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GEOMETRIC ANALYSIS ON THE DIEDERICH–FORNÆSS
INDEX

Steven George Krantz, Bingyuan Liu, and Marco Maria Peloso

Abstract. Given bounded pseudoconvex domains in 2-dimensional com-
plex Euclidean space, we derive analytical and geometric conditions which
guarantee the Diederich-Fornæss index is 1. The analytical condition
is independent of strongly pseudoconvex points and extends Fornæss–
Herbig’s theorem in 2007. The geometric condition reveals the index
reflects topological properties of boundary. The proof uses an idea in-
cluding differential equations and geometric analysis to find the optimal
defining function. We also give a precise domain of which the Diederich–
Fornæss index is 1. The index of this domain can not be verified by
formerly known theorems.

1. Introduction

Let Ω be a bounded pseudoconvex domain in Cn with smooth boundary.
It is well known that such a domain Ω admits a plurisubharmonic function
− log(−δ(z)), where δ is the signed distance function, that is,

δ(z) :=

{
−dist(z, ∂Ω), z ∈ Ω,

dist(z, ∂Ω), otherwise.

However, the function − log(−δ(z)) is unbounded when z approaches the
boundary, which makes some analysis on the boundary of the domain in-
tractable. In 1977, Diederich and Fornæss showed in [10], that on any bounded
pseudoconvex domain with smooth boundary there exists a bounded, plurisub-
harmonic exhaustion function. Their idea was to replace − log(−δ(z)) with
−(−ρ)η, where ρ is some defining function for Ω and 0 < η < 1. In fact, they
proved that, on any smoothly bounded pseudoconvex domain Ω with defining
function ρ there exists 0 < η ≤ 1 such that −(−ρ)η is a strictly plurisubhar-
monic exhaustion function. Observe that −(−ρ)η will approach 0 when z goes
to boundary, even if it will not be smooth at the boundary.
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The existence of bounded plurisubharmonic exhaustion functions was later
generalized to C1 boundary by Kerzman and Rosay in [19] and to Lipschitz
boundary by Demailly in [8] (see Harrington [15] too). Recently, Harrington
generalized the existence theorem to CPn in [16]. For discussions in CPn, the
reader is also referred to [25] and [26] by Ohsawa and Sibony.

In this paper, we study properties of a given domain Ω, in connection with
the optimization of the exponent in −(−ρ)η. We now introduce the Diederich-
Fornæss index.

Definition. Let Ω be a bounded, pseudoconvex domain in Cn. The number
0 < τρ < 1 is called a Diederich-Fornæss exponent if there exists a defining
function ρ of Ω so that −(−ρ)τρ is plurisubharmonic. The index

η := sup τρ ,

where the supremum is taken over all defining functions of Ω, is called the
Diederich-Fornæss index of the domain Ω.

As an indication of the importance of the Diederich-Fornæss index of Ω
we mentioned that Berndtsson and Charpentier [4] and Kohn [20], with two
completely different methods, showed that, if Ω is smooth, bounded and pseu-
doconvex, then there exists 0 < sΩ ≤ +∞ such that the Bergman projection
P : W s(Ω)→W s(Ω) is bounded if 0 < s < sΩ, where W s(Ω) denotes the clas-
sical Sobolev space. Berndtsson and Charpentier showed that sΩ ≥ η/2, where
η is the Diederich-Fornæss index of Ω. On the other hand, Kohn provided an
estimated for sΩ again in terms of the Diederich-Fornæss index of Ω, although
in a less explicit fashion; see also the paper [28].

In an earlier paper, Boas and Straube in [5] proved that if Ω is a smooth,
bounded, pseudoconvex domain in Cn admitting a defining function that is
plurisubharmonic on the boundary, then the Bergman projection P : C∞(Ω)→
C∞(Ω) is bounded, that is, Ω satisfies condition R.

In [12] and [13] Fornæss–Herbig addressed the question whether a smooth,
bounded, pseudoconvex domain in C2 and Cn, respectively, possessing a defin-
ing function that is plurisubharmonic on the boundary has Diederich-Fornæss
index equal to 1. They answered this question in the positive. The converse
does not hold in general. That is, if a domain has Diederich-Fornæss index 1, it
does not necessarily admit a defining function which is plurisubharmonic on the
boundary. The latter statement was proved by Behrens in [3] where she gave
an example of a bounded domain with real analytic boundary and not having
any local defining function that is plurisubharmonic on near a fixed boundary
point. Nonetheless, this domain has Diederich-Fornæss index 1. The conclu-
sion follows from another, related work by Diederich and Fornæss [11], where
they showed the Diederich-Fornæss index is 1 if the pseudoconvex domain is
regular, see Definition 1 and Theorem 1 in [11].

The main goal of this paper is to extend Fornæss–Herbig’s result. More
precisely, we would like to address the following questions:
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Questions. (1) Can one find a more general condition than plurisub-
harmonicity of a defining function on the boundary to guarantee the
Diederich–Fornæss index is 1? Possibly, this condition should cover the
example of Behrens.

(2) On the other hand, how can one realize the condition from a geometric
point of view?

(3) Can one find a bounded pseudoconvex domain admitting Diederich–
Fornæss index 1, of which the fact is not discovered by formerly known
theorems. In other words, we want to see a new application of the
condition we found in Question 1 and this application should be new
to us.

The Question 1 is necessary to the Diederich–Fornæss index, because the
condition of Fornæss–Herbig is not sharp. We need to find a sufficient condition
to cover the example of Behrens at least. Indeed, the following theorem is an
extension of Fornæss–Herbig’s theorem. The proof will be in Section 3. Please
also have a look at Section 2 and Section 3 for basic notations.

Theorem 1. Let Ω be a bounded domain with smooth boundary in C2. Let Σ
denote the Levi-flat set in ∂Ω. Assume that there exists a defining function ρ
of Ω such that, on Σ, we have the condition Hessr(L,N) = 0 where L is the
normalized (1, 0)-tangential vector field of ∂Ω and N is the normalized complex
normal vector field of ∂Ω. Then the Diederich-Fornæss index of Ω is 1.

Remark 1. Here, the Levi-flat set can be read as weakly pseudoconvex set. We
will use them interchangeably in this paper.

Remark 2. The condition Hessρ(L,N) = 0 dates back to Boas-Straube’s work
in [5] where they showed that this is satisfied when r is plurisubharmonic on
the boundary. Moreover, in practice, we do not need to assume that the L
and N are normalized vectors. This is because Hessρ(L,N) is tensorial, that
is, Hessρ(fL, gN) = fḡHessρ(L,N) = 0 for arbitrary functions f and g.

The preceding theorem not only extends Fornæss–Herbig’s theorem, but also
relates more geometric informations to the index. This connects the Diederich–
Fornæss index to Question 2. For this aim, we have to introduce some of our
conventions. Namely, we will call a simple curve a real curve if it can be
parametrized by a smooth map Ψ : t 7→ C2. Also, for the definition and
discussion of transversality, see Section 2.

We are ready to answer Question 2 with a series of results as follows. All of
these will be discussed in Section 4.

