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A CLT FOR WEAKLY DEPENDENT RANDOM FIELDS

TAE IL JEON

ABSTRACT. In this article we prove a central limit theorem for strictly
stationary weakly dependent random fields with some interlaced mix-
ing conditions. Mixing coefficients are not assumed. The result is
basically the same to Peligrad ([4]), which is a CLT for weakly depen-
dent arrays of random variables. The proof is quite similar to that of
Peligrad.

1. Introduction

Let d be a positive integer. Suppose X = (Xj,k € Z%) is a centered
strictly stationary random field on a probability space (2, F, P). Let us
denote the usual Euclidean norm of a vector k = (ki,...,k;) € Z¢ by
||k]| and |||k||] = k1---ki. The distance between two disjoint nonempty
subsets S, T C Z? will be denoted by

dist(S,T) = min |7 — k|-

Let A, B be two sub o-algebras of F. Define the strong mixing coeffi-
cient by

(1) a(A,B) = sup |P(AB) - P(A)P(B)|

A€A,BeB

and the maximal coefficient of correlation by

(2) p(A,B)=  sup |corr(f,g)l.
feL2(A),ge12(B)
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Then the following inequality is elementary
1
(A, B) < 7p(A, B).

We may extend the definitions to a centered strictly stationary random
filed X = (X;,t € R%) on (, F, P). The distance between any two disjoint
nonempty subsets S,7 C R? will be denoted by dist(S,7T) = inf{||s —
t|| : s € S,t € T}. For disjoint nonempty sets S and T', we use the
abbreviations

a(S,T) = a(c(X;,t € S),0(X,t €T))

p(S, T) = p(U(Xt,t € S)’U(Xt,t € T))1

where o(X;,t € S) denotes the o-field generated by {X;,t € S}. For any
real number » > 0, define the following dependence coefficients for the
given random field X = (X;,t € RY)

(3) a(r) =supa(S,T)

(4) p(r) =sup p(S,T),

where in both (3) and (4) the supremum is taken over all pairs of disjoint
closed d-dimensional half-spaces S and T C R? with dist(S,T") > r. For
any real 7 > 0, define also

o (r) =supa(S,T), S,TcRY dist(S,T)>r

p*(r) =supp(S,T), S, T c R?, dist(S,T) >r.

Comparing the definitions of a(r), p(r), a*(r), and p*(r), the followings
are obvious that a(r) < o*(r), and p(r) < p*(r). We state some known
results.

THEOREM 1. Suppose d > 2 and X = (X;,t € RY) is a strictly sta-
tionary random field which is mixing and r > 0 is a real number. Then
the following statements hold (Bradley ([2])).

(@) o) < p(r) < 2mafr)

®)  alr) =1 p(r) =1

(¢) a*(r) < p*(r) < 2ma*(r)

(d) ofr) =4

e 0(r)=1
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It is not hard to notice that the condition a(r) — 0 implies that X
is strong mixing. Therefore by Theorem 1 the conditions a(r) — 0 and
p(r) — 0 are equivalent to each other for strictly stationary random fields
X = (X;,t € RY,d > 2. Also we may say the conditions o*(r) — 0 and
p*(r) — 0 are equivalent to each other. Note that, for strictly stationary
mixing random processes {X; : t € R} or { X}, : k € Z}, (a) and (b) are not
true in general. Bradley ([2]) proved for the strictly stationary sequences
that the condition a*(n) — 0 as n — oo contains enough information to
assure the CLT without any additional rate or moment conditions higher
than 2. We state the result.

THEOREM 2. If(Xy, k € Z) is a strictly stationary sequence of real cen-
tered square integrable random variables such that o2 = var(}>_._, X;) —
00, and a*(n) — 0 as n — oo, then

> x
i=1

. 4 N(0,1)  asn— oo.

- Consider some notations for d-dimensional block sum. Suppose j =
(J1,---,da) and I = (I3,... ,l;) are elements in Z¢ such that j, < I,, u =
1,...,d. Denote

S(Xij],... ,jd;ll,... ,ld)—_—ZXk,
k

where the sum is taken over all k = (ki,... k;) € Z% such that j, <
k, <l,, w=1,...,d. For positive integers [, ... ,l;, we use the simple
notations

SX:D)=8X:1l;,...,l5)=8(X:1,...,5L,...,1).

Let N be the set of all positive integers. Considering the asymptotic
normality of S(X : n) as n € N becomes large in the sense of the usual
Euclidean norm, Bradley have proved CLT for the strictly stationary ran-
dom fields with finite second moments and the corresponding unrestricted
p-mixing conditions. Also no mixing rate is assumed. We state the result
which is appeared in Bradley ([1]).

