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EVERY POLYNOMIAL OVER A FIELD CONTAINING F16 IS
A STRICT SUM OF FOUR CUBES
AND ONE EXPRESSION A2 + A

Luis H. Gallardo

Abstract. Let q be a power of 16. Every polynomial P ∈ Fq [t] is a strict
sum

P = A2 + A + B3 + C3 + D3 + E3.

The values of A, B, C, D, E are effectively obtained from the coefficients
of P. The proof uses the new result that every polynomial Q ∈ Fq [t],
satisfying the necessary condition that the constant term Q(0) has zero
trace, has a strict and effective representation as:

Q = F 2 + F + tG2.

This improves for such q’s and such Q’s a result of Gallardo, Raha-
vandrainy, and Vaserstein that requires three polynomials F, G, H for the
strict representation Q = F 2 +F +GH. Observe that the latter represen-
tation may be considered as an analogue in characteristic 2 of the strict
representation of a polynomial Q by three squares in odd characteristic.

1. Introduction

Serre proved that every polynomial of Fq[t], with q odd (with a small number
of exceptions when q = 3), is a strict sum of three squares. Gallardo, Raha-
vandrainy, and Vaserstein [6] proved by using the same method, (apply Weil’s
theorem to an appropriate curve) that for even q all (but a finite number of
polynomials when q < 8,) polynomials P of Fq[t] are of the form (we say that
they are decomposable):

(1) P = A2 + A + BC,

where A,B, C ∈ Fq[t] satisfy the tight condition:

max(deg(A2),deg(B2), deg(C2)) < deg(P ) + 2.

All these polynomials are explicitly stated in the paper [6]: more precisely
there are exactly 52 exceptional polynomials over F2 and 32 over F4.
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The exceptions E are well behaved in the sense that it is easy to prove that
for all of them E + 13 over F2 and E + t3 over F4 are decomposable. Thus,
every polynomial in Fq[t] has a strict representation of the form:

P = A2 + A + BC + D3

(so that deg(D3) < deg(P ) + 3).
Moreover, for every even q the only quadratic polynomials in three variables

X, Y, Z that represent strictly all (but a finite number) of polynomials of Fq[t]
are

XY + Z, X2 + X + Y Z, X2 + Y Z.

Observe that strict representations by the first and the last quadratic polyno-
mials are trivial.

What we mean by “strict representations”?:
A strict representation of a polynomial P , by a quadratic polynomial Q(x1,

. . ., xr), r ∈ N∗, is the decomposition:

P = Q(A1, . . . , Ar),

where for all j, Aj is a polynomial such that

deg(A2
j ) < deg(P ) + 2.

An analogue of a strict representation of P ∈ Fq[t] by 3 squares when q
is odd, (so that P is also of the form yz + x2) is the strict representation of
P ∈ Fq[t] by the quadratic polynomial x2 + x + yz when q is even.

Furthermore, when q is odd, the polynomial P has a strict representation
by the quadratic polynomial x2 + x + yz if and only if −(P + 1/4) has a strict
representation by x2 + y2 + z2, since −(x2 + x + yz + 1/4) = −(x + 1/2)2− yz,
and since the quadratic forms −x2 − yz and x2 + y2 + z2 are equivalent (see
[1]) over Fq.

In both representation problems above, a question that is not yet answered,
is about the explicit representation of P . Given P can we obtain in some
manner the values of A,B, C depending explicitly on P? This seems to be a
difficult question. However, when q ∈ {2, 4}, by using a modification of the
method used by Gallardo and Heath-Brown in [5], we were able, [4], to obtain
effectively such solutions (i.e., we give an algorithm that compute (without
trying all possibilities!) such solutions) for some infinite families of given poly-
nomials P (including all strict sums of cubes when q = 4).

Assume that the field Fq contains the field F16, i.e., that q has the form

q = 24n

for some positive integer n > 0. This is required to be able to use the crucial
identity Id1 of Lemma 2, in order to represent every polynomial as a sum of
two cubes and one expression A2 + A.

In this paper we prove (see Theorem 1) that, given P such that Tr(P (0)) = 0,
we can take C = tB so that the representation (1) of P require only two
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parameters A,B instead of three A,B, C. Moreover, we can obtain effectively
A,B from the coefficients of P.

It turns out that from this result and from a result of Gallardo [2, Lemma 8],
we get a representation theorem with cubes for such P ’s and such q’s.

This is our main result in this paper. Namely, (see Theorem 2) we have:
Every polynomial of Fq[t] is a strict sum of one expression A2 + A plus four

cubes.
As before, we get effectively A and the four cubes from the coefficients of P.
Observe that Gallardo’ results [2, Theorem 9] and [3, Theorem 7.1] addresses

the classical problem of representation by strict sums of cubes and squares
while, here in this paper, we address an analogue problem in which the expres-
sions A2 + A represent a reasonable alternative to a square in characteristic 2.

