2) has periodic solutions. Moreover, for such a solution P , the period
L is given by

(4.4) L = 2
∫ P2

P1

1√
2

(
β
2 P 2 + γ

4P 4 + δ
6P 6 −W

) dP,

where P1 and P2 (P1 < P2) are the values of intersection of the periodic
orbit with the P -axis in the phase plane satisfying the first integral
equation

β

2
P 2 +

γ

4
P 4 +

δ

6
P 6 =

Q2

2
+ W.

Proof. See [21].

4.2. A nonlocal problem in the presence of the electric field

For the remaining part of this paper, we study periodic solutions of
the energy (4.1) with a constant electric field Ẽ and b < 0 subject to
the Neumann boundary condition. We introduce the scalings

P 2
0 =

|b|
2c

, α =
b2 − 4ac

b2
, ε2 =

D

3cL2P 4
0

, x̃ =
x

L
, u(x̃) =

P (x)
P0

, Ẽ =
E

3cP 5
0

.

Writing the energy (4.1) in terms of u and x̃ and dividing by 3cLP 6
0

followed by dropping the tilde on x̃, we get a new energy
∫ 1

0

{
ε2

2
(u′(x))2 + f(u)− Eu

}
dx,

and the corresponding Euler-Lagrange equation is
{ −ε2u′′(x) + f ′(u) = E in [0, 1],

u′(0) = u′(1) = 0,(4.5)

where

f(u) =
1
6
u2[(u2 − 1)2 − α].



580 Jinhae Park

In order for (4.5) to be solvable, the following equality should hold

(4.6) E =
∫ 1

0
f ′(u(x)) dx.

It is immediate that for any real λ ∈ R, u = λ is a solution. Among
many other solutions, we choose solutions satisfying

∫ 1
0 u = λ for each

λ ∈ R. If u is such a solution, then u satisfies{
−ε2u′′(x) + f ′(u) =

∫ 1
0 f ′(u) dx in [0, 1],

u′(0) = u′(1) = 0,
∫ 1
0 u dx = λ.

(4.7)

The equation (4.7) is a nonlocal equation and corresponds to the Euler-
Lagrange equation for the problem




E(u) =
∫ 1
0

{
ε2

2 (u′(x))2 + f(u)
}

dx

subject to
u′(0) = u′(1) = 0,

∫ 1
0 u dx = λ, λ ∈ R.

(4.8)

5. Special periodic solutions

Throughout this paper, we assume that a sufficiently small number
ε > 0 is fixed.

First, we recall that u = λ is a solution of (4.7) for any λ ∈ R. Intro-
ducing a new variable w by u = w + λ, the equation (4.7) is equivalent
to {

−ε2w′′(x) + f ′(w(x) + λ) =
∫ 1
0 f ′(w(s) + λ) ds in [0, 1],

w′(0) = w′(1) = 0,
∫ 1
0 w dx = 0.

(5.1)

Let

X =
{

w ∈ C2[0, 1] : w′(0) = w′(1) = 0,
∫ 1

0
w dx = 0

}
,

Z =
{

z ∈ C0[0, 1] :
∫ 1

0
z dx = 0

}
,

where Cn[0, 1] is the set of all functions from [0, 1] from R whose all jth
derivatives (0 ≤ j ≤ n) are continuous. Clearly, X and Y are not empty
and Hilbert spaces with the inner product <, >2, defined by

< u, v >2=
∫ 1

0
u(s)v(s) ds

for two functions u and v.
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Define G : X ×R → Z by

G(w, λ) = −ε2w′′ + f ′(w + λ)−
∫ 1

0
f ′(w(s) + λ) ds.(5.2)

Then G(0, λ) = 0 for any λ ∈ R.
The linearized equation of (5.1) at (0, λ) is given by

{ −ε2w′′ + f ′′(λ)w = 0 in [0, 1],
w′(0) = w′(1) = 0,

∫ 1
0 w dx = 0.

(5.3)

The solution space of the linearized equation is spanned by cos kπx if
there exists k ∈ N satisfying

ε2k2π2 = −f ′′(λ).(5.4)

Since ε is sufficiently small, there always exists a pair of λ and k satis-
fying (5.4).

The number of real roots of (5.4) depends on the values of α. We
summarize them as follows.