THEOREM 3. Suppose d is a positive integer and X = (X, k € Z9)
is a centered real strictly stationary random field such that 0 < EX? <
00, p*(r) — 0 as r — oo, and the continuous spectral density f of X on
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T¢ satisfies f(1,...,1) > 0. Then as ||n|| — oo, it follows that ||S(X :
n)||s — oo and
S(X :n)

d
S VO,

In Theorem 3, T is the unit circle in the complex plane and f on
Td is a spectral density function for X = (X, k € Z%) and || - |5 is
the L? norm. Peligrad ([4]) proved CLT for strongly mixing sequences
satisfying the Lindeberg condition and an additional assumption imposed
to an interlaced mixing coefficient. The conditions used in the theorem
in Peligrad ([4]) are weaker than the conditions used in Theorem 2 and
Theorem 3 above. Consider a triangular arrays of strongly mixing random
variables, {€n;, 1 <4 < ky,} where k, — co. We shall define the following

(5) Qnk = SuIl) a(a(gm-,z' < S), U(énj,j 2s+ k))

and @y = sup,, @n. The array will be called strongly mixing if @, — 0 as
k — oo. Similarly we define

(6) P = sup p(0 (i € T),0(éns> 3 € S)),
where T, S C {1,2,..., kn} are nonempty subsets with dist(T, S) > k and
(7) Pr= sup Prk-

We state the theorem proved by Peligrad ([4]).

THEOREM 4. Let {£,;1 < ¢ < k,,} be a triangular array of centered
random variables, which is strongly mixing and have finite second mo-
ments. Assume that limy_ g, < 1. Denote by o2 = var(32%, &) and
assume

k
1 z 2
(8) e E._l Eg,; < o0
and for any € > 0

k
1 <« 9
9) =5 > Bl (6] > €,) = 0 as n— oo

n =1
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Then
kn
> bu
(10) i=; 4, N(0,1) as n— oo.

Note that the stationarity condition is not assumed in Theorem 4.
When we assume the stationary condition on a sequence of random vari-
ables we can formulate a theorem as follows, from Corollary 2.3 of Peligrad

([4),

THEOREM 5. Suppose {Xi,k € N} is a strongly mixing strictly sta-
tionary sequence of random variables which is centered and has finite
second moments. Assume that lim,_, p*(n) < 1 and 02 — co. Then

2
(11) liminf 7% > 0
n

and

DX
k=1

On

2, N(0,1) asn— oo.

(12)

2. The Main Result and Lemmas

We note that, since a(n) < o*(n), the mixing condition a*(n) — 0
used in Theorem 2 is stronger than those conditions strong mixing and
limy, oo p*(n) < 1 used in Theorem 5. We shall consider a strictly station-
ary random field X = {X,,n € Z%} which are centered and have finite
second moments. Also we impose the interlaced mixing conditions which
is quite similar to those in Theorem 5. Then we have the following result.

THEOREM 6. Let X = {X,,n € Z%} be a strictly stationary random
field which is centered and has finite second moments. Assume that

(a) a(r) -0 asr— o0
(b) _ lim p*(r) <1

(c) o°=varS(X :n) — oo as ||n|| — oo.
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Then

lim inf —-2-

and

S(X :n)

~ 4, N(0,1)  as ||n]| — .

The proof of Theorem 6 is quite similar to that of Theorem 5. For the
proof we will state some lemmas.

LEMMA 1. Suppose 0 < r < 1. Suppose X,,...,X, is a family of
centered square integrable random variables with the following property:
For any two nonempty disjoint subsets S,T C {1,2,... ,n}, one has that

() () = ] e

keS keS
ZXk

For the detail of the proof of Lemma 1, see Bradley ([1]). Lemma 1
provides with the bounds for the variance of partial sums in terms of a
correlation coefficient of two partial sums which apart from each other.
The following lemma gives us some informations about the estimate of
higher moments of partial sums with mixing condition. It is the Lemma
3 in Bryc and Smolenski ([3}).

2 2

Then

1+7)
E|Xi.?< E <( E|X.|2.
RO < 4235 s

LEMMA 2. Suppose {X1,Xs,... ,X,} is a family of centered random
variables which are in L, for q a fixed real, 2 < ¢ < 4. Assume p*(1) < 1.
Then there is a positive constant C depending only on q and p* such that

n q n n q/2
> X ) <C | EIXir+ (ZEX,?)
k=1 k=1

(13) E (

The following lemma is a variation of Lemma 2, which is Lemma 3.3 in
Peligrad ([4]).

