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ON EXISTENCE OF WEAK SOLUTIONS OF NEUMANN

PROBLEM FOR QUASILINEAR ELLIPTIC EQUATIONS

INVOLVING p-LAPLACIAN IN AN UNBOUNDED DOMAIN

Trinh Thi Minh Hang and Hoang Quoc Toan

Abstract. In this paper we study the existence of non-trivial weak so-
lutions of the Neumann problem for quasilinear elliptic equations in the
form

−div(h(x)|∇u|p−2∇u) + b(x)|u|p−2u = f(x, u), p ≥ 2

in an unbounded domain Ω ⊂ RN , N ≥ 3, with sufficiently smooth
bounded boundary ∂Ω, where h(x) ∈ L1

loc(Ω), Ω = Ω ∪ ∂Ω, h(x) ≥ 1

for all x ∈ Ω. The proof of main results rely essentially on the arguments
of variational method.

1. Introduction and preliminaries results

We are concerned with the study of a Neumann problem of the type

(1.1)

 −div(h(x)|∇u|p−2∇u) + b(x)|u|p−2u = f(x, u) in Ω,
∂u

∂n
= 0 on ∂Ω, u(x) → 0 as |x| → +∞,

where p ≥ 2, Ω ⊂ RN , N ≥ 3, is an unbounded domain with sufficiently
smooth bounded boundary ∂Ω, Ω = Ω ∪ ∂Ω, n is the outward unit normal to
∂Ω, f : Ω × R −→ R is a function which will be specified later, h(x) and b(x)
are satisfied the following conditions:

(H) h(x) ∈ L1
loc(Ω), h(x) ≥ 1 for all x ∈ Ω.

(B) b(x) ∈ L∞
loc(Ω), b(x) ≥ b0 > 0 for all x ∈ Ω.

We first make some comments on the problem (1.1). In the case when Ω is
a bounded domain in RN or h(x) = 1 there were extensive studies in the last
decades dealing with the Neumann problems of type (1.1). We just remember
the papers [1, 2, 4, 3], [10, 12, 13, 16], where different techniques of finding
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solutions are illustrated. We also find that in the case that h(x) ∈ L1
loc(Ω), the

quasilinear elliptic equations of type (1.1), with Dirichlet boundary condition,
have been studied by D. M. Duc, N. T. Vu ([7]), H. Q. Toan, N. Q. Anh, N. T.
Chung (see [15, 14, 5]). The goal of this work we study the existence of weak
solutions of Neumann problem for quasilinear elliptic equations with singular
coefficients involving the p-Laplace operator of type (1.1) in an unbounded
domain Ω ⊂ RN with sufficiently smooth bounded boundary ∂Ω.

In order to state our main results let us introduce following some hypotheses:

(F1) f(x, t) ∈ C1(Ω× R,R), f(x, 0) = 0, x ∈ Ω.
(F2) There exist functions τ : Ω −→ R, τ(x) ≥ 0 for x ∈ Ω and constant

r ∈ (p− 1, N+p
N−p ) such that

|f
′

z(x, z)| ≤ τ(x)|z|r−1 for a.e. x ∈ Ω,

τ(x) ∈ L∞(Ω) ∩ Lr0(Ω), r0 =
Np

Np− (r + 1)(N − p)
.

(F3) There exists µ > p such that

0 < µF (x, z) = µ

∫ z

0

f(x, t)dt ≤ zf(x, z), x ∈ Ω, z ̸= 0.

Denote by

C∞
0 (Ω) = {u ∈ C∞(Ω) : supp u compact ⊂ Ω}

and W 1,p(Ω) is the usual Sobolev space which can be defined as the completion
of C∞

0 (Ω) under the norm

||u|| =
(∫

Ω

(|∇u|p + |u|p)dx
) 1

p

.