Theorem 2. Let Ω be a bounded domain with smooth boundary in C2. Let
Σ denote the set of Levi-flat points in ∂Ω. Assume that Σ is a real curve
and transversal to the (1, 0)-tangent vector of ∂Ω. Then the Diederich-Fornæss
index of Ω is 1.
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Remark 3. In particular, as a consequence, we obtain that if Ω is a bounded
domain with smooth boundary in C2, and the set of Levi-flat points in ∂Ω Σ
is a set of isolated points, then the Diederich-Fornæss index of Ω is 1.

In fact, it is not hard to see also that if the set of Levi-flats points consists of
finitely many isolated points and finitely many disjoint real curves transversal
to the (1, 0)-vector fields, then the Diederich-Fornæss index is 1.

Moreover, Theorem 2 is a special case of the following proposition. Indeed,
Proposition 3 describes the geometry of the weakly pseudoconvex sets by the
existence of solution to a type of partial differential equations.

Proposition 3. Let δ be an arbitrarily defining function of a bounded domain
Ω ⊂ C2 with smooth boundary. Let Σ ⊂ ∂Ω denote the Levi-flat sets of ∂Ω.
Suppose there is a real function u which solves

L(u) = −Hessδ(L,N)

‖∇δ‖
on Σ. Then the Diederich-Fornæss index of Ω is 1.

Remark 4. The differential equation in the preceding proposition has been
implicitly studied by Boas-Straube in [6].

In Section 5, we construct a specific bounded pseudoconvex domain Ω̃ to
answer Question 3. We remind the reader that our example cannot be verified
by any known theorems except ours. Finally, Theorem 5.2 gives a satisfactory
answer.

Before we proceed to prove our theorems, we briefly mention some history
here and from it, one can have a full picture of the other extreme cases in which
the Diederich-Fornæss index is away from 1. In 1977, Diederich-Fornæss found
a domain called the worm domain in [9] which gives a non-trivial Diederich-
Fornæss index (i.e., an index strictly between 0 and 1). In fact, they show that
the Diederich-Fornæss exponent can be arbitrarily close to 0, see [9].

In 1992, Barrett showed in [2], that the Bergman projection P on Ωβ does
not map the Sobolev space W k(Ωβ) into W k(Ωβ) when k ≥ π/(2β − π). In
2000, Berndtsson and Charpentier showed, in [4], that the Bergman projection
P on Ωβ does map the Sobolev space W k(Ωβ) into W k(Ωβ) when k < τ/2
where τ is a Diederich-Fornæss exponent. As a consequence, the Diederich-
Fornæss index of Ωβ is less than or equal to 2π/(2β − π). The reader can
also deduce this result from Krantz and Peloso [21]. Indeed, Theorem 6 in
[9] says that if the standard defining function of Ωβ has exponent less than or
equal to η, then all other defining functions have exponent less than or equal
to η, that is, the Diederich-Fornæss index of Ωβ less than or equal to η. Thus,
the calculation in [21] shows that the Ωβ less than or equal to π/(2β − π).
Recently Fu and Shaw and Adachi and Brinkschulte proved independently in
[14] and [1] respectively that, roughly speaking, if a relatively compact domain
in a complex manifold has all boundary points Levi-flat, then the Diederich-
Fornæss index is non-trivial. (Here, the non-trivial index means the index is not
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1 while the trivial index means the index is 1. Because the Diederich-Fornæss
index cannot be 0, we define the trivial index to be the index 1.) Also, two
papers of Herbig–McNeal in [17] and [18] include some interesting results.

2. Preliminaries

We begin by fixing some basic notation. Let M be a Hermitian manifold
with complex structure J and metric g. For a real tangent vector field X we
define

Z =
1

2
(X −

√
−1JX)

to be a (1, 0)-tangent vector field and

Z =
1

2
(X +

√
−1JX)

to be a (0, 1)-tangent vector field. Recall that, if f is a function defined on M ,
then

Zf = g
(
∇f, Z̄

)
= g (Z,∇f) .

We also define the Hessian of a function f on real tangent vector fields:

Hessf (X,Y ) = g(∇X∇f, Y ) = Y (Xf)− (∇YX)f,

and for (1, 0)-tangent vectors we calculate as follows:

Hessf (Z,W ) = g(∇Z∇f,W ) = Z(Wf)−∇ZWf = Hessf (W,Z).

We can also write the gradient in complex notation. Namely,

∇f = 2

(
∂f

∂z

∂

∂z̄
+
∂f

∂z̄

∂

∂z
+
∂f

∂w

∂

∂w̄
+
∂f

∂w̄

∂

∂w

)
.

If the sectional curvature of M vanishes, then we have that the curvature
tensor vanishes which means

Rm(Z1, Z2, Z3, Z4) ≡ 0,

where Rm denotes the curvature tensor. That means

0 ≡ ∇Z1∇Z2Z3 −∇Z2∇Z1Z3 −∇[Z1,Z2]Z3

for arbitrary (1, 0)-tangent fields Z1, Z2, Z3 of M . For the basic notion of
curvatures see [27].

From now on, we work on a domain in C2 and discuss transversality. Recall
that a tangent vector of C2

L = f1(z, w)
∂

∂z
+ f2(z, w)

∂

∂z̄
+ g1(z, w)

∂

∂w
+ g2(z, w)

∂

∂w̄

indeed defines two real tangent vectors:

2 ReL := Re(f1 + f2)
∂

∂x
+ Im(f1 − f2)

∂

∂y
+ Re(g1 + g2)

∂

∂u
+ Im(g1 − g2)

∂

∂v
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and

2 ImL := Im(f1 + f2)
∂

∂x
+ Re(f2 − f1)

∂

∂y
+ Im(g1 + g2)

∂

∂u
+ Re(g2 − g1)

∂

∂v
,

where we let the coordinates be

z = x+ yi, and w = u+ vi.

Sometimes ReL and ImL are linearly dependent. But, for a nonzero (1, 0)-
tangent vector

L = f(z, w)
∂

∂z
+ g(z, w)

∂

∂w
,

ReL and ImL are always independent because of the following easy lemma.

Lemma 2.1. Let

V = f1(z, w)
∂

∂z
+ f2(z, w)

∂

∂z̄
+ g1(z, w)

∂

∂w
+ g2(z, w)

∂

∂w̄

be a complex vector field. If ReV and ImV are linearly dependent, then

|f1| = |f2| and |g1| = |g2|.

In particular, if V = L is a (1, 0)-vector field with ReL and ImL linearly
dependent, then L = 0.

Proof. Assume that

V = f1(z, w)
∂

∂z
+ f2(z, w)

∂

∂z̄
+ g1(z, w)

∂

∂w
+ g2(z, w)

∂

∂w̄
,

and that 
Re(f1 + f2)
Im(f1 − f2)
Re(g1 + g2)
Im(g1 − g2)

 and


Im(f1 + f2)
Re(f2 − f1)
Im(g1 + g2)
Re(g2 − g1)


are linearly dependent. Hence, both of the following two determinants∣∣∣∣Re(f1 + f2) Im(f1 + f2)

Im(f1 − f2) Re(f2 − f1)

∣∣∣∣ or
∣∣∣∣Re(g1 + g2) Im(g1 + g2)
Im(g1 − g2) Re(g2 − g1)

∣∣∣∣
have to be zero.

