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ON EXISTENCE OF WEAK SOLUTIONS OF NEUMANN
PROBLEM FOR QUASILINEAR ELLIPTIC EQUATIONS
INVOLVING p-LAPLACIAN IN AN UNBOUNDED DOMAIN

TrINH THI MINH HANG AND HOANG QuocC ToOAN

ABSTRACT. In this paper we study the existence of non-trivial weak so-
lutions of the Neumann problem for quasilinear elliptic equations in the
form

—div(h(2)|VulP~2Vu) + b(2)[ul?~u = f(a,u), p>2

in an unbounded domain Q@ C RN, N > 3, with sufficiently smooth
bounded boundary 992, where h(z) € Llloc(ﬁ)7 Q=0QuUoQ, h(z) > 1
for all z € Q. The proof of main results rely essentially on the arguments
of variational method.

1. Introduction and preliminaries results
We are concerned with the study of a Neumann problem of the type
—div(h(z)|Vul[P~2Vu) + b(z)|ulP~2u = f(z,u) inQ,

20 on 0, u(x)— 0 as |z| = +o0,

on
where p > 2, Q ¢ RV, N > 3, is an unbounded domain with sufficiently
smooth bounded boundary 02, Q = QU 09, n is the outward unit normal to
0, f: QxR — R is a function which will be specified later, h(z) and b(z)

are satisfied the following conditions:
(H) h(z) € LL (Q), h(z) > 1 for all x € Q.

loc

(B) b(z) € L2 (Q), b(x) > by > 0 for all z € Q.

loc

(1.1)

We first make some comments on the problem (1.1). In the case when € is
a bounded domain in RY or h(z) = 1 there were extensive studies in the last
decades dealing with the Neumann problems of type (1.1). We just remember
the papers [1, 2, 4, 3], [10, 12, 13, 16], where different techniques of finding
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solutions are illustrated. We also find that in the case that h(z) € L, (), the
quasilinear elliptic equations of type (1.1), with Dirichlet boundary condition,
have been studied by D. M. Duc, N. T. Vu ([7]), H. Q. Toan, N. Q. Anh, N. T.
Chung (see [15, 14, 5]). The goal of this work we study the existence of weak
solutions of Neumann problem for quasilinear elliptic equations with singular
coefficients involving the p-Laplace operator of type (1.1) in an unbounded
domain Q ¢ RY with sufficiently smooth bounded boundary 5.

In order to state our main results let us introduce following some hypotheses:

(F1) f(z,t) € CH(Q x R,R), f(x,0) =0,z € Q.

(F2) There exist functions 7 : Q@ — R, 7(z) > 0 for z € Q and constant

re(p—1, %—fi) such that

\fo(@,2)| < 7(2)]z|""1 for ae. x € Q,
Np
Np—(r+1)(N—-p)

T(z) € L®(Q)NL™(Q), 1=
(F3) There exists 1 > p such that

0< puF(x,z)= ,Lt/zf(x,t)dt <zf(z,2), €Q, z#0.
Denote by 0

Ce () = {u € C>*(Q) : supp u compact C Q}

and WP (Q) is the usual Sobolev space which can be defined as the completion

of C§° () under the norm

IWH(ANVMP+MWM>;

We now consider following subspace of W1?(Q), defined by
H = {u c Whr(Q): /(h(m)\Vu|p + b(z)|u|P)dx < —|—oo}
Q

and H can be endowed with the norm

ull = ( [ 1)1l + b0
Q
Applying the method as those used in [14] or [5], we can prove that:

Proposition 1.1. H is a Banach space. The embedding continuous H —
WLP(Q) holds true.