We now consider following subspace of W 1,p(Ω), defined by

H =

{
u ∈ W 1,p(Ω) :

∫
Ω

(h(x)|∇u|p + b(x)|u|p)dx < +∞
}

and H can be endowed with the norm

||u||H =

(∫
Ω

h(x)|∇u|p + b(x)|u|pdx
) 1

p

.

Applying the method as those used in [14] or [5], we can prove that:

Proposition 1.1. H is a Banach space. The embedding continuous H ↪→
W 1,p(Ω) holds true.

Proof. It is clear that H is a normed space. Let {um} be a Cauchy sequence
in H. Then

lim
m,k→∞

∫
Ω

(h(x)|∇(um − uk)|p + b(x)|um − uk|p)dx = 0

and {||um||H} is bounded.
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Since ||um−uk||W 1,p(Ω) ≤ b||um−uk||H , b is a positive constant for all m, k,

{um} is also a Cauchy sequence in W 1,p(Ω) and it converges to u in W 1,p(Ω),
i.e.,

lim
m→+∞

∫
Ω

(|∇um −∇u|p + |um − u|p)dx = 0.

It follows the sequence {∇um} converges to ∇u and {um} converges to u in
Lp(Ω). Therefore {∇um(x)} converges to ∇u(x) and {um(x)} converges to
{u(x)} for almost everywhere x ∈ Ω. Applying Fatou’s lemma we get∫
Ω

(h(x)|∇u|p+b(x)|u|p)dx ≤ lim
m→+∞

inf

∫
Ω

(h(x)|∇um|p+b(x)|um|p)dx < +∞.

Hence u ∈ H. Applying again Fatou’s lemma

0 ≤ lim
m→+∞

∫
Ω

(h(x)|∇um −∇u|p + b(x)|um − u|p)dx

≤ lim
m→+∞

[
lim

k→+∞
inf

∫
Ω

(h(x)|∇um −∇uk|p + b(x)|um − uk|p)dx
]
= 0.

Hence {um} converges to u in H. Thus H is a Banach space and the continuous
embedding H ↪→ W 1,p(Ω) holds true. □

Definition 1.1. A function u ∈ H is a weak solution of the problem (1.1) if
and only if∫

Ω

h(x)|∇u|p−2∇u∇φdx+

∫
Ω

b(x)|u|p−2uφdx−
∫
Ω

f(x, u)φdx = 0(1.2)

for all φ ∈ C∞
0 (Ω).

Remark 1.1. If u0 ∈ C∞
0 (Ω) satisfied the condition (1.2), hence u0 is a classical

solution of the problem (1.1). Indeed, since u0 ∈ C∞
0 (Ω), supp u0 compact,

hence there exists R > 0 large enough such that ∂Ω ⊂ BR(0), supp u0 ⊂
Ω ∩BR(0) where BR(0) is ball of radius R.

By denote ΩR = Ω ∩BR(0), then from (F1) we have∫
ΩR

h(x)|∇u0|p−2∇u0∇φdx+

∫
ΩR

b(x)|u0|p−2u0φdx−
∫
ΩR

f(x, u0)φdx = 0

for all φ ∈ C∞
0 (Ω).

Applying Green’s formula and remark that supp u0 ⊂ Ω ∩BR(0) we get∫
ΩR

−div(h(x)|∇u0|p−2∇u0)φ+ b(x)|u0|p−2u0φ)dx

+

∫
∂Ω

h(x)|∇u0|p−2 ∂u0

∂n
φdσ −

∫
ΩR

f(x, u0)φdx = 0 for all φ ∈ C∞
0 (Ω).

This implies that∫
ΩR

(−div (h(x)|∇u0|p−2∇u0)φ+ b(x)|u0|p−2u0φ)dx−
∫
ΩR

f(x, u0)φdx = 0
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for all φ ∈ C∞
0 (ΩR). From this it follows that

(1.3)

−div(h(x)|∇u0|p−2∇u0) + b(x)|u0|p−2u0 = f(x, u0) in Ω,
∂u0

∂n
= 0 on ∂Ω.