By straightforward calculation,∣∣∣∣Re(f1 + f2) Im(f1 + f2)
Im(f1 − f2) Re(f2 − f1)

∣∣∣∣ = |Re f2|2 − |Re f1|2 − | Im f1|2 + | Im f2|2

= |f2|2 − |f1|2

and ∣∣∣∣Re(g1 + g2) Im(g1 + g2)
Im(g1 − g2) Re(g2 − g1)

∣∣∣∣ = |Re g2|2 − |Re g1|2 − | Im g1|2 + | Im g2|2

= |g2|2 − |g1|2.
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This immediately gives

|f1| = |f2| and |g1| = |g2|. �

Lemma 2.1 guarantees that we are able to generalize the notion of transver-
ality to nonzero (1, 0)-tangent vector fields, because |f2| = |g2| = 0.

Definition 2.1. We say that a real curve γ(t) is transversal to a nonzero
(1, 0)-tangent vector

L = f(z, w)
∂

∂z
+ g(z, w)

∂

∂w
if γ′(t), ReL and ImL are linear independent.

It is also easy to see that linear independence is preserved by a diffeomor-
phism.

3. Calculation of the D-F index

Let r be an arbitrary defining function of Ω. We want to modify the defining
function in order to seek the best one for optimizing the Diederich-Fornæss
exponent. Put ρ = reψ, where ψ will be determined later.

We first introduce some definitions.

Definition 3.1. Let Ω be a bounded domain with smooth boundary in C2

defined by a smooth defining function ρ. The vector field

L =
1√

|∂ρ∂z |2 + | ∂ρ∂w |2
(
∂ρ

∂w

∂

∂z
− ∂ρ

∂z

∂

∂w
)

on ∂Ω is called the normalized (1, 0)-tangential vector field, and

N =
1√

|∂ρ∂z |2 + | ∂ρ∂w |2
(
∂ρ

∂z̄

∂

∂z
+
∂ρ

∂w̄

∂

∂w
)

on ∂Ω is called the normalized complex normal vector field.

Note that, due to the fact that L and N are unit vectors, Hess|z|2(L,L) =
Hess|z|2(N,N) = 1. Also Hess|z|2(L,N) = 0 due to the fact they are orthogo-
nal. Here |z|2 should be read as |(z, w)|2, but for concision, we will not write
it as |(z, w)|2.

The following lemma is proved by a direct calculation. Since the calculation
is tedious, we put it in the appendix.

Lemma 3.1. Let Ω, r, L and N be as above, and let ψ be a smooth function.
Let η, δ > 0. Then

Hess−(−reψ)ηe−δη|z|2 (aL+ bN, aL+ bN)

= − ηe−δη|z|
2

(−reψ)η−1
(
|a|2I + 2 Re(ab̄II) + |b|2III

)
,
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where, on a sufficiently small neighborhood of ∂Ω in C2,

I = eψ
(

(δ2η)(−r)L(|z|2)L(|z|2)− δ(−r) + rL(ψ)L(ψ)

−Hessr(L,L)− rHessψ(L,L)
)
,

III <
eψ

2(−r)
(η − 1)|N(r)|2

and on ∂Ω, we have the estimate

|II| < eψ
(
δη|L(|z|2)N(r)|+ |L(ψ)N(r)|+ |Hessr(L,N)|

)
.

We are ready to define ψ = −C|Hessr(Lr, Nr)|2, where C > 0 is some
number to be determined and

Lr =
1√

| ∂r∂z |2 + | ∂r∂w |2
(
∂r

∂w

∂

∂z
− ∂r

∂z

∂

∂w
)

and

Nr =
1√

| ∂r∂z |2 + | ∂r∂w |2
(
∂r

∂z̄

∂

∂z
+
∂r

∂w̄

∂

∂w
).

This definition of ψ is originally due to Fornæss–Herbig in [12]. More specif-
ically, they proved the following lemma in [12]. Here we rewrite it with a
language of differential geometry. For the detail of the proof, please see the
Appendix.

Lemma 3.2. Assume that

Hessr(L,N) = 0

on Σ, where Σ is a subset of ∂Ω. Let

ψ = −C|Hessr(Lr, Nr)|2

for arbitrary C > 0. Then

(1) Lr(ψ) = 0,

and

(2)
Hessψ(L,L) = Hessψ(Lr, Lr)

≤ −C|Lr Hessr(Nr, Lr)|2 = −C|Nr Hessr(Lr, Lr)|2

on Σ.

Remark 5. From the preceding lemma, we can also see that on Σ

L(ψ) = 0,

and
Hessψ(L,L) ≤ −C|LHessr(N,L)|2 = −C|N Hessr(L,L)|2.
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The reason is as follows. On ∂Ω, L,N coincide with Lr, Nr. Thus,

LHessr(N,L) = Lr Hessr(Nr, Lr)

(we only need to consider the value on ∂Ω). The identity LHessr(N,L) =
N Hessr(L,L) is obtained from the following computation. Due to the vanish-
ing curvature tensor in Euclidean spaces, we have that

0 = g(∇L∇N∇r, L)− g(∇N∇L∇r, L)− g(∇[L,N ]∇r, L)

= Lg(∇N∇r, L)− g(∇N∇r,∇LL)−Ng(∇L∇r, L) + g(∇L∇r,∇NL)

− g(∇[L,N ]∇r, L).

Since ∇NL and [N,L] is spanned by L and N and ∇LL is parallel to L on ∂Ω,

g(∇N∇r,∇LL) = g(∇L∇r,∇NL) = g(∇[L,N ]∇r, L) = 0.

Thus, we have that on ∂Ω, Lg(∇N∇r, L) = Ng(∇L∇r, L). The similar discus-
sion can be found in the proof of Lemma 3.2 in the Appendix.

Then, with the notation of Lemma 3.1, we have on Σ,

|II| < eψ
(
δη|L(|z|2)N(r)|

)
.

Moreover, there must be a neighborhood Σε, which is dependent on ε > 0,
of Σ in C2, and on the neighborhood, we have

|II| < eψ
(
3δηmax{|L(|z|2)|, ε}|N(r)|

)
for some ε > 0.

We can now prove Theorem 1. We want to point out that Behren’s coun-
terexample that we mentioned in Section 1 will not contradict the converse of
Theorem 1. This is because her example has only one Levi-flat point on the
boundary and we will show more generally that, if the Levi-flat points form a
real curve (see Theorem 2), then it satisfies the condition of Theorem 1.

We prove the theorem by modifying the argument of Fornæss–Herbig in [12].
Our proof has a few new arguments. We need extra estimates on the points
with Levi-forms bounded below. We also need to consider the points which
have small positive Levi-forms.

Proof of Theorem 1. Let ψ be defined in Lemma 3.2. Firstly, we claim that
if the Levi-form is bounded below by a positive number α > 0, then in a
neighborhood of these boundary points in C2

Hess−(−ρ)η (aL+ bN, aL+ bN) > 0

holds for any defining function ρ of Ω and any 0 < η < 1. We are going to
show this fact in the following paragraph.