LEMMA 3. Suppose {Xj,...,X,} are centered random variables which
are in L, for q a fixed real, 2 < q < 4. Assume that there is a positive
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number p, 1 < p < n such that p*(p) < 1. Then there is a constant C
depending only on p,q and p*(p) such that (13) holds for this C.

3. Proof of Theorem 6

In the proof of Theorem 6 we will use the same technique used in the
proof of Theorem 2.1 in Peligrad ([4]). We give some preliminary concepts
of notations and sketch the proof. For the detail refer to Peligrad ({4]).

3.1. Normalization and truncation

For a given n € Z9, define & = Xi/o,, k € Z% such that 1 <
k, < ng,u = 1,2,...,d and 02 = var(S(X : n)). Let S(n) = {k =
(ky,... k) € Z41 <k, <n,,u=1,2,...,d}. Using those notations we
can rewrite the conditions in Theorem 6 as follows

var Z gnk. =1

keS(n)
and
2 _ linlllo?
(14) Z Egnk - o2 )
keS(n) n
where |||n]|] = n; - - - ng and 0% = EXZ. Note that ||n|| — oo is equivalent

to |||n||] — oco. By Lemma 1, since lim, . p*(r) < 1, there exist positive
numbers C; and C; such that
2

(15) Cillinllie® <E | Y Xi| <Calllnillo®
keS(n)
Note that the term in the middle of (15) is exactly o2. Therefore we have
(16) liminf(c?/||n|||) > 0.
Also, for a given ¢ > 0, we have the following. When ||n|| — oo,

(17) @EX&IQXOI > e0,) — 0.

n

Since EXZ < oo and P{|Xo| > €0,} — 0 as ||n|| — oo, we can show
that (17) holds by Chebyshev’s Inequality. By (17) we can construct a
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sequence of positive numbers {e, : n € Z%} such that €, = o(|||n|{|™}) and
satisfying
[l
We define the following two random variables by truncation at the level
€n. Define

Tk = 6nk1(|§Hk| S 8n) - E&nkl(lé.nkl S En)
and
Ynk = énkI(Knkl > 6n) - E&nkl(lé-nkl > 5n)-

Since condition (b) in Theorem 6 holds we can find a positive integer p
such that p*(p) < 1. By Lemma 3 applied with ¢ = 2 there exists a positive
number C such that

n
var Z Y | <C Z var(yue) < 2C”L4EX3[([XO| > En0n),
keS(n) keS(n) n

where the last term tends to 0 as ||n|| — oo by (17). Now it is equivalent
to show the CLT for a random field {n., k € S(n)}, which satisfies the
following conditions

(18) k] < 2¢,, where €, — 0,
(19) var Z Mk | =1 as n— oo,
keS(n)

and there is a finite number M independent of n € Z¢ such that

(20) 3" var g < @Exgl(jxd < €n0m) < M.
keS(n) n

3.2. Blocking procedure

Now we divide the variables in big blocks and small blocks. Eventually
the sum of the variables in big blocks will be asymptotically a sum of
independent random variables and the sum of the variables in small blocks
is negligible in the sense of convergence in distribution. This technique
is so called the Bernstein’s method which is very useful in dealing with
weakly dependent random variables. For a given {¢,,n € Z%} we construct
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a corresponding sequence of numbers {g,,n € Z¢} such that the following
conditions hold, as ||n|| — oo,

(21) Gn — 00,
(22) gutn — 0,
and

(23) gna([e;]) = 0.

For a given n = (ny,... ,ng) € Z¢, define V,, = varn,;. Note that V,
is finite and depends on only n and ¢,. We can find the smallest positive
integer m which satisfies the following condition
(24) m(ng---ng)Vp > q;'

Note that, for m' < m,
m/(ny -+ ng)V, < ¢t
Let n; = li(m + [e;1]) + dy, where d; < m + [e;}]. If di > m, then we
can rewrite n; = (i + 1)m + le; '] + d,, where d; < [e;!]. Therefore we
may assume that d; < [¢;;!]. Also [; stands for l; or l; +1. For 1 < j <[,
Ay = {k = (k1. k) € S(n) (G — Dm + 1)) < by < jm} and
B; = {k = (k1,... ki) € S(n) : jm+ (G —De;?] < k1 < jlm+ [}
After constructing the final A; we put all the remaining variables, if any,
into the last block denoted by B; . By definition of the integer m, we have
the following inequality
(25) g, <mng-- ng)Vy < g7 + (g - ng)Vp.
For each 1 < j < I;, denote by
Y, = Z Tk
) kEA]'

and

an - Z Mk

kEBj
By (20) and the definition of A; we have the following

i
M > Zvar Nk 2> levar Tt > ling -+ -naq; "

kES, j=1 keA;
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Therefore we have