Proof. Tt is clear that H is a normed space. Let {u,,} be a Cauchy sequence
in H. Then

lim (h(2)|V (i, — ug)|P + b(x) |ty — ug|P)dz =0

m,k—oo Jo

and {||um ||z} is bounded.
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Since ||up, — wg|lwie ) < bl|wm —uk||m, b is a positive constant for all m, k,
{umm} is also a Cauchy sequence in WP(£) and it converges to u in WP (Q),
ie.,

lim IVt — Vul? + |ty — ulP)dz = 0.
m—+0o0 [o
It follows the sequence {Vu,,} converges to Vu and {u,,} converges to u in
L?(Q). Therefore {Vu,,(x)} converges to Vu(z) and {u,,(z)} converges to
{u(x)} for almost everywhere x € Q. Applying Fatou’s lemma we get

/ (h(a) [Vl + b)) <l inf / (h(@) [Vt [P +b(a) [t )t < +00.
Q m—T0o0 Q
Hence v € H. Applying again Fatou’s lemma

0< lim (h(z)|Vum, — Vul? + b(z)|uy, — ul?)dz
Q

m——+oo

< lim [ lim inf/(h(x)Wum — Vugl? + b(z)|um, — uk|p)d4 =0.
Q

m—+o00 | k—+oo

Hence {uy, } converges to v in H. Thus H is a Banach space and the continuous
embedding H < W1P(Q) holds true. O

Definition 1.1. A function v € H is a weak solution of the problem (1.1) if
and only if

(1.2) /Qh(x)\VuV’*zVchpdz+/Qb(x)|u|p72u<pda?f/Qf(x,u)(pd:r:O

for all p € C§°(Q).

Remark 1.1. If ug € C§° () satisfied the condition (1.2), hence ug is a classical
solution of the problem (1.1). Indeed, since ug € C§°(Q), supp ug compact,
hence there exists R > 0 large enough such that 9Q C Bg(0), supp ug C
QN Bgr(0) where Bg(0) is ball of radius R.

By denote Qg = QN Br(0), then from (F1) we have

h(z)|Vuo P2 VugVdr + b(x)|uolP~ugpdr — f(z,ug)pdz =0
Or Qr Qr
for all p € C5°(9).
Applying Green’s formula and remark that supp ug C QN Br(0) we get

/ —div(h(z)[Vuol?~ Vo )p + () |uo|P2uop)de
Qr

+/ h(x)|Vu0|p*2%godU - f(z,up)pdr =0 for all p € C5(Q).
o0 on Qg

This implies that

/ (—div (h(z)|Vuo|P~2Vug) e + b(z)|uo|P*ugp)dr — f(z,ug)pdz =0
Qr Qr
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for all ¢ € C§°(2R). From this it follows that
—div(h(z)|Vug|P~2Vug) + b(x)|uo|P2up = f(z,up) in Q,

%zOon@Q.

Thus wg is a classical solution of (1.1).

(1.3)

Our main result given by the following theorem:

Theorem 1.1. Assuming hypotheses (F1)-(F3) are fulfilled then the problem
(1.1) has at least one nontrivial weak solution in H.

Theorem 1.1 will be proved by using a variation of the Mountain pass the-

orem in [6].

2. Existence of a weak solution

We define the functional J : H — R by

! p 1 z)|ulPdx — z,u)dr
(2.4) J@z;LM@WM@+pLMM|d LF@)d
= T(U) - P(’U,),
where ) )
HM:ELMMWWM+5AMMMMx
and

H@zAF@wm

Firstly we remark that, due to the presence of h(z) € L} (), in general,
the functional 7' does not belong to C'(H). This mean that we cannot apply
the classical Mountain pass theorem by Ambrossetti-Rabinowitz. In order to
overcome this difficulty, we shall apply a weak version of the Mountain pass
theorem introduced by D. M. Duc ([6]). Now we first recall the following useful
concept:

Definition 2.1. Let J be a functional from a Banach space Y into R. We say
that J is weakly continuously differentiable on Y if and only if three following
conditions are satisfied:
(i) J is continuous on Y.
(ii) For any v € Y there exists a linear map DJ(u) from Y into R such
that

lim J(u+tp) — J(
t—0 t
(iii) For any ¢ € Y, the map u > (DJ(u),¢) is continuous on Y.

u) = (DJ(u),p),Vp €Y.

Proposition 2.1. Assuming hypotheses of Theorem 1.1 are fulfilled. We assert
that
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(i) P is continuous on H. Moreover, P is weakly continuously differentiable
on H and

<DP(u),v>:/Qf(x,u)vdm, Yu,v € H.