It is enough to show that the complex Hessian of −(−ρ)η is positive definite
in a neighborhood of any strongly pseudoconvex boundary points. Rewrite the
complex Hessian of −(−ρ)η with matrices.

Hess−(−ρ)η =

(
Hess−(−ρ)η (L,L) Hess−(−ρ)η (L,N)
Hess−(−ρ)η (N,L) Hess−(−ρ)η (N,N)

)
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=

(
η(−ρ)η−1 Hessρ(L,L) η(−ρ)η−1 Hessρ(L,N)

η(−ρ)η−1 Hessρ(N,L) η(−ρ)η−1
(

Hessρ(N,N) + 1−η
−ρ |Nρ|

2
))

= η(−ρ)η−1

(
Hessρ(L,L) Hessρ(L,N)

Hessρ(N,L) Hessρ(N,N) + 1−η
−ρ |Nρ|

2

)
is positive definite if and only if Hessρ(L,L) > 0 and∣∣∣∣Hessρ(L,L) Hessρ(L,N)

Hessρ(N,L) Hessρ(N,N) + 1−η
−ρ |Nρ|

2

∣∣∣∣
= Hessρ(L,L)

(
Hessρ(N,N) +

1− η
−ρ
|Nρ|2

)
− |Hessρ(L,N)|2

= Hessρ(L,L) Hessρ(N,N) + Hessρ(L,L)
1− η
−ρ
|Nρ|2 − |Hessρ(L,N)|2 > 0.

But this is clear because of Hessρ(L,L) ≥ α
2 and

Hessρ(L,L)
1− η
−ρ
|Nρ|2 ≥ α

2

1− η
−ρ
|Nρ|2

in a neighborhood of any strongly pseudoconvex boundary points. Indeed, the
term 1−η

−ρ |Nρ|
2 can approach +∞ as ρ goes to 0, while

Hessρ(L,L) Hessρ(N,N)− |Hessρ(L,N)|2

has to be bounded which completes the proof of the fact.
This implies that

Hess−(−reψ)ηe−δη|z|2 (aL+ bN, aL+ bN) > 0.

So we just need to prove that

Hess−(−reψ)ηe−δη|z|2 (aL+ bN, aL+ bN) > 0

on a neighborhood of the Levi-flat points in C2.
Let Σ be the Levi-flat subset of ∂Ω. We learned in Lemma 3.1 that there

exists a neighborhood of ∂Ω in C2 such that, on this neighborhood,

III <
eψ

−2r
(η − 1)|N(r)|2.

To prove for any 0 < η < 1, there exists an appropriate δ so that for all
a, b ∈ C

Hess−(−reψ)ηe−δη|z|2 (aL+ bN, aL+ bN) > 0

on a neighborhood of Σ, we need to show that

|a|2I + |b|2III < −2|ab||II|
on a neighborhood of Σ in C2. We have seen on the neighborhood Σε of Σ in
C2,

III <
eψ

−2r
(η − 1)|N(r)|2
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and
|II| < eψ

(
3δηmax{L(|z|2), ε}|N(r)|.

If we can show that, on a neighborhood of Σ in C2,

I < −e
ψ

4
δ(−r),

then we are able to see that

Hess−(−reψ)ηe−δη|z|2 (aL+ bN, aL+ bN) > 0.

This is because, after shrinking δ further,

(3)
−|a|2 1

4
δ(−r)− |b|2 1− η

−2r
|N(r)|2 < −|ab||N(r)|

√
1− η
2

√
δ

< −6|ab|δηmax{L(|z|2), ε}|N(r)|

for some ε > 0.
Thus, if we can show that, on a neighborhood of Σ,

(δ2η)(−r)L(|z|2)L(|z|2)− δ(−r)+ rL(ψ)L(ψ)−Hessr(L,L)− rHessψ(L,L)

< − 1

4
δ(−r),

then we are done.
Indeed, after shrinking δ, we do not need to consider (δ2η)(−r)L(|z|2)L(|z|2)

because it is o(δ2) and we can control it to make

(δ2η)(−r)L(|z|2)L(|z|2) = (δ2η)(−r)|L(|z|2)|2 < 1

2
δ(−r).

Hence we just need to show that

r(q)L(ψ)|qL(ψ)|q −Hessr(L,L)|q − r(q) Hessψ(L,L)|q

<
1

4
δ(−r(q)) Hess|z|2(L,L)|q

for q ∈ Ω. And thus it is enough to show that

r(q)L(ψ)|qL(ψ)|q −Hessr(L,L)|q + Hessr(L,L)|p − r(q) Hessψ(L,L)|q

<
1

4
δ(−r(q))

for q in some neighborhood of ∂Ω in C2 and p ∈ ∂Ω so that dist(q, p) =
dist(q, ∂Ω), because of Hessr(L,L)|p ≥ 0.

Thus it is enough to show that

−L(ψ)|qL(ψ)|q − lim
q→p

Hessr(L,L)|q −Hessr(L,L)|p
−r(q) + r(p)

+ Hessψ(L,L)|p <
1

5
δ

on a neighborhood of Σ in ∂Ω where the limit means that q approaches p along
the shortest path.
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But here

− lim
q→p

Hessr(L,L)|q −Hessr(L,L)|p
−r(q) + r(p)

=
g(∇Hessr(L,L), N +N)

g(∇r,N +N)

=
2 Re(N Hessr(L,L))

‖∇r‖
≤ KRe(N Hessr(L,L))

for some K > 0.
It is enough to show that

K|N Hessr(L,L)|+ Hessψ(L,L) <
1

8
δ

on Σ because
L(ψ)|qL(ψ)|q = |L(ψ)|q|2

is nonnegative.
We calculate
K|N Hessr(L,L)|+ Hessψ(L,L) ≤ K|N Hessr(L,L)| − C|N Hessr(L,L)|2

<
K2

4C
,

and we take C so that
K2

4C
≤ 1

8
δ.

Then we have
K|N Hessr(L,L)|+ Hessψ(L,L) <

1

8
δ,

which completes the proof. �

4. Complex transport equations

In this section, we are going to imitate transport equations in the real sense
to the complex sense. It is well known that differential equations are very
different in the real and complex contents. Thus, the imitation of transport
equation in the complex sense cannot be fully extended.

In this section, our aim is to show that, if L is a (1, 0)-tangent vector field
and h is a smooth complex-valued function, the equation

Lu = h

is always solvable for real u. We prove the following proposition.

Proposition 4.1. Let ε > 0 be arbitrary and Γ be a compact (real) smooth
curve parametrized by γ : [0, r] → Γ. (Here γ(0) = γ(r) or γ(0) 6= γ(r).)
Assume that γ′, ReL and ImL are linearly independent along Γ. Let h be a
complex-valued smooth function defined on a neighborhood of Γ in ∂Ω. Then,
the following equation

(4) Lu = h on Γ
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has a real solution, where u is a real-valued smooth function defined in the
neighborhood of Γ.