Thus u0 is a classical solution of (1.1).

Our main result given by the following theorem:

Theorem 1.1. Assuming hypotheses (F1)-(F3) are fulfilled then the problem
(1.1) has at least one nontrivial weak solution in H.

Theorem 1.1 will be proved by using a variation of the Mountain pass the-
orem in [6].

2. Existence of a weak solution

We define the functional J : H −→ R by

J(u) =
1

p

∫
Ω

h(x)|∇u|pdx+
1

p

∫
Ω

b(x)|u|pdx−
∫
Ω

F (x, u)dx(2.4)

= T (u)− P (u),

where

T (u) =
1

p

∫
Ω

h(x)|∇u|pdx+
1

p

∫
Ω

b(x)|u|pdx

and

P (u) =

∫
Ω

F (x, u)dx.

Firstly we remark that, due to the presence of h(x) ∈ L1
loc(Ω), in general,

the functional T does not belong to C1(H). This mean that we cannot apply
the classical Mountain pass theorem by Ambrossetti-Rabinowitz. In order to
overcome this difficulty, we shall apply a weak version of the Mountain pass
theorem introduced by D. M. Duc ([6]). Now we first recall the following useful
concept:

Definition 2.1. Let J be a functional from a Banach space Y into R. We say
that J is weakly continuously differentiable on Y if and only if three following
conditions are satisfied:

(i) J is continuous on Y .
(ii) For any u ∈ Y there exists a linear map DJ(u) from Y into R such

that

lim
t→0

J(u+ tφ)− J(u)

t
=

⟨
DJ(u), φ

⟩
, ∀φ ∈ Y.

(iii) For any φ ∈ Y , the map u 7→
⟨
DJ(u), φ

⟩
is continuous on Y .

Proposition 2.1. Assuming hypotheses of Theorem 1.1 are fulfilled. We assert
that
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(i) P is continuous on H. Moreover, P is weakly continuously differentiable
on H and ⟨

DP (u), v
⟩
=

∫
Ω

f(x, u)vdx, ∀u, v ∈ H.

(ii) T is continuous on H.
(iii) T is weakly continuously differentiable on H and⟨

DT (u), v
⟩
=

∫
Ω

(
h(x)|∇u|p−2∇u∇v + b(x)|u|p−2uv

)
dx, ∀u, v ∈ H.

Thus J = T − P is weakly continuously differentiable on H and

(2.5)
⟨
DJ(u), v

⟩
=

∫
Ω

(
h(x)|∇u|p−2∇u∇v + b(x)|u|p−2uv

)
dx−

∫
Ω

f(x, u)vdx

∀u, v ∈ H.

Proof. (i) By hypotheses of Theorem 1.1, applying Theorem C1 in [11, p. 248],
we have P ∈ C1(W 1,p(Ω)). Since the embedding H ↪→ W 1,p(Ω) is continuous,
we also have P ∈ C1(H) and then P is weakly continuously differentiable on
H. Moreover, ⟨

DP (u), v
⟩
=

∫
Ω

f(x, u)vdx ∀u, v ∈ H.

(ii) Let {um} be a sequence converging to u in H, i.e.,

lim
m−→+∞

∫
Ω

(h(x)|∇um −∇u|p + b(x)|um − u|p) dx = 0.

Then {||um||H} is bounded.
First we observe that: for some θ ∈ (0, 1):

||∇um|p − |∇u|p| = p|∇um + θ(∇um −∇u)|p−1|∇um −∇u|
≤ p2p−2

(
|∇um|p−1|∇um −∇u|+ |∇um −∇u|p

)
.