(ii) T is continuous on H.
(iii) T is weakly continuously differentiable on H and

(DT (u),v)= / (h(z)|VulP~2VuVo + b(z)|ulP>uv) dz, Vu,v € H.
Thus J = TQ— P is weakly continuously differentiable on H and
(2.5) <DJ(u),v>=/ (h(z)|Vul[P2VuVv + b(z)[u[Puv) dx—/ f(z,u)vde
Yu,v € H. " )

Proof. (i) By hypotheses of Theorem 1.1, applying Theorem C1 in [11, p. 248],
we have P € C1(W1P(Q)). Since the embedding H — W1P(Q) is continuous,
we also have P € C1(H) and then P is weakly continuously differentiable on
H. Moreover,

<DP(u),v>:/Qf(:L',u)vdx Yu,v € H.

(ii) Let {u,,} be a sequence converging to v in H, i.e.,

lim (h(2)|Vum — Vul? + b(z)|um — ul?) dz = 0.

m—>—+o0o Q

Then {||um||m} is bounded.
First we observe that: for some 6 € (0,1):

||Vt [P — [Vul?| = p|Vim + 0(Vty, — Vu)|P~ Vi, — V|
< p2 72 (V[P [V, — Vu| + [V, — VulP).
Hence by applying the Holder’s inequality we get

1 1
(2.6) ‘ / h(@)| Vg [Pdz — h(z)|VulPda
PJa p

IN

1
*/ W) [V |? = [VulP|dz
pJo

IN

2p_2/ B(2)| Vg [P Vit — Vuldz + 2”_2/ h(2)| Vg, — VulPdz
Q Q

> </Q(h(x)p;1 |Vum|p_l)”pld$> ' (/Q(h(x)W(um - u)|P)dx>;

+ 2p—2 /Q(h(x)|V(um —u)|P)dx

IN

IN

—1
ex (18 llim =l 1 + s =l ) -
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Similarly, we also have
1 1
— | b(@)|um|Pdx — = | b(z)|u|Pdx
pJa pJa
< 3 (ltm 1 e = wlar + [t =l )
Combining (2.6) and (2.7) we have
1T ) — 7)< 5 (I 5 i — s + [t — 2 )

with ¢1,¢2,c3 > 0. Letting m — 400 since ||uy, — ullg — 0 and {||um||z}
bounded, we obtain

(2.7)

lim T(uy) =T (u).

m——+o0
Thus T is continuous on H.
(iii) For all u,v € H, any ¢t € (—1,1) \ {0} and a.e. z € Q we have
’ h(x)|Vu + tVolP — h(x)|Vu|P
t

1
=p / h(x)|Vu + stVv|P~%(Vu + stVv)Vods
0

1
< p/ h(x)|Vu + stVou|P~HVolds < p2P~2h(x)(|VulP~ Vo] + [VolP)
0
< 5272 ((a) 7 [V~ h(@)F Vo] + (@) Vol
Since u,v € H, we observe that

/Q (n(a) 5" [Vl (@) Vo] + h(a) Vo) da

</Q(h(x)pp1|vu|z71)p’ﬁdz> Z (/Q h($)|VU|de)é +esloll

—1
callullf " l|vlla + esllv]|f < +oo,

IN

IN

where cq4, c5 two positive constants.
Hence G(z) = h(z)|VulP~Vu|+h(x)|Vo|P € L1 (). Applying the Lebesgue
dominated convergence theorem we get

P_ P
lim/ M@)[Vu + tVul” = h@)[Vl dxzp/ ()| VulP?VuVoda.
t—0 Jq t Q

Similarly we also have
b tulP — b p
iy [ BN YUY [t
t—=0 Jo t Q

This implies that

(DT (u),v)= lim Tluttv) = T(w) _ / (h(2)|VulP~ 2V uVv+b(z) [P~ 2uv)da.
Q

t—0 t
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Thus T is weakly differentiable on H.

Let v € H be fixed, we now prove that the map u — <DT(u), v> is continuous
on H.

