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ON SIMULTANEOUS LOCAL DIMENSION FUNCTIONS

OF SUBSETS OF Rd

Lars Olsen

Abstract. For a subset E ⊆ Rd and x ∈ Rd, the local Hausdorff dimen-
sion function of E at x and the local packing dimension function of E at
x are defined by

dimH,loc(x, E) = lim
rց0

dimH(E ∩B(x, r)) ,

dimP,loc(x, E) = lim
rց0

dimP(E ∩B(x, r)) ,

where dimH and dimP denote the Hausdorff dimension and the packing
dimension, respectively. In this note we give a short and simple proof
showing that for any pair of continuous functions f, g : Rd → [0, d] with
f ≤ g, it is possible to choose a set E that simultaneously has f as its
local Hausdorff dimension function and g as its local packing dimension
function.

1. Introduction and statement of results

For a subset E ⊆ Rd and x ∈ Rd, we define the local Hausdorff dimension
function of E at x by

dimH,loc(x,E) = lim
rց0

dimH(E ∩B(x, r)),

where dimH denotes the Hausdorff dimension. The local packing dimension
function of E at x is defined similarly, i.e., by

dimP,loc(x,E) = lim
rց0

dimP(E ∩B(x, r)),

where dimP denotes the packing dimension. The reader is referred to [1] for the
definitions of the Hausdorff and the packing dimensions. The local Hausdorff
dimension function of a set has recently found several applications in fractal
geometry and information theory, cf. [2, 4]. In [3] we proved that any continuous
function is the local Hausdorff dimension function of some set, i.e., if f : Rd →
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[0, d] is continuous, then there exists a set E ⊆ Rd such that

f(x) = dimH,loc(x,E)

for all x ∈ Rd. In this note we give a short and simple proof showing that
for any pair of continuous functions f, g : Rd → [0, d] with f ≤ g, it is, in
fact, possible to choose the set E such that it simultaneously has f as its local
Hausdorff dimension function and g as its local packing dimension function,
i.e., such that

f(x) = dimH,loc(x,E) ,

g(x) = dimP,loc(x,E) ,

for all x ∈ Rd. In fact, our result also provides information about the rate
at which the dimensions dimH(E ∩B(x, r)) and dimP(E ∩B(x, r)) converge to
f(x) and g(x), respectively, as r ց 0, see (1.1) below. For an arbitrary function
ϕ : Rd → R and x ∈ Rd, we let

ωϕ(x, r) = sup
x1,x2∈B(x,r)

|ϕ(x1)− ϕ(x2)|

denote the modulus of continuity of ϕ at x, and observe that ϕ is continuous
at x if and only if ωϕ(x, r) → 0 as r ց 0.

Theorem 1. Let f, g : Rd → [0, d] be continuous functions with f ≤ g. Then

there exists an Fσ set E ⊆ Rd such that

(1.1)
|f(x)− dimH(E ∩B(x, r))| ≤ ωf (x, r) ,

|g(x)− dimP(E ∩B(x, r))| ≤ ωg(x, r) ,

for all x ∈ Rd and all r > 0. In particular,

f(x) = dimH,loc(x,E) ,

g(x) = dimP,loc(x,E) ,

for all x ∈ Rd.

2. Proof of Theorem 1

In this section we prove Theorem 1. We need the following well-known result
in order to prove Theorem 1.

Lemma 2.1. Let G be a non-empty open subset of Rd and t, s ∈ R with

0 ≤ t ≤ s ≤ d. Then there exists a compact set E ⊆ G such that dimH(E) = t

and dimP(E) = s.

Proof. For a proof see, for example, [5]. In fact, the result in [5] is formulated
and proved for the case where d = 1, but the techniques in [5] can clearly be
adapted to prove the same result in the general case. �
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We can now prove Theorem 1. We first introduce some notation. For a
function ϕ : Rd → R and x ∈ Rd and positive number r > 0, write

m(ϕ;x, r) = inf
y∈B(x,r)

ϕ(y) ,

M(ϕ;x, r) = sup
y∈B(x,r)

ϕ(y) .

Proof of Theorem 1. Let 0 ≤ t < supx∈Rd f(x) and 0 ≤ s < supx∈Rd g(x) with
t ≤ s Fix x ∈ {t < f , s < g} and r > 0. Since f and g are continuous, we
conclude that the set B(x, r) ∩ {t < f , s < g} is open, and it therefore follows
from Lemma 2.1 that we can find a compact set Et,s(x, r) satisfying

Et,s(x, r) ⊆ B(x, r) ∩ {t < f , s < g} ,

dimH(Et,s(x, r)) = t ,

dimP(Et,s(x, r)) = s .