Proof. Assume Γ is parametrized by Γ = γ([0, r]). We can extend Γ smoothly
beyond its endpoints if it is not a closed curve in order to give a neighborhood of
endpoints to study. In case of a non-closed curve, redefine γ : [−ε, r+ ε]→ ∂Ω
and still assume that γ is a smooth real curve and γ′, ReL and ImL are
independent. (This is feasible if ε > 0 is small enough.) We prove (4). Let
p ∈ Γ. We find a neighborhood Up of p and assume φp : Up → R3 is a
diffeomorphism. Then we have in the coordinates, the (1, 0)-tangent vector

L = f1(z, t)
∂

∂z
+ f2(z, t)

∂

∂z̄
+ g(z, t)

∂

∂t

on the neighborhood. This gives two vectors ReL and ImL. Possibly after
shrinking Up, we can always assume that φp ◦ γ(t) = (0, 0, t) and φp(Γ) is
contained in the t-axis of R3. We first consider the following equation which
admits a smooth real solution

(x(s1, s2, s3), y(s1, s2, s3), t(s1, s2, s3)) :

(5)


∂x
∂s1

= Re(f1(0, 0, s3) + f2(0, 0, s3))
∂y
∂s1

= Im(f1(0, 0, s3)− f2(0, 0, s3))
∂t
∂s1

= Re g(0, 0, s3),

(6)


∂x
∂s2

= Im(f1(0, 0, s3) + f2(0, 0, s3))
∂y
∂s2

= Re(f2(0, 0, s3)− f1(0, 0, s3))
∂t
∂s2

= Im g(0, 0, s3)

and (x(s1, s2, s3), x(s1, s2, s3), t(s1, s2, s3)) also satisfies the initial conditions:

(x(0, 0, s3), y(0, 0, s3), t(0, 0, s3)) = φp ◦ γ(s3) = (0, 0, s3).

To solve (5) and (6) in φp(Up) ⊂ R3, we let

x(s1, s2, s3) = Re(f1(0, 0, s3) + f2(0, 0, s3))s1 + Im(f1(0, 0, s3) + f2(0, 0, s3))s2,

y(s1, s2, s3) = Im(f1(0, 0, s3)− f2(0, 0, s3))s1 + Re(f2(0, 0, s3)− f1(0, 0, s3))s2

and
t(s1, s2, s3) = s3 + (Re g(0, 0, s3))s1 + (Im g(0, 0, s3))s2.

We check also the initial condition (x(0, 0, s3), y(0, 0, s3)) = (0, 0) and t(0, 0, s3)
= s3. Hence

(x(0, 0, s3), y(0, 0, s3), t(0, 0, s3)) = (0, 0, s3).

Without loss of generality, we consider x(s1, s2, s3) solving

(7)

{
∂x
∂s1

= Re(f1(0, 0, s3) + f2(0, 0, s3))
∂x
∂s2

= Im(f1(0, 0, s3) + f2(0, 0, s3))
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with initial condition x(0, 0, s3) = 0. It is clear that the solution is unique.
Hence it can be extended to the whole curve γ([0, r]) uniquely.

We are going to check the condition of the inverse function theorem on the
map

(x(s1, s2, s3), y(s1, s2, s3), t(s1, s2, s3))

at (0, 0, s3). Now 
∂x
∂s1

∂x
∂s2

∂x
∂s3

∂y
∂s1

∂y
∂s2

∂y
∂s3

∂t
∂s1

∂t
∂s2

∂t
∂s3


has rank 3 because γ′(s3), ReL and ImL are linearly independent. Hence
locally we can define

h(s1, s2, s3) := h(x(s1, s2, s3), y(s1, s2, s3), t(s1, s2, s3)).

Thus, we define

u(s1, s2, s3) = h1(0, 0, s3)s1 + h2(0, 0, s3)s2.

We immediately find that
∂u

∂s1
= h1(0, 0, s3)

and
∂u

∂s2
= h2(0, 0, s3)

can be solved uniquely by

u = h1(0, 0, s3)s1 + h2(0, 0, s3)s2

given with the initial condition

u(0, 0, s3) = 0.

Here, h1 := Reh and h2 := Imh.
Since

ReL = Re(f1 + f2)
∂

∂x
+ Im(f1 − f2)

∂

∂y
+ Re g

∂

∂t

on Γ locally, it can be rewritten as

ReL = Re(f1(0, 0, s3) + f2(0, 0, s3))
∂

∂x
+ Im(f1(0, 0, s3)− f2(0, 0, s3))

∂

∂y

+ Re g(0, 0, s3)
∂

∂t

=
∂x

∂s1

∂

∂x
+

∂y

∂s1

∂

∂y
+

∂t

∂s1

∂

∂t

=
∂

∂s1
.
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For the same reason
ImL =

∂

∂s2
.

One can see again that u solves
∂u

∂s1
= h1

and
∂u

∂s2
= h2

with initial condition u(0, 0, s3) = 0 uniquely. By the inverse function theo-
rem, we can find u(x, y, t) solving Lu = h on Γ and such a u is defined on a
neighborhood of Γ. �

The following extension lemma is classical. One can find it in any book on
smooth manifolds, e.g. Lemma 2.26 of [22].

Lemma 4.1 (Extension Lemma for Smooth Functions). Suppose that M is
a smooth manifold with or without boundary, A ⊂ M is a closed subset, and
f : A 7→ R is a smooth function. For any open subset U containing A, there
exists a smooth function f̃ : M 7→ R such that f̃ |A = f and suppf̃ ⊂ U .

Proof of Theorem 2. Calculate that

Hessδeφ(L,N) = g(∇L∇(δeφ), N)

= g(∇L(δ∇eφ), N) + g(∇L(eφ∇δ), N)

= δg(∇L(∇eφ), N) + eφL(δ)N(φ) + eφg(∇L(∇δ), N)

+ eφL(φ)N(δ).

On ∂Ω,

Hessδeφ(L,N) = eφg(∇L(∇δ), N)+eφL(φ)N(δ) = eφ(Hessδ(L,N)+L(φ)N(δ)).

We let φ be the solution of

L(φ) = −Hessδ(L,N)

N(δ)

from Proposition 4.1 defined on a closed neighborhood V of Γ in ∂Ω. Then one
finds on Γ that

Hessδeφ(L,N) = 0.

By the extension lemma for smooth functions, we can find φ̃ defined on a
neighborhood U of Γ in C2 such that φ̃|V = φ . We find a smooth function χ
defined on a neighborhood of Ω and supp φ̃ ⊂ W where W is an open subset
of C2 such that Γ ⊂W ⊂ U . We may assume that χ also satisfies

χ(z, w) =

{
1, if(z, w) ∈W,
0, if(z, w) 6∈ U.
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Then we define Φ to be

Φ(z, w) =

{
χφ̃, if(z, w) ∈ U,
0, otherwise.

Then δeΦ is a defining function of Ω which satisfies

HessδeΦ(L,N) = 0

on Γ. By Theorem 1, the theorem is proved. �

Inspired by the preceding proof, the following theorem can be established.

