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DEHN SURGERY AND A-POLYNOMIAL FOR KNOTS

JINHONG KIMm

ABSTRACT. The Property P conjecture states that the 3-manifold
Y, obtained by Dehn surgery on a non-trivial knot in S® with
surgery coefficient » € Q has the non-trivial fundamental group
(so not simply connected). Recently Kronheimer and Mrowka pro-
vided a proof of the Property P conjecture for the case » = +2 that
was the only remaining case to be established for the conjecture.
In particular, their results show that the two phenomena of having
a cyclic fundamental group and having a homomorphism with non-
cyclic image in SU(2) are quite different for 3-manifolds obtained
by Dehn fillings. In this paper we extend their results to some other
Dehn surgeries via the A-polynomial, and provide more evidence of
the ubiquity of the above mentioned phenomena.

1. Introduction and main results

The Property P conjecture says that the 3-manifold Y,.(K) obtained
by Dehn surgery on a non-trivial knot K in S® with surgery coefficient
r € Q has the non-trivial fundamental group (so not simply connected),
for the case |r| < 2. Recently Kronheimer and Mrowka provided at least
two different proofs of the Property P conjecture in [5] and [6]. In fact,
they proved a much stronger version of the Property P conjecture as
follows in [6].

THEOREM 1.1. (Kronheimer and Mrowka) Let K be a non-trivial
knot in 83, and let Y,(K) be the 3-manifold obtained by Dehn surgery
on K with surgery coefficient r € Q. If |r| < 2, then there exists
a homomorphism p : m(Y,(K)) — SU(2) with non-cyclic image. In
particular, this implies that m1(Y,.(K)) is not cyclic.
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According to [6], the fact that Y;(K) cannot have a cyclic fundamen-
tal group was already known for all cases except r = +2. In a little
more detail, Gabai [4] and Kronheimer and Mrowka [5] proved for r = 0
and 7 = %1 respectively. The torus knot case is due to Moser [8]. All
other cases are consequences of the well-known cyclic surgery theorem
of Culler, Gordon, Luecke and Shalen [2]. The aim of this short paper
is to extend the result of Theorem 1.1 to some other Dehn surgeries via
the notion of the A-polynomial.

The recent results of Kronheimer, Mrowka, Ozsvath, and Szabo [7]
show that the resulting 3-manifold Y3(K') and Y4(K) of the Dehn surgery
on a non-trivial knot K with surgery coefficient 3 and 4 cannot yield a
lens space. However, it is not obvious whether or not the fundamen-
tal groups of Y3(K) and Y4(K) admit homomorphisms to SU(2) with
non-cyclic image. Moreover, according to [6] Dunfield has provided an
example of a non-trivial knot in S on which a Dehn filling has a funda-
mental group which is not cyclic but admits no homomorphism to SU(2)
with non-cyclic image. In this paper we present more evidence showing
that the two phenomena of having a cyclic fundamental group and hav-
ing a homomorphism with non-cyclic image in SU(2) are quite different
for 3-manifolds obtained by Dehn fillings. We do this using a variant of
the A-polynomial of a knot in an homology 3-sphere, first introduced by
Cooper et al. in [1], which describes the variety of characters of SLy(C)
representations of the fundamental group of the knot complement.

In order to explain our result, we first recall the definition of the A-
polynomial of a knot as in [1] and [3]. To do so, let N denote the exterior
of a knot K in S3 (or a homology 3-sphere). Then the boundary ON
of N is a torus, and its fundamental group 71(8N) = Z? has a natural
meridian and longitude basis p and A. Let p : m;(N) — SL2(C) be a
representation. Then the restriction of p to m1(ON) can be conjugated

so that
M 0 L 0
P(M) = (0 M—l) and p(>‘) = (0 L—1> )

since p(u) and p(A) are two commuting matrices in SLy(C). The pos-
sible eigenvalues (M, L) over C* x C* of p form an complex algebraic
subvariety of C* x C*, as p varies. The A-polynomial is now defined to
be the defining polynomial f(M, L) for the 1-dimensional part of this
subvariety. Thus it is just a plane curve of which each point corresponds
to the restriction of each representation of 71(N) to 71(ON).
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In this paper we will use the representations p : m(N) — SU(2)
rather than the representations into SL2(C). So in this case the eigen-
values (M, L) of (p(u),p(A)) form a real 1-dimensional subset of the
unit torus in C* x C* which can be described by the restriction of the
A-polynomial to the unit torus. We will call the restriction of the A-
polynomial to the unit torus the real Agr-polynomial of the knot K.
More precisely, the real Ar-polynomial g is given by

9(a, B) = f(*,€?), (a,B) € [-m,7] x [—m,7].