Hence by applying the Holder’s inequality we get∣∣∣∣1p
∫
Ω

h(x)|∇um|pdx− 1

p
h(x)|∇u|pdx

∣∣∣∣(2.6)

≤ 1

p

∫
Ω

h(x)||∇um|p − |∇u|p|dx

≤ 2p−2

∫
Ω

h(x)|∇um|p−1|∇um −∇u|dx+ 2p−2

∫
Ω

h(x)|∇um −∇u|pdx

≤ 2p−2

(∫
Ω

(h(x)
p−1
p |∇um|p−1)

p
p−1 dx

) p−1
p

(∫
Ω

(h(x)|∇(um − u)|p)dx
) 1

p

+ 2p−2

∫
Ω

(h(x)|∇(um − u)|p)dx

≤ c1

(
||um||p−1

H ||um − u||H + ||um − u||pH
)
.
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Similarly, we also have∣∣∣∣1p
∫
Ω

b(x)|um|pdx− 1

p

∫
Ω

b(x)|u|pdx
∣∣∣∣(2.7)

≤ c2

(
||um||p−1

H ||um − u||H + ||um − u||pH
)
.

Combining (2.6) and (2.7) we have

|T (um)− T (u)| ≤ c3

(
||um||p−1

H ||um − u||H + ||um − u||pH
)

with c1, c2, c3 > 0. Letting m → +∞ since ||um − u||H → 0 and {||um||H}
bounded, we obtain

lim
m→+∞

T (um) = T (u).

Thus T is continuous on H.
(iii) For all u, v ∈ H, any t ∈ (−1, 1) \ {0} and a.e. x ∈ Ω we have∣∣∣∣h(x)|∇u+ t∇v|p − h(x)|∇u|p

t

∣∣∣∣
= p

∣∣∣∣∫ 1

0

h(x)|∇u+ st∇v|p−2(∇u+ st∇v)∇vds

∣∣∣∣
≤ p

∫ 1

0

h(x)|∇u+ st∇v|p−1|∇v|ds ≤ p2p−2h(x)(|∇u|p−1|∇v|+ |∇v|p)

≤ p2p−2
(
h(x)

p−1
p |∇u|p−1h(x)

1
p |∇v|+ h(x)|∇v|p

)
.

Since u, v ∈ H, we observe that∫
Ω

(
h(x)

p−1
p |∇u|p−1h(x)

1
p |∇v|+ h(x)|∇v|p

)
dx

≤
(∫

Ω

(h(x)
p−1
p |∇u|p−1)

p
p−1 dx

) p−1
p

(∫
Ω

h(x)|∇v|pdx
) 1

p

+ c5||v||pH

≤ c4||u||p−1
H ||v||H + c5||v||pH < +∞,

where c4, c5 two positive constants.
HenceG(x) = h(x)|∇u|p−1|∇v|+h(x)|∇v|p ∈ L1(Ω). Applying the Lebesgue

dominated convergence theorem we get

lim
t→0

∫
Ω

h(x)|∇u+ t∇v|p − h(x)|∇u|p

t
dx = p

∫
Ω

h(x)|∇u|p−2∇u∇vdx.

Similarly we also have

lim
t→0

∫
Ω

b(x)|u+ tv|p − b(x)|u|p

t
dx = p

∫
Ω

b(x)|u|p−2uvdx.

This implies that⟨
DT (u), v

⟩
= lim

t→0

T (u+ tv)− T (u)

t
=

∫
Ω

(h(x)|∇u|p−2∇u∇v+b(x)|u|p−2uv)dx.
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Thus T is weakly differentiable on H.
Let v ∈ H be fixed, we now prove that the map u 7→

⟨
DT (u), v

⟩
is continuous

on H.
Assume um → u in H, that is

lim
m→+∞

∫
Ω

(h(x)|∇um −∇u|p + b(x)|um − u|p)dx = 0.