Theorem 4.1. Let δ be an arbitrarily defining function of a bounded domain
Ω ⊂ C2 with smooth boundary. Let Σ ⊂ ∂Ω denote the Levi-flat sets of ∂Ω.
Then

Hessρ(L,N) = 0

on Σ for the defining function ρ = δeφ of Ω if and only if there exists a (real)
smooth function φ so that

L(φ) = −Hessδ(L,N)

N(δ)
on Σ,

where L is the normalized (1, 0)-tangential vector field of ∂Ω and N is the
normalized (1, 0)-normal vector field of ∂Ω. Specifically, if there is no real
function φ which solves

L(φ) = −Hessδ(L,N)

N(δ)
,

then there exists no defining functions r so that Hessr(L,N) = 0.

Proof. The first part is true because of the equality:

Hessδeφ(L,N) = eφ(Hessδ(L,N) + L(φ)N(δ)) on Σ.

The second part holds because it is well known that every defining function ρ
can be written as ρ = δ · h for some smooth h > 0. We define φ = log h and
then the second part follows from the first part. �

From the preceding theorem, combining with Theorem 1 we have the fol-
lowing result.

Theorem 4.2. Let δ be an arbitrarily defining function of a bounded domain
Ω ⊂ C2 with smooth boundary. Let Σ ⊂ ∂Ω denote the Levi-flat sets of ∂Ω.
Suppose there is a real function u which solves

L(u) = −Hessδ(L,N)

‖∇δ‖
on Σ. Then the Diederich-Fornæss index of Ω is 1.
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5. Infinite type and Diederich-Fornæss index

In this section, we will answer Question 3 raised in Section 1. We want
to see a new example which has the Diederich–Fornæss index 1 but cannot be
verified by formerly known theorems. Our example will neither be of finite type
nor admit a plurisubharmonic defining function. Thus, to show the Diederich–
Fornæss index to be 1, we have to use our theorems in the current article.

It has been known to the experts that there is no equivalence between finite
type and trivial Diederich-Fornæss index. Nevertheless, one can show that the
domains of finite type have Diederich-Fornæss index 1. (Indeed, we could not
find a precise reference. Professor Anne-Katrin Gallagher was kind to teach
us the following arguments, so the authors owe her the credit.) This is done
similar to the usual construction: re−φM where r is some defining function
for the domain, {φM} are the functions constructed by Catlin in [7]. That is
0 ≤ φM ≤ 1 and its complex Hessian of φM in a direction ξ is larger than
M |ξ|2.

Let us consider a domain of which the Levi-flat points form a real curve
transversal to the (1, 0)-tangent vector fields on the boundary. The reader
should be warned that the following domain also admits a defining function
which is plurisubharmonic on the boundary.

Example 5.1. Let

Ω = {(z, w) ∈ C2 : |z|2 + 2e−1/|w|2 < 1}
be a bounded domain with smooth boundary in C2. Moreover, it has an infinite
type point at (1, 0). Here, the defining function at w = 0 should be understood
as |z|2 + 2 lim

w→0
e−1/|w|2 < 1. The similar treatment will be seen later when the

authors compute the Levi-forms.

We are going to verify the Levi-flat points are only at (eiθ, 0) for θ ∈ [0, 2π).
Since

ρ(z, w) = |z|2 + 2e−1/|w|2 − 1,

we obtain that
∂ρ

∂w
= 2

e−1/|w|2

w2w
,

∂ρ

∂z
= z,

∂2ρ

∂z∂z̄
= 1

and
∂2ρ

∂w∂w̄
= 2e−1/|w|2(

1

|w|6
− 1

|w|4
).

Moreover, the (1, 0)-tangent vector field is

L = 2
e−1/|w|2

w2w

∂

∂z
− z ∂

∂w
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and its complex Hessian is(
1 0

0 2e−1/|w|2( 1
|w|6 −

1
|w|4 )

)
.

Thus the Levi form is(
2 e
−1/|w|2

w2w −z
)(1 0

0 2e−1/|w|2( 1
|w|6 −

1
|w|4 )

)(
2 e
−1/|w|2

ww2

−z

)

= 4
e−2/|w|2

|w|6
+ 2|z|2e−1/|w|2

(
1

|w|6
− 1

|w|4

)
= 2e−1/|w|2

(
2
e−1/|w|2

|w|6
+ |z|2

(
1

|w|6
− 1

|w|4

))
.

We can see that
{(z, w) ∈ C2 : |z| = 1, w = 0}

is a set of Levi-flat points. (Again, if the formula does not make sense at a
point, we use limit to treat this point. The similar treatment has been seen
before in the Example 5.1.) To see if all Levi-flat points belong to it, we need
to solve the algebraic equation:{

2e−1/|w|2
(

2 e
−1/|w|2

|w|6 + |z|2
(

1
|w|6 −

1
|w|4

))
= 0,

|z|2 + 2e−1/|w|2 = 1.

In case w 6= 0, the previous equation is equivalent to the following:

0 = 2
e−1/|w|2

|w|6
+
(

1− 2e−1/|w|2
)( 1

|w|6
− 1

|w|4

)
=

1

|w|6
− 1

|w|4
+ 2

e−1/|w|2

|w|4

=
1

|w|4

(
1

|w|2
− 1 + 2e−1/|w|2

)
.

To solve

0 =
1

|w|2
− 1 + 2e−1/|w|2 ,

we let t = − 1
|w|2 < 0 and it converts to

0 = −t− 1 + 2et

which asserts that t < 0 has no solution (2et − t − 1 is a decreasing function
for t < 0 and 2e0 − 0− 1 = 1 > 0). Thus the complete Levi-flat set is

Γ := {(z, w) ∈ C2 : |z| = 1, w = 0}.
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The tangent vector on Γ is

−y ∂
∂x

+ x
∂

∂y
+ 0

∂

∂u
+ 0

∂

∂v
,

where z = x+ iy and w = u+ iv. At Γ,

L = −z̄ ∂

∂w
.

Hence the Diederich-Fornæss index of Ω is 1, because of L is transversal to
Γ. The same computation works for a slightly more general domain as follows.

Proposition 5.1. Assume z0 ∈ C and v0 ∈ R. Let p = (z0, v0) and

Ωa,b(p) := {(z, w) ∈ C2 : a|z − z0|2 + 2e−1/|w−v0|2 < b}
for arbitrary a > 0 and b ∈ (0, 2). Then the Levi-flat sets Fa,b(p) is

{(z, w) ∈ C2 : |z − z0| =
√
b

a
, w = v0}

is a real curve and is transversal to (1, 0)-tangent vector fields. Hence, the
Diederich-Fornæss index of Ωa,b(p) is 1.

Remark 6. Let z = x + iy and w = u + iv and think of the v-axis as the
vertical direction. By calculation, we find out the north pole N of Ωa,b(p) is

at
(
z0, v0 +

√
1

ln 2−ln b

)
and Fa,b(p) is the equator. We also define Ω+

a,b(p) to
be B(N , ε) ∩ Ωa,b(p), where ε > 0 is chosen to be very small so that Fa,b(p) ∩
B(N , 2ε) = ∅. We denote the complement of Ω+

a,b(p) in Ωa,b(p) by Ω−a,b(p).