Assume u,, — u in H, that is

lim (h(2)|Vum — Vul? + b(z)|wy, — ulP)dz = 0.

m—+0o [
By hypotheses (H) and (B) it follows that Vu,, — Vu and u,, — u in LP(Q).
Applying Theorem C.2 in [11, p. 249] for function g(z,s) = |s|P~2s, we deduce
that
9(x, Vi) = [V |P 2V, — |VulP~2Vau
and
9(x, um) = |Um|p72um — |u|p72u
in (L71(Q))N as m — +oo, where (L7(Q))Y = L"(Q) x L"(Q) x --- x L"()
(N times). Using this fact we shall proved that the map u — (DT'(u),v) is

continuous on H for every v fixed in H.
Indeed for ¢ € C§°(Q2), w = suppyp, we have

(DT (um) — DT (u), )|

= ‘/{h(l’)(IVUmlp2Vum—|VU|”QVU)V<P+b(x)(Ium|”2um—|upZU)w}dz
Q

/{h(x)(|Vum|p_2Vum— |Vu|p_2Vu)V<p—|—b(a:)(|um|p_2um — \u|p_2u)<p}dx

< CleNllg(a, Vum) = gz, Vull ey IVellze)

+llg(a,wm) = gla )l e, Iellzr

where C(p) is a constant positive. From this letting m — 400 we get

lim [(DT(u) — DT (u), )| = 0.

m—+00
Since C§°(Q) is dense in H we deduce that for every v € H fixed
lim [(DT (um) — DT(u),v)| = 0.

m——+oo

The proof of Proposition 2.1 is complete. U

Proposition 2.2. Suppose that sequence {u,,} is weakly converging to u in
WLP(Q). Then we have
< I i .
T(u) < ml_lfiloo inf T' ()
Proof. Since {u,,} weakly converging in W1 (2) hence for all bounded €’ CC
Q, {um} is also weakly converging in W1P(Q'). By compactness of the em-
bedding WP (Q') into LP(Q'), the sequence {u,, } converges strongly in LP (')
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then {u,,} converges strongly in L*(£’). Applying Theorem 1.6 in [6, p. 9] or
Theorem 4.5 [8, p. 129], we deduce that
< I i .
T(u) < ml_lfiloo inf T' ()

The proof of Proposition 2.2 is complete. O

Proposition 2.3. The functional J : H — R is defined by (2.4), i.e.,
Ju)=T(u)—Pu), weH
satisfies the Palais-Smale condition on H.
Proof. Let {u,,} be a sequence in H such that
lim J(um) = ¢, mgrﬂm [|DJ (wm)|| g+ = 0.

m—r oo

First, we shall proved that {u,,} is bounded in H. We suppose by contradiction
that {uy, } is not bounded in H. Then there exists a subsequence {ty,, } of {u, }
such that ||um, ||F — +00 as k — +00. Observe further that

I (U, ) — %<DJ(UMIC)7 umk>

1 1

= T(umk) - ;<DT(umk)7umk>+ﬂ<DP(umk)’umk>_P(umk)
1 1
Z - U, P
(p #)H W5
yields
T(timg) > (& = D)l |7 + 2(DT ()1, )
U, A Um, - Um, ;um
k P N kIIH N k k
1 1 1
27_7 um p_iDJ,u’um, *um H
(p N)H W u” (Wt M1 wll
1
S (wnumknz — DT )
where%:%—%>0.

From this letting k — 400, since ||um, ||z — +00, ||DJ (um, )| g+ — 0, we
deduce J(up, ) — +oo yields a contradiction. Hence {u,,} is bounded in H.
By the continuous embedding H into W1?(Q), {u,,} is bounded in W ().
Therefore, there exists a subsequence {u,, } of {u,} converging weakly to
u in WP(Q). Since the embedding WIP(Q) < LP (Q) is continuous, the
subsequence {u,, } converges weakly to u in i () and wp, — v a.e. x € Q.
It follows that {uy,,} is bounded in LY (Q), that is there exists a constant
M > 0 such that

||umk||Lp*(Q) <M forall k=1,2,....
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We remark that by hypotheses (F2) and (F3) we get
0< F(x,2) < 7(x)]z|"t forx €Q, 2 € R — {0},
where 7(x) € L™ (2) N L>(Q).
Then by Holder’s inequality and remark that % + T;ll =1 we deduce

Plitg,) = / F(, ty )d < / ()t |7+
Q Q
< 11 (@) o ety |

< M 7 ()] o o)-

r+1
LP" ()

By Proposition 2.2 we get
T(u) < lim infT(upy,) < Lm [P(um,) + J(tm, )]

T k—+oo T k—+oo
<c+ ||7'(30)||LTO(Q)MT'H < 4o00.