1. If α ≤ −7
5 , then there is no root.

2. Let −7
5 < α < 1. If K is the largest integer satisfying

ε2k2π2 <
7
15

+
α

3
, for 1 ≤ k ≤ K,(5.5)

then for each 1 ≤ k ≤ K, there are four real roots of (5.4), two
pairs of which have opposite signs. We denote them by

±λi
k, (i = 1, 2), 0 < λ1

k <

√
2
5

< λ2
k.(5.6)

3. For α > 1, let K0 be the largest integer satisfying

ε2k2π2 <
1
3
(α− 1) for 1 ≤ k ≤ K0.(5.7)

(a) If 1 ≤ k ≤ K0, then the equation (5.4) has two roots with

opposite signs, which we denote them by ±λk, λk >
√

2
5 .

(b) If K0 < k ≤ K, then the equation (5.4) has four roots satisfy-
ing (5.6). We keep the same notation as in (5.6).

From now on, we follow all notations for roots discussed above.
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5.1. Local bifurcation analysis

Now, let λ0 denote one of values of λ satisfying (5.4) with k, and Lλ0

be the linearized operator, DwG(0, λ0), of G at (0, λ0). Then we obtain

dim ker Lλ0 = codim Lλ0 = 1.

In particular, Lλ0 = −ε2w′′ + f ′′(λ0)w is a self-adjoint operator. By
Lyapunov-Schmidt reduction, there exist spaces X0 and Z0 such that

X = kerLλ0 ⊕X0, Z = R(Lλ0)⊕Z0.

where P : X → kerLλ0 and Q : Z → Z0 are continuous projection maps.
By direct computations, we establish

kerLλ0 = span{φk}, φk(x) =
√

2 cos kπx,

D2
wλF (0, λ0)φk /∈ R(Lλ0).

It is also easy to see that

R(Lλ0) =
{

v ∈ Z :
∫ 1

0
v(s)φk(s) ds = 0

}
,

Z0 = span {v∗0} = R(Lλ0)
⊥ = kerL∗λ0

,

where v∗0 = φk. Furthermore, by Lyapunov Reduction, there exists a
continuous map φ : U × (a, b) →W satisfying

QG(w + φ(w, λ), λ) = 0,(5.8)

for all (w, λ) ∈ U × (a, b), φ(0, λ0) = 0 where U , (a, b) and W are open
neighborhoods of 0, λ0, and w0 in kerLλ0 ,R, and X0 respectively.

For any (w, λ) ∈ U × (a, b), we define Φ by

Φ(w, λ) = QG(w + φ(w, λ), λ).(5.9)

By local bifurcation theorem [4], there exists a local nontrivial solu-
tion curve S in X ×R emanating from (0, λ0) such that all solutions of
G(w, λ) = 0 in a neighborhood of (0, λ0) are either on the trivial line or
on the nontrivial curve S. If S is parameterized by s near (0, λ0) as

S : {(w(s), λ(s)) : s ∈ (−δ, δ)} for some δ > 0,(5.10)

then w(s) behaves like sφk + ω(s) for some ω satisfying

ω(0) = 0, ω̇(0) =
dω

ds

∣∣∣
s=0

= 0.
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Lemma 6. Let S be parameterized by s in (5.10). Then

λ̇(0) = 0, λ̈(0) = −1
6

[
3f (4)(λ0)
f ′′′(λ0)

+
f ′′′(λ0)
f ′′(λ0)

]
.(5.11)

Proof. By direct computations using formulas in [9, pp. 31], we ob-
tain

< D2
wλG(0, λ)v0, v

∗
0 >= f ′′′(λ),

D2
wwG(0, λ)[v0, v0] = f ′′′(λ)v2

0 − f ′′′(λ)
∫ 1

0
v2
0 dx = f ′′′(λ)(v2

0 − 1),

D3
wwwG(0, λ)[v0, v0, v0] = f (4)(λ)v3

0.

Furthermore, we have

< DwwG(0, λ)[v0, v0], v∗0 >=
∫ 1

0

{
f ′′′(λ)v3

0 − f ′′′(λ)v0

}
dx = 0,

λ̇(0) = −< D2
wwG(0, λ)[v0, v0], v∗0 >

< DwλG(0, λ)v0, v∗0 >
= 0,

so that D2
wwG(0, λ)[v0, v0] ∈ R(L), where L = DwG(0, λ). By Lyapunov-

Schmidt reduction, we have

D2
wwG(0, λ)[v0, v0] = (I −Q)D2

wwG(0, λ)[v0, v0].