The previous example admits a defining function plurisubharmonic on the
boundary. Of course, by Fornæss–Herbig’s theorem, the Diederich–Fornæss
index is 1. For the following paragraphs, we are going to construct a bounded
pseudoconvex, infinite type domain Ω̃ with smooth boundary which does not
admit a defining function which is plurisubharmonic on the boundary. Our
example is motivated by the method McNeal uses to prove Proposition 2.1 of
[23]. More specifically, we will solder one piece of the domain in [3] with our
domain Ωa,b along the strongly pseudoconvex boundary points. The resulting
domain should be infinite type because of Ωa,b and does not admit a defining
function which is plurisubharmonic on the boundary because of Behrens’ result.
Moreover, the domain has Diederich-Fornæss index 1 by Remark 3 because the
Levi-flat points are a point united with a real curve transversal to (1, 0)-tangent
vector fields.

Firstly, recall the result of [3].

Theorem 5.1 (Behrens). There is a τ0 > 0 such that H∩B(0, τ0) is pseudocon-
vex from the side ρH < 0 and the origin is the only non-strongly pseudoconvex
point, where H is a smooth hypersurface defined by the function

ρH(z, w) = v +R(z, w),
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where

P6(z) =
1

2
|z|6 + 2 Re

(
− 1

20
z̄5z +

i

4
z̄4z2

)
,

Q4(z) =
1

2
|z|4 − i

6
z3z̄ +

i

6
z̄3z,

R(z, w) = P6(z) + 2uQ4(z) + |z|2u2 + |z|2u4 + |z|10 + |z|6u2.

Recall that p = (0, v0), and we define

T (p, (z, w)) = a|z|2 + 2e−1/|w−v0|2 for a > 0.

Let a > 0 big, 0 < δ < 1 small, p in the side of ρH < 0 so that ∂Ωa,1(p)
intersects H transversally, H ∩ ∂Ωa,1(p) ⊂ B(0, τ0) and Ω−a,1(p) ⊂ {ρH < −δ}.
By a continuity argument, we can also assume there exists ε0 > 0 so that
H ∩ ∂Ωa,1+ε0(p) ⊂ B(0, τ0) and H intersects ∂Ωa,b(p) transversally for any
b ∈ (1 − ε0, 1 + ε0). Moreover, we might shrink δ so that the origin is inside
T (p, (z, w)) ≤ 1 − ε0. This is because if we shrink δ, we can let p close to the
origin, which makes the origin is easy to be contained in T (p, (z, w)) ≤ 1− ε0.
We now modify ρH to ρ̃H so that ρ̃H = ρH for T (p, (z, w)) ≤ 1− ε0 and ρ̃H is
strictly plurisubharmonic whenever T (p, (z, w)) ≥ 1− ε0. This can be achieved
because the origin is the only non-strongly pseudoconvex point and around
strongly pseudoconvex points, there exist plurisubharmonic defining functions.
Hence, one can apply a procedure due to Kohn to get a defining function strictly
plurisubharmonic away from weakly pseudoconvex points (see Noell [24]).

We let
ρ = Kχ1(T (p, (z, w))) + χ2(ρ̃H(z, w)),

where K > 2 is to be determined later. Here we let χ1(t) be a real-valued, C∞
increasing function on R with χ1(t) ≡ 0 if t < 1 − ε0 for an 0 < ε0 <

1
2 and

χ′′1(t) > 0 if t > 1− ε0 and there is t0 ∈ (1− ε0, 1 + ε0) so that χ1(t0) = t0. We
also let χ2(t) : R→ R be a C∞ convex increasing function such that χ2(t) ≡ −δ
if t ≤ −δ and χ2(t) = t if t > − 1

2δ.
Let

Ω̃ := {(z, w) ∈ C2 : ρ(z, w) < 0},
where K is big enough to ensure Ω̃ being bounded. We divide ∂Ω̃ into three
sets:

B1 = {(z, w) ∈ ∂Ω̃ : T (p, (z, w)) < 1− ε0},

B2 = {(z, w) ∈ ∂Ω̃ : ρ̃H(z, w) < −δ},

B3 = {(z, w) ∈ ∂Ω̃ : T (p, (z, w)) ≥ 1− ε0 and ρ̃H(z, w) > −δ}.

For B1, χ1 = 0 so the ∂Ω̃ is defined by ρ̃H . For B2, observe first that if
T (p, (z, w)) = 1− ε0, then χ1 vanishes and

ρ = −δ < 0.
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When (z, w) ∈ C2 is such that T (p, (z, w)) = t0 ∈ (1− ε0, 1 + ε0),

ρ = KT (p, (z, w))− δ > 2− 2ε0 − δ > 0,

by shrinking δ > 0. Hence ∂Ω̃ can be defined on B2 by

a|z|2 + 2e−1/|w−w0|2 = χ−1
1 (

δ

K
),

where χ−1
1 ( δK ) < 2. Moreover Levi-flat sets of B2 is a real curve transversal to

(1, 0)-tangent vector fields. Since B3 is away from origin, ρ is a plurisubhar-
monic function on B3, because T (p, (z, w)) and ρ̃H are both plurisubharmonic
when (z, w) is away from origin. So Ω̃ is strongly pseudoconvex on B3. Since

∇ρ = Kχ′1∇T (p, (z, w)) + χ′2∇ρ̃H ,

and H intersects ∂Ωa,b(p) transversally for any b ∈ (1 − ε0, 1 + ε0), ∇ρ is not
vanishing.

The Levi-flat set contains only a point union with a real curve transversal to
(1, 0)-tangent vector fields. Hence, we obtain the main theorem in the current
section.

Theorem 5.2. Ω̃ is a bounded pseudoconvex domain in C2 with smooth bound-
ary which satisfies the following two properties

(1) Ω̃ is neither a domain of finite type nor a domain admitting a defining
function which is plurisubharmonic on the boundary.

(2) The Diederich-Fornæss index of Ω̃ is 1.

Appendix

Proof of Lemma 3.1

Since L(ρ) = L(ρ) = 0, we have that,

Hess−(−reψ)ηe−δη|z|2 (aL+ bN, aL+ bN)

= − ηe−δη|z|
2

(−reψ)η−1
(
|a|2
(
(δ2η)(−reψ)L(|z|2)L(|z|2)

− δ(−reψ) Hess|z|2(L,L)− eψL(ψ)L(r)− eψL(r)L(ψ)− reψL(ψ)L(ψ)

− eψ Hessr(L,L)− reψ Hessψ(L,L)
)

+ 2 Re
(
ab̄(δηeψL(|z|2)N(r)

+ δηreψL(|z|2)N(ψ) + (δ2η)(−reψ)L(|z|2)N(|z|2)− δ(−reψ) Hess|z|2(L,N)

− eψL(ψ)N(r)− eψL(r)N(ψ)− reψL(ψ)N(ψ)− eψ Hessr(L,N)

− reψ Hessψ(L,N))
)

+ |b|2(δηN(ρ)N(|z|2) + δηN(|z|2)N(ρ)

+ (δ2η)(−ρ)N(|z|2)N(|z|2)− δ(−ρ) Hess|z|2(N,N)−Hessρ(N,N)

− 1

ρ
(η − 1)N(ρ)N(ρ))

)
= − ηe−δη|z|

2

(−reψ)η−1
(
|a|2I + 2 Re(ab̄II) + |b|2III

)
.
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Recall that Hess|z|2(L,L) = 1. From these, we can simplify the term I a
little bit in C2 with the following two identities,

eψ(Lψ)(Lr) + reψ(Lψ)(Lψ) = (Lψ)(Lρ) = 0 and

eψ(Lr)(Lψ) + reψ(Lψ)(Lψ) = (Lψ)(Lρ) = 0.

