• Title/Summary/Keyword: mathematical proof

Search Result 546, Processing Time 0.024 seconds

SHARP MOSER-TRUDINGER INEQUALITIES

  • Kim, Mee-Lae
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.257-266
    • /
    • 1999
  • We used Carleson and Chang's method to give another proof of the Moser-Trudinger inequality which was known as a limiting case of the Sobolev imbedding theorem and at the same time we get sharper information for the bound.

  • PDF

LINEARLY INVARIANT FUNCTIONS

  • Song, Tai-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.4
    • /
    • pp.867-874
    • /
    • 1995
  • Linear invariance is closely related to the concept of uniform local univalence. We give a geometric proof that a holomorphic locally univalent function defined on the open unit disk is linearly invariant if and only if it is uniformly locally univalent.

  • PDF

A CLT FOR WEAKLY DEPENDENT RANDOM FIELDS

  • Jeon, Tae-Il
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.3
    • /
    • pp.597-609
    • /
    • 1999
  • In this article we prove a central limit theorem for strictly stationary weakly dependent random fields with some interlaced mix-ing conditions. Mixing coefficients are not assumed. The result it basically the same to Peligrad([4]), which is CLT weakly depen-dent arrays of random variables. The proof is quite similar to the of Peligrad.

  • PDF

ON A GENERALIZATION OF FENCHEL`S THEOREM

  • Chai, Y.D.;Kim, Moon-Jeong
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.1
    • /
    • pp.103-109
    • /
    • 2000
  • In this paper, we present the proof of generalized Fenchel's theorem by estimating the Gauss-Kronecker curvature of the tube of a nondegenerate closed curve in R$^{n}$ .

  • PDF

ON j-INVARIANTS OF WEIERSTRASS EQUATIONS

  • Horiuchi, Ryutaro
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.695-698
    • /
    • 2008
  • A simple proof of the fact that the j-invariants for Weierstrass equations are invariant under birational transformations which keep the forms of Weierstrass equations is given by finding a non-trivial explicit birational transformation which sends a normalized Weierstrass equation to the same equation.