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ON SIMULTANEOUS LOCAL DIMENSION FUNCTIONS
OF SUBSETS OF R4

LARS OLSEN

ABSTRACT. For a subset E C R% and = € R, the local Hausdorff dimen-
sion function of E at x and the local packing dimension function of E at
x are defined by

dimy |oc(z, E) = lim dimy(E N B(z, 1)),
, N0

dimp |oc(z, E) = lim dimp(E N B(z, 1)),
’ 7\0

where dimy and dimp denote the Hausdorff dimension and the packing
dimension, respectively. In this note we give a short and simple proof
showing that for any pair of continuous functions f, g : R4 — [0,d] with
f < g, it is possible to choose a set E that simultaneously has f as its
local Hausdorff dimension function and g as its local packing dimension
function.

1. Introduction and statement of results

For a subset E C R? and z € R?, we define the local Hausdorff dimension
function of F at z by

dimHJoc(l‘, E) = hi% dimy (E n B(.T, 7“)),

where dimy denotes the Hausdorff dimension. The local packing dimension
function of E at x is defined similarly, i.e., by

dimp joc(z, E) = h\% dimp(E N B(x,r)),

where dimp denotes the packing dimension. The reader is referred to [1] for the
definitions of the Hausdorff and the packing dimensions. The local Hausdorff
dimension function of a set has recently found several applications in fractal
geometry and information theory, cf. [2, 4]. In [3] we proved that any continuous
function is the local Hausdorff dimension function of some set, i.e., if f : R —
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[0,d] is continuous, then there exists a set £ C R? such that
f(z) = dimpy joc(z, E)

for all z € R? In this note we give a short and simple proof showing that
for any pair of continuous functions f,g : R¢ — [0,d] with f < g, it is, in
fact, possible to choose the set F such that it simultaneously has f as its local
Hausdorff dimension function and g as its local packing dimension function,
i.e., such that

f(ac) = dimHJoc(ac, E) 5

g(z) = dimP,Ioc(za E) )
for all z € R% In fact, our result also provides information about the rate
at which the dimensions dimy(E N B(x,r)) and dimp(E N B(z,r)) converge to

f(x) and g(z), respectively, as r \, 0, see (1.1) below. For an arbitrary function
¢:RY— R and z € R, we let

we(z,7) = sup )Is&(zl)*@(xz)l
x1,r2€B(x,r

denote the modulus of continuity of ¢ at x, and observe that ¢ is continuous
at z if and only if w,(z,r) = 0 as r 0.
Theorem 1. Let f,g: R? — [0,d] be continuous functions with f < g. Then
there exists an F, set E C R® such that

|f(z) — dimy(E N B(z,7)| <wgp(z,r),

(1.1) lg(z) — dimp(E N B(z,r))| < wy(z,7),

for all z € R and all v > 0. In particular,
f(:L') = dimH,Ioc(za E) )
g(z) = dimp joc(z, E) ,

for all x € RY.

2. Proof of Theorem 1

In this section we prove Theorem 1. We need the following well-known result
in order to prove Theorem 1.

Lemma 2.1. Let G be a non-empty open subset of R and t,s € R with
0 <t <s<d. Then there exists a compact set E C G such that dimy(E) =t
and dimp(E) = s.

Proof. For a proof see, for example, [5]. In fact, the result in [5] is formulated
and proved for the case where d = 1, but the techniques in [5] can clearly be
adapted to prove the same result in the general case. (I
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We can now prove Theorem 1. We first introduce some notation. For a
function ¢ : R? — R and = € R? and positive number r > 0, write

m(p;x,r) = inf ,
(¢52,7) yem,r)“"(y)

M(p;z,7) = sup ©(y).
yEB(z,r)

Proof of Theorem 1. Let 0 <t < sup,cga f(x) and 0 < s < sup,cpa g(z) with
t<sFixzxe{t<f,s<g}andr > 0. Since f and g are continuous, we
conclude that the set B(x,r) N{t < f, s < g} is open, and it therefore follows
from Lemma 2.1 that we can find a compact set E; 4(x,r) satisfying

Eis(z,r) CB(z,r)N{t< f,s<g},

dimy(Ey s(x, 7)) =t,

dimp (B¢ s(z,7)) = 5.