In general, g may not be a polynomial of a and 3, but it is obviously
doubly periodic of two variables with period 27. Since every represen-
tation p : m(N) — SU(2) induces a representation into SL2(C), we
can say that the zero locus of the real Ag-polynomial in the unit torus
describes all the possible points which may arise as representations of
7m1(N) into SU(2). This observation is one of the starting points of this
paper.

From now on, & and § will be regarded as numbers in the square
[—7, 7] x [=m, 7] modulo 27, unless stated otherwise.

For each —m <t < m, let L; be the closed line segment
Li={(a,B) € [-m,7] x [-m, 7] | a =t,—7 < B < 7},

and let L} be the open line segment obtained by removing the endpoints.
For any small neighborhood Wj, of each point (2:7’“, ), let us W} denote
the intersection of Wi \{8 = 7} with the sector emanating from the point
(2%’“, m) bounded by two line segment L 25+ and the part of pa+¢qf = g¢m.
(See Figure 1.) ’

The following notation will be used in later discussions, for the sake
of convenience. Let S denote the subset of the square [—m, 7| x [—7, 7]
satisfying the property that S is invariant under the involution s — —s
modulo 27. Then we define the set R¥(N | S) by a subset of the repre-
sentation variety R"(N) of flat SU(2)-connections with determinant w
such that the pair («, 3) defined above lies in the subset S modulo 2.

Then our main result can be stated as follows.

THEOREM 1.2. Let K be a non-trivial knot in S, and let Y,(K) be
the 3-manifold obtained by Dehn surgery on K with surgery coefficient
r = § € Q, where p is a positive integer and q is an integer. Assume
that the following two conditions hold:
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FIGURE 1. Here S is drawn for the case § = 3. The

thin lines with slope 46 represent all possible parameters
(a, B) for the representations of 71(N) into SU(2), i.e.,
the real Ar-polynomial for the right-handed trefoil knot
3.

(1) The AR-polynomial does not have any solution over the open line
segment L%, for all k = 0,1,2,...,p — 1. (Here % should be

P
regarded as a number in [—7, 7] modulo 27.)
(2) With the definition of W} above the representation variety R" (N |
W) is empty.
Then there exists a homomorphism p : 71 (Y, (K)) — SU(2) with non-
cyclic image. In particular, m1(Y;(K)) is not cyclic.

In case of p = 1 or 2, it can always be shown that the Ag-polynomial
does not have any solution over the open line segments Lg, L%, and the
second hypothesis is satisfied by Lemma 12 in [6]. Hence we can give
another verification of Theorem 1.1.

For concrete new examples, we can take the right-handed trefoil knot
K = 3; in 83 with r = 3. Then its A-polynomial is known to be
M® + L =0 in C* x C*. (Here we did not include a factor of L — 1
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coming from reducible representations. See the Appendix of [1].) Thus
its corresponding real Agr-polynomial is given by €%® + e = 0 (or
B = 6a + 7 mod 27Z%) for (e, 8) € [-m, 7] x [, 7. It is easy to show
that the Ag-polynomial does not have any solution on the open line seg-

ment L .. Moreover, at each point (gg—k, ), the slope of § = 6+ 7 is

6. Hencegthe second hypothesis of Theorem 1.2 is automatically satis-
fied. (See Figure 1.) It is easy to see that the same argument above also
works for the case r = 6 (and many other surgery coefficients). Hence it
follows from Theorem 1.2 that m1(Y3(31)) and 7 (Ys(31)) admit homo-
morphisms into SU(2) with non-cyclic image. This answers a question
of Kronheimer and Mrowka in [6].

Unfortunately, the real Ar-polynomial does have a solution on the
open line segment L% . Hence it cannot be applied to decide whether

there exists a homom20rphism of m1(Ya(31)) into SU(2) with non-cyclic
image. On the other hand, it is well known that the surgery with coeffi-
cient +5 on the right-handed trefoil knot produces a lens space L(5,4).
(e.g., see Section 7 in [9], and here the orientation of the lens space is
taken so that L(p,q) is obtained by g-surgery on the unknot in S3.)
Since the Ag-polynomial 8 = 6a + 7 has a solution on the open line
segment L%, for integers 0 < k < 4, we see that the first hypothesis of

Theorem 1.3 cannot be removed.

This paper is organized as follows. In Section 2, we give some basic
preliminaries on the representation varieties and its connection to gauge
theory. In Section 3, we give a proof of Theorem 1.2.

ACKNOWLEDGEMENTS. The author is grateful to an anonymous .
reader for carefully reading an earlier version of the paper and providing
some useful comments. He also thanks to Han-Cheol Park of KAIST for
drawing the figures of this paper.

2. Representation varieties via gauge theory

We begin with some basic set-ups which are necessary for later dis-
cussion. The notations and definitions of this section are largely taken
from the paper [6].