Thus v € H. i
Since {um, } is weakly converges to u in L? (Q) and uy,, — u a.e. z € €.

Then it is clear that |u,,, |" " u,,, is converges weakly to |u|"~lu in L% (Q).

With similar arguments as those in [9], we define the map K (u) : L= (Q) — R
by

(K(u),w)= /QT(x)uwdac for w € Lé(Q)

We remark that K (u) is linear and continuous provided that 7(z) € L™ (),

*

uc LP*(Q>7 we L% () and % + pi* + p% = 1. Hence

<K(u), [t |T*1umk>—> <K(u), |u|“1u> as k — +oo,

ie.,
(2.8) lim 7(2) Uy |~ iy, ude = / 7(z) |u| .
k—+oo Jq Q
Similarly we also have
(2.9) lim 7(2) |ty | dr = / 7(2)|u| T dx.
k—=too Jo Q
Combining (2.8), (2.9) we get
(2.10) lim 7(2) [ty |” ™ iy, (U, — w)dz = 0.

By (2.10), (F1), (F2) we obtain
mlirilw/ng(x,umk)(umk —u)dx =0,
ie.,

(2.11) lim (DP(um, ), tm, — u)=0.

k—+oo
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It follows from (2.11) that
lim (DT (tm,), Um, —uy=Lm (DJ(tm,), (tm, —u))

k—4o0 k—r+o00
+ kETw<DP(umk)’ (Um,, — u))=0.
Moreover, since T' is convex we have
T(u) = T(um,) = (DT (U, u — tUm,,))-
Letting K — +00 we obtain that
T(u) — lm T(tpm,)= Um [T(u)—T(tm,)]
k—+4o00

k——+o00

> lim (DT (um,),t — U, )= 0.

k—+oo

Thus

k—+o0

T(u) > lm T(tm,)-
On other hand, by Proposition 2.2 we have
T(u) < lim inf T(um, ).

k—+o00
Hence, from two above inequalities, we get T'(u) = limg—s oo T (U, )-

Now, we shall prove that the subsequence {u,,, } converges strongly to v in
H,ie., limg 400 ||tm, —ullg =0.

Indeed, we suppose by contradiction that {u,,, } does not converge strongly
to u in H. Then there exist a constant €9 > 0 and a subsequence {umkj} of
{tm, } such that ||umkj —ul||lg > e forany j=1,2,....

By recalling the Clarkson’s inequality

a+ a—p 1
[P +1=—5=I" < 5(le” +|5]"), Vo, B € R.
We deduce that
1 1 u+v U —v
§T(u) + iT(U) —T( 5 ) > T(?), Yu,v € H.
From this, for any j =1,2,..., we have
=T =T(u)—T 2 >T z .
ST, )+ 5T(w) = T (")
Remark that
T Umy, — U1 P~ p
(T) = ﬁ““mkj —ull = ﬁfo-
We get
1 1 Uy, U 1,
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U,  +U
Again instead of the remark that since { i } converges weakly to w in

2
WLP(Q), by Proposition 2.2 we have

T(u) < lim infT(—~——

T j—o+oo

).

From (2.12), letting j — +o00 we obtain that

. . Uy, tu 1,
T(u) — jEIJPoo me(T) > ﬁgo.

1
Hence 0 > @58, which is a contradiction.

Therefore, {u;,,} converges strongly to w in H. Thus, the functional J
satisfies the Palais-Smale condition on H. The proof of Proposition 2.3 is
complete. O

We remark that the critical points of the functional J correspond to the
weak solutions of the problem (1.1). Thus our idea is to apply a variation of
the Mountain pass theorem (see [6]) in order to obtain at least one non-trivial
weak solution of the problem (1.1).

In what follows, we will prove proposition which shows that the functional
J has the Mountain pass geometry.