Next choose a countable dense subset Uy 5 of {t < f, s < g}. We now define

the set F as
E = U U E;s(z, 7).

0<t<sup,.pa f(y) 7€Q+
0<s<sup, pa g(y) *€Ves

t,s€Q4
t<s

The set E is clearly F,. We will now prove that f is the local Hausdorff
dimension function of E and that g is the local packing dimension function of
E, ie., f(z) = dimp joc(z, E) and g(z) = dimp joc(, E) for all z € R
Claim 1. For all x € R? and all v > 0, we have

dimH,loc(xa E) S M(fa x, T) B}

dimP,Ioc(xa E) < M(g; 7).

Proof of Claim 1. Fix x € R? and r > 0. We now have

(21)  ENB(a,r) C U U (Et,s(z,p) ﬂB(x,r)).
0<t<sup, pa f(y) PEQ+
0<s<sup, pa 9(y) 2€U1s
t,s€Q4
t<s
Next observe that since Ey s(z,p) C {t < f, s < g}, we conclude that
(2.2) Eis(z,p) N Bw,r) C{t < f, s <g} N Blx,r) =0

for M(f;x,r) <tand M(g;x,r) <s. Combining (2.1) and (2.2) yields
(2.3) ENB(z,r) C U U (Et,s(z, p) N B(z, 7“))

0<t<M(f;x,r) pEQy
0<s<M/(g;z,r) 2€Ut,s
t,s€Qy
t<s
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C U U Eis(z,p).

0<t< M (fiw,r) pEQs
0<s<M/(g;z,r) 2€U¢,s
t,s€Qy
t<s

Since the union in (2.3) is countable, it follows from (2.3) and the fact that the
Hausdorff dimension is countable stable that
dimpy(E N B(z, 1)) < sup sup dimy(E; (2, p))
0<t<M(f;z,r) pPEQy
0<s<M/(g;z,r) 2€U¢,s
t,s€Q4
t<s
= sup sup t
0<t<M(f;z,r) pEQ4
0<s<M (g;z,r) 2€Us,s
t,s€Q4
t<s

= M(f;z,r)
for all 7 > 0. Similarly, it follows that
dimp (E N B(z, 1)) < M(g; z,7)
for all 7 > 0 This completes the proof of Claim 1. (|
Claim 2. For all z € R? and all r > 0, we have
m(f;z,r) < dimp joc(z, E)
m(g;z,r) < dimp joc(z, E) .

Proof of Claim 2. Fix x € R? and » > 0. Next, let ¢ > 0 be such that
m(f;xz,r)—e,m(g;x,r)—e € Qp. Writet = m(f;z,7)—c and s = m(g; x,r)—e,
and observe that t < s. We clearly have x € {t < f, s < g}, and we can there-
fore find u € Uy s with |u — x| < 5. Now, pick any p € Q4 with p < 5. It now
follows that
Etyﬁ(uvp) g Ea

and that E; s(u, p) C B(u, p) C B(z,r), whence

EN B(m, T) ;) Et,s(ua P) N B(xa T) = Et,s(ua P) .
We therefore conclude that
(2.4) dimpy(E N B(z,r)) > dimp(Ey s(u, p)) =t > m(f;2,7) — €.
Similarly, we conclude that
(2.5) dimp(E N B(z,r)) > dimp(Fy s(u, p)) = s > m(g;x,r) — €.
Claim 2 follows from (2.4) and (2.5) by letting € N\, 0 through values such that
m(f;z,r) —e,m(giz,r) —e € Qq. O

Theorem 1 follows immediately from Claim 1 and Claim 2. (]
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