By hypotheses (H) and (B) it follows that ∇um → ∇u and um → u in Lp(Ω).
Applying Theorem C.2 in [11, p. 249] for function g(x, s) = |s|p−2s, we deduce
that

g(x,∇um) = |∇um|p−2∇um −→ |∇u|p−2∇u

and

g(x, um) = |um|p−2um −→ |u|p−2u

in (L
p

p−1 (Ω))N as m → +∞, where (Lr(Ω))
N

= Lr(Ω)× Lr(Ω)× · · · × Lr(Ω)
(N times). Using this fact we shall proved that the map u →

⟨
DT (u), v

⟩
is

continuous on H for every v fixed in H.
Indeed for φ ∈ C∞

0 (Ω), ω = suppφ, we have

|
⟨
DT (um)−DT (u), φ

⟩
|

=

∣∣∣∣∫
Ω

{h(x)(|∇um|p−2∇um−|∇u|p−2∇u)∇φ+b(x)(|um|p−2um−|u|p−2u)φ}dx
∣∣∣∣

=

∣∣∣∣∫
ω

{h(x)(|∇um|p−2∇um−|∇u|p−2∇u)∇φ+b(x)(|um|p−2um−|u|p−2u)φ}dx
∣∣∣∣

≤ C(φ){||g(x,∇um)− g(x,∇u)||
L

p
p−1 (ω)

||∇φ||Lp(ω)

+ ||g(x, um)− g(x, u)||
L

p
p−1 (ω)

||φ||Lp(ω)},

where C(φ) is a constant positive. From this letting m → +∞ we get

lim
m→+∞

|
⟨
DT (um)−DT (u), φ

⟩
| = 0.

Since C∞
0 (Ω) is dense in H we deduce that for every v ∈ H fixed

lim
m→+∞

|
⟨
DT (um)−DT (u), v

⟩
| = 0.

The proof of Proposition 2.1 is complete. □

Proposition 2.2. Suppose that sequence {um} is weakly converging to u in
W 1,p(Ω). Then we have

T (u) ≤ lim
m→+∞

inf T (um).

Proof. Since {um} weakly converging in W 1,p(Ω) hence for all bounded Ω′ ⊂⊂
Ω, {um} is also weakly converging in W 1,p(Ω′). By compactness of the em-
bedding W 1,p(Ω′) into Lp(Ω′), the sequence {um} converges strongly in Lp(Ω′)



1176 TRINH THI MINH HANG AND HOANG QUOC TOAN

then {um} converges strongly in L1(Ω′). Applying Theorem 1.6 in [6, p. 9] or
Theorem 4.5 [8, p. 129], we deduce that

T (u) ≤ lim
m→+∞

inf T (um).

The proof of Proposition 2.2 is complete. □

Proposition 2.3. The functional J : H −→ R is defined by (2.4), i.e.,

J(u) = T (u)− P (u), u ∈ H

satisfies the Palais-Smale condition on H.

Proof. Let {um} be a sequence in H such that

lim
m→∞

J(um) = c, lim
m→+∞

||DJ(um)||H* = 0.

First, we shall proved that {um} is bounded in H. We suppose by contradiction
that {um} is not bounded inH. Then there exists a subsequence {umk

} of {um}
such that ||umk

||H → +∞ as k → +∞. Observe further that

J(umk
)− 1

µ

⟨
DJ(umk

), umk

⟩
= T (umk

)− 1

µ

⟨
DT (umk

), umk

⟩
+
1

µ

⟨
DP (umk

), umk

⟩
−P (umk

)

≥ (
1

p
− 1

µ
)||umk

||pH

yields

J(umk
) ≥ (

1

p
− 1

µ
)||umk

||pH +
1

µ

⟨
DJ(umk

), umk

⟩
≥ (

1

p
− 1

µ
)||umk

||pH − 1

µ
||DJ(uumk

)||H* ||umk
||H

≥ ||umk
||H

(
γ0||umk

||p−1
H − 1

µ
||DJ(umk

)||H*

)
,

where γ0 = 1
p − 1

µ > 0.