2. Main lemmas

2.1. Some identities and a descent

The following results are easily checked.
We have the identity of Serre (see [8]), (slightly modified).

Lemma 1 (Serre). Let F be a field of characteristic not equal to 3, in which
there are two elements x, y such that 1 = x3+y3 and xy 6= 0. Let p be a nonzero
element of F. Then we have Serre’s identity:

(2) t =
(

p6(x3 + 1) + t

3xp4

)3

+
(

p6(x3 − 2) + t

3yp4

)3

+
(

p6(2x3 − 1)− t

3xyp4

)3

.

Lemma 2. Let F be a field of characteristic 2 that contains the finite field F16

with sixteen elements. Let δ ∈ F16 be defined by δ4 = δ +1, so that F16 = F2[δ].
Let s = δ5. Then the following identities holds in F [t] :

Id1)

(3) t + δ6 = t3 + (t + δ2)3 + (δt)2 + δt.

Id2)

(4) t = (δt + s)3 + (δt + s + 1)3 + (t + sδ2)3 + (t + (1 + s)δ2)3.

Id3)

(5) t = 12 + 1 + t · 12.

Lemma 3. Let F be a finite field of characteristic 2 unequal to the finite field
with four elements F4. Let g ∈ F such that g 6= 0. There exist a, b ∈ F, with
a 6= 0 such that

(6) g = a3 + b3.

Lidl and Niederreiter [7, pages 295 and 327] proved this lemma.
The following result is a descent one.
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Lemma 4. Let n > 1 be an integer. Let q be a power of 16. Let P ∈ Fq[t] be a
monic polynomial, of degree d = 3n. Then there exist polynomials A,R ∈ Fq[t]
such that:

a) P = A3 + R,
b) deg(A) = n,
c) deg(R) ≤ 2n,
d) R(0) has zero trace.

Proof. Set A = tn+an−1t
n−1+· · ·+a1t+a0 with unknown coefficients aj ∈ Fq.

Now fix any a0 ∈ Fq such that P (0)−a3
0 has zero trace. This is always possible:

If P (0) has zero trace just pick a0 = 0. Otherwise, P (0) has trace equal to 1 :
Observe that for some b ∈ Fq, b3 is forced to have trace 1 since every element
of Fq is a sum of two cubes (see Lemma 3) and the trace is F2-linear. Choose
then a0 = b.

Now, we choose an−1, . . . , a1 ∈ Fq in such a manner that R = P − A3 has
degree at most equal to 2n. This results on a soluble triangular system of n−1
equations in n− 1 unknowns. This proves a), b), c) and d). �

2.2. Other useful lemmata

First one is a trivial but useful lemma:

Lemma 5. Let F be a perfect field of characteristic 2. Let n ≥ 0 be a non-
negative integer. Let P ∈ F [t] be a polynomial of degree deg(P ) ∈ {2n+1, 2n}.
Then there exist polynomials A,B ∈ F [t], such that

a)

(7) P = A2 + tB2,

b) deg(A) = n and deg(B) < n if deg(P ) = 2n, while deg(A) ≤ n and
deg(B) = n if deg(P ) = 2n + 1. So that:

c)
max(deg(A2), deg(B2)) < deg(P ) + 2.

We call A the even part of P and we call B the odd part of P.

Proof. Just take for A2 the sum of all monomials of even degree that appear
in P, and take for tB2 the sum of all monomials of odd degree that appear in
P. �

Now, we recall (see [2, Lemma 8]) the crucial lemma:

Lemma 6. Let F be a perfect field of characteristic 2 such that every element
in F is a sum of two cubes. Let n ≥ 0 be a non-negative integer, and let
S ∈ F [t] be a polynomial with deg(S) ∈ {3n + 2, 3n + 1, 3n}. Then there exist
polynomials A,B,C, D,Q ∈ F[t] such that

(8) S = B(A2 + tB) + D(C2 + tD2) + Q,
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where deg(B) = n, deg(C) ≤ n, deg(D) ≤ n, deg(Q) < n − 1. Moreover,
if deg(S) ∈ {3n, 3n + 1}, then deg(A) ≤ n; while if deg(S) = 3n + 2, then
deg(A) = n + 1.

Next lemma is key:

Lemma 7. Let F be a perfect field of characteristic 2. Let n ≥ 0 be a non-
negative integer. Assume that any polynomial Q in F[t], such that Tr(Q(0)) = 0,
is of the form

(9) Q = A2 + A + tB2

for some polynomials A,B ∈ F[t] with

max(deg(A2), deg(B2)) < deg(P ) + 2.

