• Title/Summary/Keyword: mathematical proof

Search Result 546, Processing Time 0.026 seconds

ON SIMULTANEOUS LOCAL DIMENSION FUNCTIONS OF SUBSETS OF ℝd

  • OLSEN, LARS
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1489-1493
    • /
    • 2015
  • For a subset $E{\subseteq}\mathbb{R}^d$ and $x{\in}\mathbb{R}^d$, the local Hausdorff dimension function of E at x and the local packing dimension function of E at x are defined by $$dim_{H,loc}(x,E)=\lim_{r{\searrow}0}dim_H(E{\cap}B(x,r))$$, $$dim_{P,loc}(x,E)=\lim_{r{\searrow}0}dim_P(E{\cap}B(x,r))$$, where $dim_H$ and $dim_P$ denote the Hausdorff dimension and the packing dimension, respectively. In this note we give a short and simple proof showing that for any pair of continuous functions $f,g:\mathbb{R}^d{\rightarrow}[0,d]$ with $f{\leq}g$, it is possible to choose a set E that simultaneously has f as its local Hausdorff dimension function and g as its local packing dimension function.

ON 𝜙-SHARP RINGS

  • Darani, Ahmad Yousefian;Rahmatinia, Mahdi
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.237-246
    • /
    • 2016
  • The purpose of this paper is to introduce some new class of rings that are closely related to the classes of sharp domains, pseudo-Dededkind domains, TV domains and finite character domains. A ring R is called a ${\phi}$-sharp ring if whenever for nonnil ideals I, A, B of R with $I{\supseteq}AB$, then I = A'B' for nonnil ideals A', B' of R where $A^{\prime}{\supseteq}A$ and $B^{\prime}{\supseteq}B$. We proof that a ${\phi}$-Dedekind ring is a ${\phi}$-sharp ring and we get some properties that by them a ${\phi}$-sharp ring is a ${\phi}$-Dedekind ring.

ON EXISTENCE OF WEAK SOLUTIONS OF NEUMANN PROBLEM FOR QUASILINEAR ELLIPTIC EQUATIONS INVOLVING p-LAPLACIAN IN AN UNBOUNDED DOMAIN

  • Hang, Trinh Thi Minh;Toan, Hoang Quoc
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1169-1182
    • /
    • 2011
  • In this paper we study the existence of non-trivial weak solutions of the Neumann problem for quasilinear elliptic equations in the form $$-div(h(x){\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)+b(x){\mid}u{\mid}^{p-2}u=f(x,\;u),\;p{\geq}2$$ in an unbounded domain ${\Omega}{\subset}\mathbb{R}^N$, $N{\geq}3$, with sufficiently smooth bounded boundary ${\partial}{\Omega}$, where $h(x){\in}L_{loc}^1(\overline{\Omega})$, $\overline{\Omega}={\Omega}{\cup}{\partial}{\Omega}$, $h(x){\geq}1$ for all $x{\in}{\Omega}$. The proof of main results rely essentially on the arguments of variational method.

EVERY POLYNOMIAL OVER A FIELD CONTAINING 𝔽16 IS A STRICT SUM OF FOUR CUBES AND ONE EXPRESSION A2 + A

  • Gallardo, Luis H.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.941-947
    • /
    • 2009
  • Let q be a power of 16. Every polynomial $P\in\mathbb{F}_q$[t] is a strict sum $P=A^2+A+B^3+C^3+D^3+E^3$. The values of A,B,C,D,E are effectively obtained from the coefficients of P. The proof uses the new result that every polynomial $Q\in\mathbb{F}_q$[t], satisfying the necessary condition that the constant term Q(0) has zero trace, has a strict and effective representation as: $Q=F^2+F+tG^2$. This improves for such q's and such Q's a result of Gallardo, Rahavandrainy, and Vaserstein that requires three polynomials F,G,H for the strict representation $Q=F^2$+F+GH. Observe that the latter representation may be considered as an analogue in characteristic 2 of the strict representation of a polynomial Q by three squares in odd characteristic.

VERIFICATION OF A PAILLIER BASED SHUFFLE USING REPRESENTATIONS OF THE SYMMETRIC GROUP

  • Cho, Soo-Jin;Hong, Man-Pyo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.4
    • /
    • pp.771-787
    • /
    • 2009
  • We use an idea of linear representations of the symmetric group to reduce the number of communication rounds in the verification protocol, proposed in Crypto 2005 by Peng et al., of a shuffling. We assume Paillier encryption scheme with which we can apply some known zero-knowledge proofs following the same line of approaches of Peng et al. Incidence matrices of 1-subsets and 2-subsets of a finite set is intensively used for the implementation, and the idea of $\lambda$-designs is employed for the improvement of the computational complexity.