As before, let Y denote a compact connected 3-manifold (possibly
with boundary). Let w be a unitary line bundle over Y, and let E be
a unitary rank 2 vector bundle whose determinant line bundle det(FE)
is isomorphic to w under an isomorphism . Let gg denote the bun-
dle whose sections are the traceless, skew-hermitian endomorphisms of
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E, and A be the affine space of SO(3) connections in gg. Let G be
the gauge group of unitary automorphisms of E with determinant equal
to 1. We use B¥(Y') for the quotient space A/G. Then we write R*¥(Y)
in BY(Y) for the space of G-orbits of flat connections. This is called
the representation variety of flat connections with determinant w. Then
the representation variety R*¥(Y') is isomorphic to the space of repre-
sentations p : m(Y) — SO(3) with wa(p) = c1(w) modulo 2. Here
wa(p) means the second Stiefel-Whitney class of the SO(3)-vector bun-
dle associated to the representation p, and ¢1(w) means the first Chern
class of the line bundle w. It is important to note that if ¢;(w) = 0
modulo 2 every representation of m1(N) — SO(3) with ¢1(w) = wa(p)
modulo 2 lifts to a representation into SU(2). Thus in this case the rep-
resentation variety R™(Y") is isomorphic to the space of homomorphisms
p:m(Y) — SU(2) up to conjugation.

Let ¢ denote an embedding of a solid torus S x D? into Y. Choose a
trivialization of w over the image (S x D?). Then under this trivializa-
tion each connection A in A(Y') gives rise to a unique connection By in
E over the image (S x D?) so that det(Bj4) is the product connection
in w over the image ¢(S? x D?). Then using the holonomy of B4 along
loops parallel to the core of the embedding and a smooth class func-
tion ¢ : SU(2) — R, we can obtain a perturbed representation variety

R$,¢)(Y) as in [6].

Next we assume that N denotes the complementary manifold with a
single torus boundary given by N = Y'\((S* x D?))°. Let z¢ denote a
base point on the boundary 8D? of the disk D?. Then we have a natural
longitude a and meridian b of the solid torus +(S' x D?) given by

a =158 x {z}), b= ({1} x OD?).

Under the above mentioned trivialization of w over (S x D?), the re-
striction of F to N is reduced to an SU(2)-bundle. Given a connection
A on gg that is flat on N, let B4 denote the unique flat SU(2) con-
nection in E over ON. Now using a determinant 1 isomorphism between
the fiber of E over the base point ¢(1, 29) we obtain the holonomy of B4
along the two loops 1 and A given by

i

i3
HOla(BA) - (60 ei)ia) and HOlb(BA) = (60 e—Olﬂ) .
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This implies that corresponding to the flat connection A we can obtain
a representation p : m(ON) — SU(2) given by

s = (% Ja) w0 = ()

Note that the pair (a(A), B(A)) in [—m, 7] x [, 7] is uniquely deter-
mined by A up to the ambiguity of sign: the points («, 8) and (—a, —0)
correspond to the same flat connection over V.

Clearly a class function ¢ on SU(2) corresponds to a function f :
R — R by the relation

w=o((5 D))

Then the function satisfies f(¢t + 27) = f(t) and f(¢) = f(—t). With
these said, the following proposition (Lemma 7 in [6]) will be crucially
used in this paper.

ProposiTION 2.1. Let f : R — R be a function corresponding to
¢ as above. Then the restriction from Y to N gives rise to a bijection

between RE, ¢)( ) and

RY(N |8 =—f'(e))-

3. Proof of Theorem 1.2

The aim of this section is to prove Theorem 1.2,

To do so, as in Section 3 of [6], we take Y as a 3-manifold obtained by
Dehn surgery on a non-trivial knot K in S® with surgery coefficient 0,
and let w — Y be a line bundle with c; (w) a generator for H2(Y;Z) = Z.
Let ¢ denote an embedding of S x D? to Y whose core is a curve
representing a generator for H;(Y;Z) (that is, the non-trivial knot K).
Let N denote the manifold with torus boundary

N =Y \((5' x D%))°,

and let a (resp. b) denote the core curve (resp. meridian curve) of the
solid torus +(S? x D?) so that a (resp. b) is isotopic to the meridian p
(resp. the longitude \) of the tubular neighborhood of the non-trivial
knot K in S3. Let s denote an isotopy class of essential closed curve on
the torus ON (which is called the slope) given by s = [pa+¢b] = [pu+q¢)].
We denote by Ys(K) the manifold obtained by Dehn filling with slope
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FIGURE 2. Here U* denotes a sufficiently small open
neighborhood of $*, and the thicken curve inside U* de-
notes an odd function —g with period 2.

s from the manifold N. In particular, Y is just Y;(K) which is the 3-
manifold obtained by 0-Dehn surgery along K from S3, and usually it
is denoted by Yy(K). Further Y, (K) is just S3.