(26) li(ng---ng) < Mg,

We estimate the variance of Z?ﬂ Zy;. By Lemma 3 with ¢ = 2 we have,
for an integer m' < m, the following inequality

(27) varZ,; = ([E;l] +m)(ng---nyg)V, < [E;I]ng coemgVo + q,fl.

By the construction of &, the last term in (27) is less than [, }}(ny - - - ng)4e?
+q¢; !, which converges to 0 as ||n|| — co. By Lemma 3 with g = 2, apply-
ing twice, we have

L1 -1

(28) var | Y Zn;| < CiY varZy
j=1

j=1
-1

< Z Z varny < Cshfeng . .. ngVs,.
j=1 keB;
By (26), (22), and (18), the last term in (29) is less than Cqyle;!](4€2),
which converges to 0 as ||n|| approaches infinity. Therefore Z?:l Zy; is
negligible for the convergence in distribution. By (19) we may write
b
(29) var ZYM- —1 asl|n|| — oo.

=1

By Lemma 1 and the condition (b) in Theorem 6, we have two positive
numbers K and K, such that for n with large ||n||

I
(30) K, <Y varY,; < K.
i=1

Let a, = (Z?:l varY,,;)!/2. Then we can apply a standard argument based
on recurrence and the definition of the mixing coefficient a(r) for every t.
Therefore we have, for some positive number D, the following estimation

L
(B1)|Eexp | ita;' Y Ya; | — [] Eexplita;'Ysy)l < Dlina -+ - nga((er)),

i=1 j=1
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which converges to 0 as ||n|| — oo by (23) and (26). Consequently the
problem can be reduced to investigate the asymptotic behavior of the
triangular array {Y;,1 <j < 1;} of independent random variables which
have the identical distribution to Y,; with the same property of (30).

3.3. The proof of the CLT

In this step we claim that the array {a;'Y;};: 1 <5 < 1;} satisfies the

CLT. Since var( Z i=10n Y) = 1 it is enough to show that the following
Lindeberg condition holds. For a given € > 0,

(32) ZE I(|Yp;l >€) = 0 as |[nj| — oo

Since 2 EY;; — 0 implies (32), we shall show that the sum of fourth

moments approaches zero as ||[n|| — oco. For a fixed 1 < j < 1,1, we apply
Lemma 3 with ¢ = 4 to every Y,;. Then we have a positive number D,
which is independent of n, such that

2
(33) EY5 <Dy | D B+ | Y Eny
kEA; kéAj
By (25), (18) and the definition of A; we have the following inequality
(34) Z Ent, = mna...ng)Vo < ;' + (no---ng)Va
keA;

< gt +4(ng - mg)ed.
Moreover, by (18), we have
(35) Enjy, < 4eXEny.

Therefore, by (33), (35), (35) and (20) there exists a positive constant K,
such that

1
Y EY < K{lllnlllengs” + €'+ (llinll)™ + en + llinlllgnen),

which converges to 0 as ||n|| approaches infinity by the construction of
€n, (21) and (22). Consequently we have (32). And we have the following
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conclusion

a"IZY* L N(0,1) as ||n]| — .

By (31), (29) and (30) we have
(36) a7’ Y M == N(0,1) a3 |[n]] = oo.
keS(n)

To prove Theorem 6 we only have to show that limjyj—e an = 1.

3.4. The convergence of a,

Here we will prove that {(3,c ) 7t)?} is a uniformly integrable fam-

ily. Then, by (19) and (36), we can show that the sequence {a,} converges
to 1 using the convergence of the moments. Since

E{|Xa(|Xa] > 0} < 'EIX,P,

SUP,cz¢ EX? < oo implies the uniform integrability of X,. Therefore we
need to estimate E(D ¢, k)’ By Lemma 3, applied with ¢ = 4, there

is a positive constant D, independent of n € Z¢ such that
4 2

E Z Tk | < Dy Z B, | + Z Eniy,

keS(n) keS(n) keS(n)

and, by (35) and (20), we can find a positive constant D, such that
4

E Z Mk | < Dy, forall neZ

This completes the proof.
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