Next choose a countable dense subset Ut,s of {t < f , s < g}. We now define
the set E as

E =
⋃

0≤t<sup
y∈Rd

f(y)

0≤s<sup
y∈Rd

g(y)

t,s∈Q+

t≤s

⋃

r∈Q+

x∈Ut,s

Et,s(x, r) .

The set E is clearly Fσ. We will now prove that f is the local Hausdorff
dimension function of E and that g is the local packing dimension function of
E, i.e., f(x) = dimH,loc(x,E) and g(x) = dimP,loc(x,E) for all x ∈ Rd.

Claim 1. For all x ∈ Rd and all r > 0, we have

dimH,loc(x,E) ≤ M(f ;x, r) ,

dimP,loc(x,E) ≤ M(g;x, r) .

Proof of Claim 1. Fix x ∈ Rd and r > 0. We now have

(2.1) E ∩B(x, r) ⊆
⋃

0≤t<sup
y∈Rd

f(y)

0≤s<sup
y∈Rd

g(y)

t,s∈Q+

t≤s

⋃

ρ∈Q+

z∈Ut,s

(

Et,s(z, ρ) ∩B(x, r)
)

.

Next observe that since Et,s(z, ρ) ⊆ {t < f , s < g}, we conclude that

(2.2) Et,s(z, ρ) ∩B(x, r) ⊆ {t < f , s < g} ∩B(x, r) = ∅

for M(f ;x, r) ≤ t and M(g;x, r) ≤ s. Combining (2.1) and (2.2) yields

E ∩B(x, r) ⊆
⋃

0≤t<M(f ;x,r)
0≤s<M(g;x,r)

t,s∈Q+

t≤s

⋃

ρ∈Q+

z∈Ut,s

(

Et,s(z, ρ) ∩B(x, r)
)

(2.3)
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⊆
⋃

0≤t<M(f ;x,r)
0≤s<M(g;x,r)

t,s∈Q+

t≤s

⋃

ρ∈Q+

z∈Ut,s

Et,s(z, ρ) .

Since the union in (2.3) is countable, it follows from (2.3) and the fact that the
Hausdorff dimension is countable stable that

dimH(E ∩B(x, r)) ≤ sup
0≤t<M(f ;x,r)
0≤s<M(g;x,r)

t,s∈Q+

t≤s

sup
ρ∈Q+

z∈Ut,s

dimH(Et,s(z, ρ))

= sup
0≤t<M(f ;x,r)
0≤s<M(g;x,r)

t,s∈Q+

t≤s

sup
ρ∈Q+

z∈Ut,s

t

= M(f ;x, r)

for all r > 0. Similarly, it follows that

dimP(E ∩B(x, r)) ≤ M(g;x, r)

for all r > 0 This completes the proof of Claim 1. �

Claim 2. For all x ∈ Rd and all r > 0, we have

m(f ;x, r) ≤ dimH,loc(x,E) ,

m(g;x, r) ≤ dimP,loc(x,E) .

Proof of Claim 2. Fix x ∈ Rd and r > 0. Next, let ε > 0 be such that
m(f ;x, r)−ε,m(g;x, r)−ε ∈ Q+. Write t = m(f ;x, r)−ε and s = m(g;x, r)−ε,
and observe that t ≤ s. We clearly have x ∈ {t < f , s < g}, and we can there-
fore find u ∈ Ut,s with |u− x| ≤ r

2 . Now, pick any ρ ∈ Q+ with ρ ≤ r
2 . It now

follows that

Et,s(u, ρ) ⊆ E ,

and that Et,s(u, ρ) ⊆ B(u, ρ) ⊆ B(x, r), whence

E ∩B(x, r) ⊇ Et,s(u, ρ) ∩B(x, r) = Et,s(u, ρ) .

We therefore conclude that

(2.4) dimH(E ∩B(x, r)) ≥ dimH(Et,s(u, ρ)) = t ≥ m(f ;x, r)− ε .

Similarly, we conclude that

(2.5) dimP(E ∩B(x, r)) ≥ dimP(Et,s(u, ρ)) = s ≥ m(g;x, r)− ε .

Claim 2 follows from (2.4) and (2.5) by letting ε ց 0 through values such that
m(f ;x, r)− ε,m(g;x, r) − ε ∈ Q+. �

Theorem 1 follows immediately from Claim 1 and Claim 2. �
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