From this letting k → +∞, since ||umk
||H → +∞, ||DJ(umk

)||H* → 0, we
deduce J(umk

) → +∞ yields a contradiction. Hence {um} is bounded in H.
By the continuous embedding H into W 1,p(Ω), {um} is bounded in W 1,p(Ω).
Therefore, there exists a subsequence {umk

} of {um} converging weakly to

u in W 1,p(Ω). Since the embedding W 1,p(Ω) ↪→ Lp*

(Ω) is continuous, the

subsequence {umk
} converges weakly to u in Lp*

(Ω) and umk
→ u a.e. x ∈ Ω.

It follows that {umk
} is bounded in Lp*

(Ω), that is there exists a constant
M > 0 such that

||umk
||
Lp* (Ω)

≤ M for all k = 1, 2, . . . .
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We remark that by hypotheses (F2) and (F3) we get

0 ≤ F (x, z) ≤ τ(x)|z|r+1 for x ∈ Ω, z ∈ R− {0},
where τ(x) ∈ Lr0(Ω) ∩ L∞(Ω).

Then by Holder’s inequality and remark that 1
r0

+ r+1
p* = 1 we deduce

P (umk
) =

∫
Ω

F (x, umk
)dx ≤

∫
Ω

τ(x)|umk
|r+1

≤ ||τ(x)||Lr0 (Ω)||umk
||r+1

Lp* (Ω)

≤ Mr+1||τ(x)||Lr0 (Ω).

By Proposition 2.2 we get

T (u) ≤ lim
k→+∞

inf T (umk
) ≤ lim

k→+∞
[P (umk

) + J(umk
)]

≤ c+ ||τ(x)||Lr0 (Ω)M
r+1 < +∞.

Thus u ∈ H.
Since {umk

} is weakly converges to u in Lp*

(Ω) and umk
→ u a.e. x ∈ Ω.

Then it is clear that |umk
|r−1umk

is converges weakly to |u|r−1u in L
p*

r (Ω).

With similar arguments as those in [9], we define the map K(u) : L
p*

r (Ω) −→ R
by ⟨

K(u), ω
⟩
=

∫
Ω

τ(x)uωdx for ω ∈ L
p*

r (Ω).

We remark that K(u) is linear and continuous provided that τ(x) ∈ Lr0(Ω),

u ∈ Lp*

(Ω), ω ∈ L
p*

r (Ω) and 1
r0

+ 1
p* + r

p* = 1. Hence⟨
K(u), |umk

|r−1umk

⟩
−→

⟨
K(u), |u|r−1u

⟩
as k → +∞,

i.e.,

(2.8) lim
k→+∞

∫
Ω

τ(x)|umk
|r−1umk

udx =

∫
Ω

τ(x)|u|r+1dx.

Similarly we also have

(2.9) lim
k→+∞

∫
Ω

τ(x)|umk
|r+1dx =

∫
Ω

τ(x)|u|r+1dx.

Combining (2.8), (2.9) we get

(2.10) lim
k→+∞

∫
Ω

τ(x)|umk
|r−1umk

(umk
− u)dx = 0.

By (2.10), (F1), (F2) we obtain

lim
m→+∞

∫
Ω

f(x, umk
)(umk

− u)dx = 0,

i.e.,

(2.11) lim
k→+∞

⟨
DP (umk

), umk
− u

⟩
= 0.
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It follows from (2.11) that

lim
k→+∞

⟨
DT (umk

), umk
− u

⟩
= lim

k→+∞

⟨
DJ(umk

), (umk
− u)

⟩
+ lim

k→+∞

⟨
DP (umk

), (umk
− u)

⟩
= 0.

Moreover, since T is convex we have

T (u)− T (umk
) ≥

⟨
DT (umk

, u− umk
)
⟩
.

Letting k → +∞ we obtain that

T (u)− lim
k→+∞

T (umk
) = lim

k→+∞
[T (u)− T (umk

)]

≥ lim
k→+∞

⟨
DT (umk

), u− umk

⟩
= 0.

