1 |
M. Behrens, Plurisubharmonic defining functions of weakly pseudoconvex domains in , Math. Ann. 270 (1985), no. 2, 285-296.
DOI
|
2 |
B. Berndtsson and P. Charpentier, A Sobolev mapping property of the Bergman kernel, Math. Z. 235 (2000), no. 1, 1-10.
DOI
|
3 |
H. P. Boas and E. J. Straube, Sobolev estimates for the -Neumann operator on domains in admitting a defining function that is plurisubharmonic on the boundary, Math. Z. 206 (1991), no. 1, 81-88.
DOI
|
4 |
H. P. Boas and E. J. Straube, de Rham cohomology of manifolds containing the points of infinite type, and Sobolev estimates for the -Neumann problem, J. Geom. Anal. 3 (1993), no. 3, 225-235.
DOI
|
5 |
D. Catlin, Subelliptic estimates for the -Neumann problem on pseudoconvex domains, Ann. of Math. (2) 126 (1987), no. 1, 131-191.
DOI
|
6 |
J.-P. Demailly, Mesures de Monge-Ampere et mesures pluriharmoniques, Math. Z. 194 (1987), no. 4, 519-564.
DOI
|
7 |
K. Diederich and J. E. Fornaess, Pseudoconvex domains: an example with nontrivial Nebenhulle, Math. Ann. 225 (1977), no. 3, 275-292.
DOI
|
8 |
K. Diederich and J. E. Fornaess, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), no. 2, 129-141.
DOI
|
9 |
K. Diederich and J. E. Fornaess, Pseudoconvex domains: existence of Stein neighborhoods, Duke Math. J. 44 (1977), no. 3, 641-662.
DOI
|
10 |
J. E. Fornaess and A.-K. Herbig, A note on plurisubharmonic defining functions in , Math. Z. 257 (2007), no. 4, 769-781.
DOI
|
11 |
J. E. Fornaess and A.-K. Herbig, A note on plurisubharmonic defining functions in , Math. Ann. 342 (2008), no. 4, 749-772.
DOI
|
12 |
S. Fu and M.-C. Shaw, The Diederich-Fornaess exponent and non-existence of Stein domains with Levi-flat boundaries, J. Geom. Anal. 26 (2016), no. 1, 220-230.
DOI
|
13 |
A.-K. Herbig and J. D. McNeal, Oka's lemma, convexity, and intermediate positivity conditions, Illinois J. Math. 56 (2012), no. 1, 195-211 (2013).
|
14 |
P. S. Harrington, The order of plurisubharmonicity on pseudoconvex domains with Lipschitz boundaries, Math. Res. Lett. 15 (2008), no. 3, 485-490.
DOI
|
15 |
P. S. Harrington, Bounded plurisubharmonic exhaustion functions for Lipschitz pseudoconvex domains in , J. Geom. Anal. 27 (2017), no. 4, 3404-3440.
DOI
|
16 |
A.-K. Herbig and J. D. McNeal, Convex defining functions for convex domains, J. Geom. Anal. 22 (2012), no. 2, 433-454.
DOI
|
17 |
N. Kerzman and J.-P. Rosay, Fonctions plurisousharmoniques d'exhaustion bornees et domaines taut, Math. Ann. 257 (1981), no. 2, 171-184.
DOI
|
18 |
J. J. Kohn, Quantitative estimates for global regularity, in Analysis and geometry in several complex variables (Katata, 1997), 97-128, Trends Math, Birkhauser Boston, Boston, MA, 1999.
|
19 |
S. G. Krantz and M. M. Peloso, Analysis and geometry on worm domains, J. Geom. Anal. 18 (2008), no. 2, 478-510.
DOI
|
20 |
J. M. Lee, Introduction to Smooth Manifolds, second edition, Graduate Texts in Mathematics, 218, Springer, New York, 2013.
|
21 |
J. D. McNeal, Lower bounds on the Bergman metric near a point of finite type, Ann. of Math. (2) 136 (1992), no. 2, 339-360.
DOI
|
22 |
A. Noell, Local and global plurisubharmonic defining functions, Pacific J. Math. 176 (1996), no. 2, 421-426.
DOI
|
23 |
T. Ohsawa and N. Sibony, Bounded p.s.h. functions and pseudoconvexity in Kahler manifold, Nagoya Math. J. 149 (1998), 1-8.
DOI
|
24 |
T. Ohsawa and N. Sibony, Kahler identity on Levi flat manifolds and application to the embedding, Nagoya Math. J. 158 (2000), 87-93.
DOI
|
25 |
D. E. Barrett, Behavior of the Bergman projection on the Diederich-Fornaess worm, Acta Math. 168 (1992), no. 1-2, 1-10.
DOI
|
26 |
S. Pinton and G. Zampieri, The Diederich-Fornaess index and the global regularity of the -Neumann problem, Math. Z. 276 (2014), no. 1-2, 93-113.
DOI
|
27 |
P. Petersen, Riemannian Geometry, second edition, Graduate Texts in Mathematics, 171, Springer, New York, 2006.
|
28 |
M. Adachi and J. Brinkschulte, A global estimate for the Diederich-Fornaess index of weakly pseudoconvex domains, Nagoya Math. J. 220 (2015), 67-80.
DOI
|