Next, we recall (see [11, pp. 19] or [9, pp. 33]) that

λ̈(0) = −1
3

< D3
vvvΦ(0, λ)[v0, v0, v0], v∗0 >

< D2
xλG(0, λ)v0, v∗0 >

,

where Φ is defined in (5.9) and

D3
vvvΦ(0, λ0)[v0, v0, v0] = QD3

vvvG(0, λ0)[v0, v0, v0]
−3QD2

xxG(0, λ0)
[
v0, (I − P )L−1(I −Q)D2

vvG(0, λ)[v0, v0]
]
.

In order to compute λ̈(0), we need to find L−1D2
wwG(0, λ)[v0, v0] =

L−1[f ′′′(λ)(v2
0 − 1)] so that (I − P )L−1D2

wwG(0, λ)[v0, v0] can be calcu-
lated. Let w be a solution in X satisfying

Lw = f ′′′(λ)(v2
0 − 1), w′(0) = w′(1) = 0,

∫ 1

0
w dx = 0.

Then

w(x) = − f ′′′(λ)
3f ′′(λ)

cos 2kπx.
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Since w(x) = (I − P )w(x), we have

(I − P )L−1(I −Q)D2
wwG(0, λ)[v0, v0] =

f ′′′(λ)
3ε2k2π2

cos 2kπx,

QD2
wwG(0, λ)[v0, w] =

[f ′′′(λ)]2

3ε2k2π2
v0 cos 2kπx.

We then obtain

D3
vvvΦ(0, λ0)[v0, v0, v0] = f (4)(λ)v3

0 −
[f ′′′(λ)]2

ε2k2π2
v0 cos 2kπx,

< D3
vvvΦ(0, λ0)[v0, v0, v0], v∗0 >=

3f (4)(λ)
2

− [f ′′′(λ)]2

2ε2k2π2
.

Since ε2k2π2 = −f ′′(λ), we get

λ̈(0) = −1
6

[
3f (4)(λ)
f ′′′(λ)

+
f ′′′(λ)
f ′′(λ)

]
.

Using the formulae in lemma 6, we can evaluate λ̈(0) at each point to
decide types of bifurcation points. If (0, λ) satisfies λ̈(0) > 0 (λ̈(0) < 0),
then it is called supercritical (subcritical ).

Corollary 7. All bifurcation points are pitchforks, i.e. λ̇(0) =
0, λ̈(0) 6= 0. In particular, if (0, λ0) is a bifurcation point, then it is{

subcritical if λ0 ∈ {λk,−λ1
k, λ

2
k},

supercritical if λ0 ∈ {−λk, λ
1
k,−λ2

k}.
(5.12)

It is not hard to check the following properties of DwG(0, λ), which
are used to determine local stabilities of nontrivial solution branches.

1. If −7
5 < α < 1, then kth eigenvalue of DwG(0, λ) is

{
negative if λ ∈ (−∞,−λ2

k) ∪ (−λ1
k, λ

1
k) ∪ (λ2

k,∞),
positive if λ ∈ (−λ2

k,−λ1
k) ∪ (λ1

k, λ
2
k),

where 1 ≤ k ≤ K.
2. Let α > 1.

(a) If 1 ≤ k ≤ K0, then kth eigenvalue of DwG(0, λ) is{
negative if λ ∈ (−∞,−λk) ∪ (λk,∞),
positive if λ ∈ (−λk, λk).

(b) If K0 < k ≤ K, then the kth eigenvalue of DwG(0, λ) is{
negative if λ ∈ (−∞,−λ2

k) ∪ (−λ1
k, λ

1
k) ∪ (λ2

k,∞),
positive if λ ∈ (−λ2

k,−λ1
k) ∪ (λ1

k, λ
2
k).
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5.2. Global bifurcation analysis

In this section, we study the global behavior of nontrivial solution
branches emanating from bifurcation points. Specifically, we prove exis-
tence of finitely many closed curves consisting of these nontrivial branches.
Moreover, the number of these closed solutions curves goes to ∞ as
ε → 0.

Theorem 8. Let Mk be a maximal connected subset of the closure
of the nontrivial solution branch bifurcating from (0, λ0) where λ0 ∈
{±λk,±λi

k(i = 1, 2)}. Then Mk is bounded and Ml ∩Ml = ∅ if k 6= l.

Proof. By properties of the function f , there exists M1 > 0 such that{
f ′ is increasing on (−∞,−M1] ∪ [M1,∞),
f ′(−M1) < f ′(s) < f ′(M1) for all −M1 < s < M1.