Thus

T (u) ≥ lim
k→+∞

T (umk
).

On other hand, by Proposition 2.2 we have

T (u) ≤ lim
k→+∞

inf T (umk
).

Hence, from two above inequalities, we get T (u) = limk→+∞ T (umk
).

Now, we shall prove that the subsequence {umk
} converges strongly to u in

H, i.e., limk→+∞ ||umk
− u||H = 0.

Indeed, we suppose by contradiction that {umk
} does not converge strongly

to u in H. Then there exist a constant ε0 > 0 and a subsequence {umkj
} of

{umk
} such that ||umkj

− u||H ≥ ε0 for any j = 1, 2, . . . .

By recalling the Clarkson’s inequality

|α+ β

2
|p + |α− β

2
|p ≤ 1

2
(|α|p + |β|p), ∀α, β ∈ R.

We deduce that

1

2
T (u) +

1

2
T (v)− T (

u+ v

2
) ≥ T (

u− v

2
), ∀u, v ∈ H.

From this, for any j = 1, 2, . . . , we have

1

2
T (umkj

) +
1

2
T (u)− T (

umkj
+ u

2
) ≥ T (

umkj
− u

2
).

Remark that

T (
umkj

− u

2
) =

1

p2p
||umkj

− u||pH ≥ 1

p2p
εp0.

We get

(2.12)
1

2
T (umkj

) +
1

2
T (u)− T (

umkj
+ u

2
) ≥ 1

p2p
εp0.
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Again instead of the remark that since {
umkj

+u

2 } converges weakly to u in

W 1,p(Ω), by Proposition 2.2 we have

T (u) ≤ lim
j→+∞

inf T (
umkj

+ u

2
).

From (2.12), letting j → +∞ we obtain that

T (u)− lim
j→+∞

inf T (
umkj

+ u

2
) ≥ 1

p2p
εp0.

Hence 0 ≥ 1

p2p
εp0, which is a contradiction.

Therefore, {umk
} converges strongly to u in H. Thus, the functional J

satisfies the Palais-Smale condition on H. The proof of Proposition 2.3 is
complete. □

We remark that the critical points of the functional J correspond to the
weak solutions of the problem (1.1). Thus our idea is to apply a variation of
the Mountain pass theorem (see [6]) in order to obtain at least one non-trivial
weak solution of the problem (1.1).

In what follows, we will prove proposition which shows that the functional
J has the Mountain pass geometry.

Proposition 2.4. (i) There exist α > 0 and ρ > 0 such that J(u) ≥ α > 0 for
all u ∈ H, ||u||H = ρ.

(ii) There exists u0 ∈ H, ||u0||H > ρ and J(u0) < 0.

Proof. (i) Using (F2) and L’Hospistal theorem we have

lim
z→0

F (x, z)

zp
= lim

z→0

f(x, z)

pzp−1
= lim

z→0

f ′
z(x, z)

p(p− 1)zp−2
= 0.

Thus

(2.13) lim
z→0

F (x, z)

zp
= 0.

Using (F2) there exists A a positive constant such that

|f(x, z)| ≤ A|z|r.
We integrate again

0 < F (x, z) ≤ A|z|r+1,

where A is a positive constant. Then

0 ≤ lim
z→+∞

F (x, z)

z
Np

N−p

≤ lim
z→+∞

A|z|r+1

z
Np

N−p

= 0

with r ∈ (p− 1, N+p
N−p ). Hence

(2.14) lim
z→+∞

F (x, z)

z
Np

N−p

= 0.
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Using (2.13), (2.14), we obtain

∀ε > 0, ∃δ1 > 0 such that |F (x,z)
zp | < ε for all z with |z| < δ1.

∀ε > 0, ∃δ2 > 0 such that |F (x,z)

z
Np

N−p

| < ε for all z with |z| > δ2.