We have that

I = (δ2η)(−reψ)L(|z|2)L(|z|2)− δ(−reψ) Hess|z|2(L,L)− eψL(ψ)L(r)

− eψL(r)L(ψ)− reψL(ψ)L(ψ)− eψ Hessr(L,L)− reψ Hessψ(L,L)

= (δ2η)(−reψ)L(|z|2)L(|z|2)− δ(−reψ) Hess|z|2(L,L) + reψL(ψ)L(ψ)

− eψ Hessr(L,L)− reψ Hessψ(L,L)

= eψ
(
(δ2η)(−r)L(|z|2)L(|z|2)− δ(−r) Hess|z|2(L,L) + rL(ψ)L(ψ)

−Hessr(L,L)− rHessψ(L,L)
)

= eψ
(
(δ2η)(−r)L(|z|2)L(|z|2)− δ(−r) + rL(ψ)L(ψ)

−Hessr(L,L)− rHessψ(L,L)
)
.

Since Hess|z|2(L,N) = 0 we can further simplify II a little:

II = δηeψL(|z|2)N(r) + δηreψL(|z|2)N(ψ) + (δ2η)(−reψ)L(|z|2)N(|z|2)

− δ(−reψ) Hess|z|2(L,N)− eψL(ψ)N(r)− eψL(r)N(ψ)− reψL(ψ)N(ψ)

− eψ Hessr(L,N)− reψ Hessψ(L,N)

= eψ
(
δηL(|z|2)N(r) + δηrL(|z|2)N(ψ) + (δ2η)(−r)L(|z|2)N(|z|2)

− δ(−r) Hess|z|2(L,N)− L(ψ)N(r)− L(r)N(ψ)− rL(ψ)N(ψ)

−Hessr(L,N)− rHessψ(L,N)
)

= eψ
(
δηL(|z|2)N(r) + δηrL(|z|2)N(ψ) + (δ2η)(−r)L(|z|2)N(|z|2)

− L(ψ)N(r)− L(r)N(ψ)− rL(ψ)N(ψ)−Hessr(L,N)− rHessψ(L,N)
)
.

More specifically, on ∂Ω, we have an estimate.

|II| < eψ
(
δη|L(|z|2)N(r)|+ |L(ψ)N(r)|+ |Hessr(L,N)|

)
.

Now, for III,

III = δηN(ρ)N(|z|2) + δηN(|z|2)N(ρ) + (δ2η)(−ρ)N(|z|2)N(|z|2)

− δ(−ρ) Hess|z|2(N,N)−Hessρ(N,N)− 1

ρ
(η − 1)N(ρ)N(ρ)

= δηN(ρ)N(|z|2) + δηN(|z|2)N(ρ) + (δ2η)(−ρ)N(|z|2)N(|z|2)

− δ(−ρ) Hess|z|2(N,N)−Hessρ(N,N)− 1

reψ
(η − 1)(e2ψ|N(r)|2

+ e2ψr2|N(ψ)|2 + re2ψN(r)N(ψ) + re2ψN(ψ)N(r))
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= δηN(ρ)N(|z|2) + δηN(|z|2)N(ρ) + (δ2η)(−ρ)N(|z|2)N(|z|2)

− δ(−ρ)−Hessρ(N,N)− 1

reψ
(η − 1)(e2ψ|N(r)|2 + e2ψr2|N(ψ)|2

+ re2ψN(r)N(ψ) + re2ψN(ψ)N(r)).

By the previous equality, after shrinking the neighborhood of ∂Ω in Ω so
that r is sufficiently small, we can also obtain an estimate for III:

III <
eψ

−2r
(η − 1)|N(r)|2.

Proof of Lemma 3.2

We rewrite the proof with the language of differential geometry. This proof
is essentially due to Fornæss–Herbig in [12]. Let ξ = Hessr(Nr, Lr) and then
ψ = −Cξξ̄. We observe that

Lr(ψ) = −CLr(ξξ̄) = −CξLr(ξ̄)− Cξ̄Lr(ξ).
The preceding equation is 0 because

ξ = Hessr(Nr, Lr) = 0 = Hessr(Lr, Nr) = ξ̄

on Σ.
Now we are going to prove (2). Observe that on ∂Ω, L = Lr and

Hessξξ̄(Lr, Lr) = g(∇Lr∇(ξξ̄), Lr) = g(∇Lr (ξ∇ξ̄), Lr) + g(∇Lr (ξ̄∇ξ), Lr)
= 2 Re(ξHessξ̄(Lr, Lr)) + |Lrξ|2 + |Lr ξ̄|2

which implies

Hessψ(L,L) = Hessψ(Lr, Lr) ≤ −C|Lr Hessr(Nr, Lr)|2

because ξ = 0 on Σ.
Next, we prove

Lr Hessr(Nr, Lr) = Nr Hessr(Lr, Lr)

on Σ. We have
Lr Hessr(Nr, Lr) = Lrg(∇Nr∇r, Lr)

= g(∇Lr∇Nr∇r, Lr) + g(∇Nr∇r,∇LrLr)
= g(∇Lr∇Nr∇r, Lr) + Hessr(Nr,∇LrLr).

Since
Hessr(Lr, Nr) = Hessr(Nr, Lr) = 0

and
0 = Hessr(Lr, Lr) = Lr(Lrr)− (∇LrLr)r = −(∇LrLr)r,

we have that ∇LrLr is proportional to Lr and Hessr(Nr,∇LrLr) = 0. Hence

Lr Hessr(Nr, Lr) = g(∇Lr∇Nr∇r, Lr)
= g(∇Nr∇Lr∇r, Lr) + g(∇[Lr,Nr]∇r, Lr),
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because of the vanishing of the sectional curvature of C2. Therefore,

Lr Hessr(Nr, L) = g(∇Nr∇Lr∇r, Lr) + g(∇[Lr,Nr]∇r, Lr)

= g(∇Nr∇Lr∇r, Lr) + g(∇Lr∇r, [Lr, Nr])
= Nrg(∇Lr∇r, Lr)− g(∇Lr∇r,∇NrLr)

+ g(∇Lr∇r, [Lr, Nr]),

where the second term vanishes because

0 = Hessr(Nr, Lr) = Nr(Lrr)− (∇NrLr)r = −(∇NrLr)r

implies that ∇NrLr is proportional to Lr and the third term vanishes because
[Lr, Nr] is linearly spanned by Lr and Nr and g(∇Lr∇r, Lr) = g(∇Lr∇r,Nr) =
0. Thus

Lr Hessr(Nr, Lr) = Nrg(∇Lr∇r, Lr) = N Hessr(Lr, Lr),

which completes the proof.
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