(5.13)

Let (w, λ) be any solution pair in X × R which lies on S. Since w ∈
C2[0, 1], w has the absolute minimum at x0 and absolute maximum at x1

for some x0, x1 ∈ [0, 1]. Since
∫ 1
0 w(s) ds = 0, we get w(x0) < 0 < w(x1)

and w satisfies the Euler-Lagrange equation

−ε2w′′(x) + f ′(w(x) + λ) =
∫ 1

0
f ′(w(s) + λ) ds for all x ∈ [0, 1].

Since the right-hand side of the above equation depends only on λ, we
have

−ε2w′′(x0) + f ′(w(x0) + λ) = −ε2w′′(x1) + f ′(w(x1) + λ).

The minimality and maximality of w at x0 and x1 (respectively) yield

f ′(w(x1) + λ) ≤ f ′(w(x0) + λ).

From (5.13), we get −M1 ≤ w(x0) + λ ≤ λ and λ ≤ w(x1) + λ ≤
M1 so that |λ| ≤ M1 and ||w||∞ ≤ M1. From the Euler-Lagrange
equation, ||w′||∞ and ||w′′||∞ are bounded by C1

ε2 where C1 depending
on M1. Hence, |λ|+ ||w||C2[0,1] ≤ D where D depends only on M1, ε, and
therefore Mk is bounded. Now, any element w in S has exactly k zeros,
each of which is simple (characterized by cos kπx). Let Zj be the set of
all functions in X which have exactly j zeros which are simple. By the
standard argument [1, pp.164], the sets Zj are disjoint. This completes
the proof.

Let (0, λ) be a bifurcation point corresponding to k. We rewrite the
Euler-Lagrange equation (5.1) by

ε2w −K(w, λ) = 0,(5.14)
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where

d2

dx2
K(w, λ) = f ′(w + λ)−

∫ 1

0
f ′(w(s) + λ)ds.(5.15)

Choose Y = Z and define F : Y ×R → Y by

F (w, λ) = w − ε−2K(w, λ).

Then K is a compact operator, and DwF (0, λ) has an odd crossing
number at λ because its kernel has the dimension 1. So we can apply
the Global Bifurcation Theorem [5, 8].

Now, we observe how the number of real roots of (5.4) changes when
the value of α varies. From (5.5)-(5.7), the critical case occurs when
α = 1. For a fixed ε, the number of real roots of (5.4) corresponding
to k = K0 jumps from 2 to 4 by decreasing the value of α because of
(5.7). The new roots are nucleated at 0 in the transition. This implies
that two roots ±λ1

k appear or disappear at the same time with varying
values of α.

For 1 ≤ k ≤ K0, let Mk be the maximal connected subset of the
closure of the nontrivial solution curve bifurcating from (0, λk). By
the Global bifurcation theorem, the curve Mk connects with (0,−λk)
because Mk cannot contain ±λj(j 6= k). Remember that the absolute

value of these roots is always greater than
√

2
5 . By the principle of

exchange of stability [6], two bifurcation points (0,±λ1
j )(K0 < j ≤ K)

cannot be connected. This implies that a single closed curve composed
of two nontrivial solution branches bifurcating from (0,±λK0) is split
into two branches when we decrease the value of α. As a summary, we
conclude the following corollary

Corollary 9. Let a sufficiently small ε be given. If 1 ≤ k ≤ K0,
then there is a single closed nontrivial solution curve, which connects
(0, λk) with (0,−λk). If K0 < k ≤ K, then there are two closed nontriv-
ial solution curves, which connect (0,±λ1

k) with (0,±λ2
k) respectively.

Schematic shapes of the nontrivial solution branches obtained in this
section are described in Figure 1. It should be addressed that figures
drawn here are not real solution curves. Real solution curves may be
more complicated than the ones in Figure 1. As we see from Figure
1(R), there exists a pair of two closed curves inside a single closed curve
when ε is very small and α > 1.

In Figure 1(L) and 1(M), we take K = 3 and −7
5 < α < 1. The

Figure 1(L) is a schematic curve for α being away from 1, while Figure
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λ

u

(L)

λ

u

(M)

λ

u

(R)

Figure 1. Schematic solution branches

1(M) is drawn when α is close to 1. We take k0 = 1,K = 3 and α(> 1)
close to 1 in Figure 1(R).
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