Proposition 2.4. (i) There exist « > 0 and p > 0 such that J(u) > a > 0 for
alue H, ||lullg = p.

(ii) There exists ug € H, ||luo||lg > p and J(ug) < 0.
Proof. (i) Using (F2) and L'Hospistal theorem we have

Plaz) oo faz) o i)

;I—IE) 2P 250 pzP~l  2s0p(p —1)2P—2
Thus
F
(2.13) lim 22 g
z—0 2P

Using (F2) there exists A a positive constant such that
|f(z, 2)] < Al2]".

We integrate again -
0< F(x,2) < Alz|"

where A is a positive constant. Then

F Z r+1
0< tim T@2) oy |Z]|Vp 0
Z—+00 2 N-p Z—+00 2 N—p
with r € (p — 1, %—f}’;). Hence
F
(2.14) lim (ffv’pz) —0.
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Using (2.13), (2.14), we obtain
Ve > 0, 361 > 0 such that |F 22) | < ¢ for all z with |2] < 6.
Ve > 0, 36, > 0 such that |Z&: z)| < e for all z with |z] > ds.

Thus Ve > 0, there exist (51, 52 > 0 such that

F(z,z) <elzlP, |z] <61 and F(z,2) < 5|z|NN7*pp, |z] > 2.

Using the relation 0 < F(z,2) < Alz|"*! there exists a constant b > 0 such
that F(z,z) <bfor all |z| € [d1,d2]. We conclude that for all € > 0, there exists
b. > 0 such that

(2.15) F(2,2) < e|2|P + be|2|¥75.
Using (2.15) we have

I =l - /Q F(z,u)dz

1
> f||u\|€175/ |u|pda:fb€/ |u| ¥ da.
p Q Q

Forp <g¢g< Np , WHP(Q) < L9(Q) is continuous. So the embedding H
L1(Q) is contmuous [u|za(0) < c|ul|g. Thus we have

lulLe < Chllulln-
lul ~o < Collulln.
LN-p
Therefore

Tw) 2 2ol = <CFlully = 0.C3 7l
1 Np_
> ull? ( —eor bscmunﬁ—f?) .
p

Letting ¢ € (0, —=) and ||u||g = p small enough such that

pC”
1 _Np_ Np__,,
S —eCt = bCT Tl >0,
we obtain

1 e Np _
T) = (= <O = b0 | 50 ) = a0

ii) Denote h(t) (f,,tz) for all ¢ > 0.

Then using (F3) we get

(t) = [tzf(x,tz) — pF(x,t2)] > 0, Vi > 0.

tht1
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Thus we deduce for any t > 1, F(x,tz) > t"F(x, z). Let wy € C5°(2) be such

that meas ({z € () : lwo(z)] > 0}) > 1 then with ¢ > 1 we get

! P PYdx — x. two)dx
ﬂmm%=LﬁﬂM@WNMMI+b@WwM)d ULF(J 0)d

= [ @ Funl + bl do — [ P tuo)ds

tp
< ol —t“/ Fla, wy)da.
p Q

Since p > p, the right hand-side of above inequality converges to —oo when
t — +oo. Then there exists ty > 0 such that |[towg||g > p and J(tpwe) < 0.
Set ug = towg, we have J(ug) < 0 and ||ug|| > p.

The proof of Proposition 2.4 is complete. (I

Proposition 2.5. (i) J(0) =0.
(ii) The acceptable set G = {vy € C([0,1],H) : v(0) = 0,7(1) = uo} is not
empty, where ugy is given in Proposition 2.4.

It is clear that: (i) follows from (F1) and the definition of J.
(ii) Let y(t) = tug, then v(t) € G.

Proof of Theorem 1.1. By Propositions 2.1-2.5, all assumptions of the varia-
tions of the Mountain pass theorem introduced in [6] are satisfied. Therefore
there exists 1 € H such that

0<a<J()=inf{max J(y([0,1])) : v € G}

and <DJ(f1 ),v>: 0 for all v € H, i.e., G is a weak solution of the problem
(1.1). Moreover since J(t ) > 0= J(0), G is a nontrivial weak solution of the
problem (1.1). The Theorem 1.1 is completely proved. O
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