Then we need the following proposition analogous to Proposition 9
in [6].

PROPOSITION 3.1. Let s be as above, and assume that the following
three conditions hold:

(1) Neither m1(Y,(K)) nor m1(Ys(K)) admits a homomorphism into
SU(2) with non-cyclic image.

(2) The Ar-polynomial does not have any solution over the open line
segment L%, for allk =0,1,2,...,p— 1.

P
(3) With the definition of W above the representation variety
RY(N | W§) is empty.

Then there is a holonomy perturbation (i,¢) for the manifold Y such
that the perturbed representation variety R‘(‘Z ¢)(Y) is empty.
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Proof. The proof is a slight modification of the proof of Proposition 9
in [6]. So we shall use the same notations there.

As in [6], let w, denote the line bundle over Y,(K), and let ws and
W, denote the line bundles over Y;(K). (We do not use the definition of
these line bundles seriously, so we do not give more precise definitions
in this paper.) Since the second cohomology H?(Y,(K);Z) = 0 and so
c1(wg) = 0 mod 2, every representation of 71(Y,(K)) into SO(3) lifts
to a representation into SU(2). Similarly ¢;(@,) = 0 mod 2 (see p.5 in
[6])). Thus every element of R (Y;) corresponds to a homomorphism of
m1(Ys(K)) into SU(2). Moreover, the restriction of the representations
to N gives rise to the following identifications

R™*(Ya(K)) = R¥(N|a = 0)
R¥(Ys(K)) = R¥(N |pa+gB = 0)
R (Y5(K)) = R¥(N |pa + 8 = gm).

Since H;(N;Z) = Z, it is also true that there must exist reducibles
in the representation variety R¥(N). But, as in Lemma 11 of [6], it
turns out that the pair (o, ) for the reducible elements should lie on
the line 3 = 7 on the square [—m, 7] X [—m,7]. Since Y,(K) is just S3,
by hypothesis (1) the representation variety R*(Y,(K)) consists of a
single reducible, and its corresponding pair («, 3) should be (0, 7) on the
square [—m, 7| X [—m,7]. This implies that R¥(N | Lj) and R*¥(N | L})
are all empty. Similarly the reducible elements in R%*(Y;(K)) should
be represented by the points (2%’“, 7) on the square [—m, 7] X [—m, 7] for
k=0,1,2,...,p—1. This together with the hypothesis (1) implies that
RY(N | pa + ¢ = gm) consists of only the points (Q%f“, 7) on the square
[—m, 7] x [-m, 7] for k=0,1,2,...,p— 1.

Now let Sy be the piecewise linear arc on the square [0, 7] X [—7, 7]
with vertices at the points

z1 = (0,7)

2r[E 27 (8

P
Zg[p)12 = (7?, (1- p W) , Zgz)43 = (m,0).
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Let S be the piecewise linear arc on the square [—m, 7] x [—7, 7] obtained
by reflecting S1 about the origin and joining the reflected one to S1 by
the line segment Lg. (See Figure 2.) Let S* denote the complement in S
of the points whose 3 coordinates are 7. Let U* denote any symmetric
neighborhood of S* about the origin. Note from the hypothesis (2) and
(3) that the representation variety R*(N | S*) is empty. Hence, using
the compactness of R*(N) we can choose a symmetric neighborhood U*
of §* so that R¥(N |U*) is empty. (See Figure 2 again.)

Next we choose a smooth odd function g with period 27 such that the
graph of —g on the interval [—m, 7| is contained in U*. (See Figure 2.)
This implies the existence of a corresponding class function ¢ and a
periodic even function f : R — R with f’ = g such that

) (Y) =RY(N|B = ~f'()).
But the right hand side is empty, since it is contained in the empty set by

hypothesis of the theorem. This completes the proof of Proposition 3.1.
O

Now the proof of Theorem 1.2 follows from the exactly same argu-
ment in [6]. In a little more detail, if K is a non-trivial knot in S that
contradicts to the conclusion of Theorem 1.2, then the manifold Yy(K)
admits a taut foliation and is not S x $2 [4]. Y5(K) can also be embed-
ded as a separating hypersurface in a closed symplectic 4-manifolds X
which satisfies the Witten’s conjecture relating the Seiberg-Witten in-
variants to the Donaldson’s invariants by Proposition 7 in [6]. Thus we
see that the Donaldson’s invariants are non-trivial. On the other hand,
since the perturbed representation variety ’R’E‘Z ¢)(YO(K )) is empty, the
Donaldson’s invariants must be trivial. This is clearly a contradiction,
which completes the proof of Theorem 1.2.
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