Thus ∀ε > 0, there exist δ1, δ2 > 0 such that

F (x, z) < ε|z|p, |z| < δ1 and F (x, z) < ε|z|
Np

N−p , |z| > δ2.

Using the relation 0 < F (x, z) ≤ A|z|r+1 there exists a constant b > 0 such
that F (x, z) ≤ b for all |z| ∈ [δ1, δ2]. We conclude that for all ε > 0, there exists
bε > 0 such that

(2.15) F (x, z) ≤ ε|z|p + bε|z|
Np

N−p .

Using (2.15) we have

J(u) =
1

p
||u||pH −

∫
Ω

F (x, u)dx

≥ 1

p
||u||pH − ε

∫
Ω

|u|pdx− bε

∫
Ω

|u|
Np

N−p dx.

For p ≤ q ≤ Np
N−p , W

1,p(Ω) ↪→ Lq(Ω) is continuous. So the embedding H ↪→
Lq(Ω) is continuous, |u|Lq(Ω) ≤ c||u||H . Thus we have

|u|Lp ≤ C1||u||H .

|u|
L

Np
N−p

≤ C2||u||H .

Therefore

J(u) ≥ 1

p
||u||pH − εCp

1 ||u||
p
H − bεC

Np
N−p

2 ||u||
Np

N−p

H

≥ ||u||pH
(
1

p
− εCp

1 − bεC
Np

N−p

2 ||u||
Np

N−p−p

)
.

Letting ε ∈ (0, 1
pCp

1
) and ||u||H = ρ small enough such that

1

p
− εCp

1 − bεC
Np

N−p

2 ||u||
Np

N−p−p

H > 0,

we obtain

J(u) ≥
(
1

p
− εCp

1 − bεC
Np

N−p

2 ||u||
Np

N−p−p

)
ρp = α > 0.

ii) Denote h(t) = F (x,tz)
tµ for all t > 0.

Then using (F3) we get

h′(t) =
1

tµ+1
[tzf(x, tz)− µF (x, tz)] ≥ 0, ∀t > 0.
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Thus we deduce for any t ≥ 1, F (x, tz) ≥ tµF (x, z). Let w0 ∈ C∞
0 (Ω) be such

that meas ({x ∈ (Ω) : |w0(x)| > 0}) > 1 then with t > 1 we get

J(tw0) =

∫
Ω

1

p
(h(x)|∇(tw0)|p + b(x)|tw0|p) dx−

∫
Ω

F (x, tw0)dx

=

∫
Ω

tp

p
(h(x)|∇w0|p + b(x)|w0|p) dx−

∫
Ω

F (x, tw0)dx

≤ tp

p
||w0||pH − tµ

∫
Ω

F (x,w0)dx.

Since µ > p, the right hand-side of above inequality converges to −∞ when
t → +∞. Then there exists t0 > 0 such that ||t0w0||H > ρ and J(t0w0) < 0.
Set u0 = t0w0, we have J(u0) < 0 and ||u0|| > ρ.

The proof of Proposition 2.4 is complete. □

Proposition 2.5. (i) J(0) = 0.
(ii) The acceptable set G = {γ ∈ C([0, 1],H) : γ(0) = 0, γ(1) = u0} is not

empty, where u0 is given in Proposition 2.4.

It is clear that: (i) follows from (F1) and the definition of J .
(ii) Let γ(t) = tu0, then γ(t) ∈ G.

Proof of Theorem 1.1. By Propositions 2.1-2.5, all assumptions of the varia-
tions of the Mountain pass theorem introduced in [6] are satisfied. Therefore
there exists û ∈ H such that

0 < α ≤ J(û ) = inf{max J(γ([0, 1])) : γ ∈ G}

and
⟨
DJ(û ), v

⟩
= 0 for all v ∈ H, i.e., û is a weak solution of the problem

(1.1). Moreover since J(û ) > 0 = J(0), û is a nontrivial weak solution of the
problem (1.1). The Theorem 1.1 is completely proved. □
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