Let P ∈ F [t] be a polynomial of degree deg(P ) ∈ {3n + 2, 3n + 1, 3n}. Then
there exist polynomials C, D, E, R ∈ F [t], such that

a)

(10) P = C3 + D3 + E2 + E + R,

b)

max(deg(C3), deg(D3),deg(E2), deg(R3)) < deg(P ) + 3.

Proof. From Lemma 5 we write P = P 2
0 + tP 2

1 , and C = C2
0 + tC2

1 , D =
D2

0 + tD2
1, E = E2

0 + tE2
1 , R = R2

0 + tR2
1, where C0, . . . , R1 are polynomials to

be determined.
Observe (see Lemma 5) that CC0 is the even part of C3 and that CC1 is

the odd part of C3. So, by comparing odd and even parts in both sides of (10),
we see that the relation (10) is equivalent to the two relations:

(11) P0 = C0C + D0D + E + E0 + R0,

(12) P1 = C1C + D1D + E1 + R1.

Now, apply Lemma 6 to P1 +E1 to obtain suitable (i.e., polynomials that have
the right degrees) C0, C1, D1, D0 and R1.

So relation (12) holds.
By choosing R0 such that Q = P0 + C0C + D0D + R0 has zero trace and

by (9) applied to Q, we get suitable (polynomials that have the right degrees)
E0, E1 so that the relation (11) also holds with polynomials of the right degrees.
This proves the lemma. �

3. Main results

Theorem 1. Let F be a finite field of characteristic 2 that contains the fi-
nite field with sixteen elements F16. Let P ∈ F[t] be any polynomial such that
Tr(P (0)) = 0. Then, there exist polynomials A, B ∈ F[t] which coefficients may
be obtained from the coefficients of P, and such that

(13) P = A2 + A + tB2,
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is a strict representation of P , i.e., one has deg(A2) < deg(P )+2 and deg(B2)
< deg(P ) + 2.

Proof. From Lemma 5 we have P = P 2
0 +tP 2

1 , and A = A2
0+tA2

1, B = B2
0 +tB2

1 ,
where A0, . . . , B1 are polynomials to be determined.

The condition (13) is equivalent to the system:

(14) P0 = A + A0 = A2
0 + A0 + tA2

1,

(15) P1 = B + A1.

Observe that if relation (14) is solved for A0, A1, then we get immediately
B = P1 + A1 from relation (15) so that we get also the values of B0 and B1.

So, it suffices by induction to prove that the relation (14) holds when P0 has
the minimal possible degree, (i.e., ≤ 1). But observe that the identity Id3 of
Lemma 2 says that

P0 = V 2 + V + tW 2,

where V, W ∈ F[t] have degree at most equal to the degree of P0. This proves
the theorem. �

Observe that by using Serre’s identity (2) in Lemma 2, we get immediately
that any polynomial P ∈ F16n [t], n > 1, is an unrestricted sum of three cubes
(four cubes over F16) plus one (albeit trivial, by setting A = 1) expression
A2 + A.

A better result follows immediately from identity Id1) in Lemma 2: namely
any polynomial P ∈ F16n [t], is an unrestricted sum of two cubes plus one
expression A2 + A, (just replace t by P − δ6 in both sides of identity Id1).

Another observation is the following. It is easy to see that any polynomial
P ∈ F16n [t], n > 1, is a strict sum of five cubes (six cubes over F16) plus one
expression A2 + A :

As a first step use Lemma 3 and (the descent in) Lemma 4 as to output two
cubes and a remainder R with zero trace. As a second step apply Theorem 1
to the remainder R. As a third step use the identity (2) (or Id2) in Lemma 2
when q = 16).

The object of the next theorem is to improve on this. We give the best
available result for the strict representations of P :

Theorem 2. Let F be a finite field of characteristic 2 that contains the finite
field with sixteen elements F16. Let P ∈ F[t] be any polynomial. Then P is a
strict sum of four cubes plus one expression A2 +A with deg(A2) < deg(P )+2.
The coefficients of A and of each of such cubes are obtained from the coefficients
of P.

Proof. From Theorem 1 and Lemma 7 we have that:

(16) P = C3 + D3 + E2 + E + R,
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with polynomials C, D,E, R ∈ F[t] of the right degree. Just apply now to the
remainder R the identity Id1 to get

(17) R = S2 + S + U3 + V 3,

where the polynomials S, U, V ∈ F[t] have degree bounded above by the degree
of R. Combining the two relations (16) and (17) we obtain the result. �
Acknowledgments. The author thanks the mathematician (that prefer to
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version of the manuscript.
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