OPTIMAL ERROR ESTIMATE FOR SEMI-DISCRETE GAUGE-UZAWA METHOD FOR THE NAVIER-STOKES EQUATIONS

  • Pyo, Jae-Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.4
    • /
    • pp.627-644
    • /
    • 2009
  • The gauge-Uzawa method which has been constructed in [11] is a projection type method to solve the evolution Navier-Stokes equations. The method overcomes many shortcomings of projection methods and displays superior numerical performance [11, 12, 15, 16]. However, we have obtained only suboptimal accuracy via the energy estimate in [11]. In this paper, we study semi-discrete gauge-Uzawa method to prove optimal accuracy via energy estimate. The main key in this proof is to construct the intermediate equation which is formed to gauge-Uzawa algorithm. We will estimate velocity errors via comparing with the intermediate equation and then evaluate pressure errors via subtracting gauge-Uzawa algorithm from Navier-Stokes equations.

UNIMODULAR ROOTS OF RECIPROCAL LITTLEWOOD POLYNOMIALS

  • Drungilas, Paulius
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.835-840
    • /
    • 2008
  • The main result of this paper shows that every reciprocal Littlewood polynomial, one with {-1, 1} coefficients, of odd degree at least 7 has at least five unimodular roots, and every reciprocal Little-wood polynomial of even degree at least 14 has at least four unimodular roots, thus improving the result of Mukunda. We also give a sketch of alternative proof of the well-known theorem characterizing Pisot numbers whose minimal polynomials are in $$A_N=\{[{X^d+ \sum\limits^{d-1}_{k=0} a_k\;X^k{\in} \mathbb{Z}[X]\;:\;a_k={\pm}N,\;0{\leqslant}k{\leqslant}d-1}\}$$ for positive integer $N{\geqslant}2$.

GEOMETRIC ANALYSIS ON THE DIEDERICH-FORNÆSS INDEX

  • Krantz, Steven George;Liu, Bingyuan;Peloso, Marco Maria
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.897-921
    • /
    • 2018
  • Given bounded pseudoconvex domains in 2-dimensional complex Euclidean space, we derive analytical and geometric conditions which guarantee the Diederich-$Forn{\ae}ss$ index is 1. The analytical condition is independent of strongly pseudoconvex points and extends $Forn{\ae}ss$-Herbig's theorem in 2007. The geometric condition reveals the index reflects topological properties of boundary. The proof uses an idea including differential equations and geometric analysis to find the optimal defining function. We also give a precise domain of which the Diederich-$Forn{\ae}ss$ index is 1. The index of this domain can not be verified by formerly known theorems.

REMARKS ON A THEOREM OF CUPIT-FOUTOU AND ZAFFRAN

  • Kim, Jin Hong
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.591-602
    • /
    • 2020
  • There is a well-known class of compact, complex, non-Kählerian manifolds constructed by Bosio, called the LVMB manifolds, which properly includes the Hopf manifold, the Calabi-Eckmann manifold, and the LVM manifolds. As in the case of LVM manifolds, these LVMB manifolds can admit a regular holomorphic foliation 𝓕. Moreover, later Meersseman showed that if an LVMB manifold is actually an LVM manifold, then the regular holomorphic foliation 𝓕 is actually transverse Kähler. The aim of this paper is to deal with a converse question and to give a simple and new proof of a well-known result of Cupit-Foutou and Zaffran. That is, we show that, when the holomorphic foliation 𝓕 on an LVMB manifold N is transverse Kähler with respect to a basic and transverse Kähler form and the leaf space N/𝓕 is an orbifold, N/𝓕 is projective, and thus N is actually an LVM manifold.

DEHN SURGERY AND A-POLYNOMIAL FOR KNOTS

  • Kim, Jin-Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.519-529
    • /
    • 2006
  • The Property P Conjecture States that the 3-manifold $Y_r$ obtained by Dehn surgery on a non-trivial knot in $S^3$ with surgery coefficient ${\gamma}{\in}Q$ has the non-trivial fundamental group (so not simply connected). Recently Kronheimer and Mrowka provided a proof of the Property P conjecture for the case ${\gamma}={\pm}2$ that was the only remaining case to be established for the conjecture. In particular, their results show that the two phenomena of having a cyclic fundamental group and having a homomorphism with non-cyclic image in SU(2) are quite different for 3-manifolds obtained by Dehn filings. In this paper we extend their results to some other Dehn surgeries via the A-polynomial, and provide more evidence of the ubiquity of the above mentioned phenomena.