ON A GENERALIZATION OF FENCHEL'S THEOREM

Y. D. CHAI AND MOONJEONG KIM

ABSTRACT. In this paper, we present the proof of generalized Fenchel's theorem by estimating the Gauss-Kronecker curvature of the tube of a nondegenerate closed curve in \mathbb{R}^n .

1. Introduction

Fenchel's well-known theorem on the total curvature $\int \kappa ds$ of a simple closed curve α in R^3 consists of the inequality $\int \kappa ds \geq 2\pi$, together with the statement that the equality holds if and only if the curve is a plane convex curve. After Fenchel's original work [2], there has been a variety of settings ([3], [4], [5], [6], [7]).

In this paper, we take natural coordinates of the tube of a given non-degenerate curve in Euclidean n-space to estimate total curvature of the tube. This estimate provides a proof of generalized Fenchel's theorem:

Let α be a closed curve in \mathbb{R}^n . Then $\int \kappa ds \geq 2\pi$, with the equality if and only if the curve is a convex plane curve.

2. Preliminaries

Let α be a curve in \mathbb{R}^{n+1} , which, for convenience, is supposed to be parametrized by arc length, so that $\|\alpha(s)\| = 1$. Suppose that the curve

Received February 25, 1999. Revised May 26, 1999.

¹⁹⁹¹ Mathematics Subject Classification: 53C20, 52A10.

Key words and phrases: tube, nondegenerate curve, total curvature, Gauss-Kronecker curvature.

This research is supported by the Korea Research Foundation made in the program of 1998, Project No. 1998-015-D00034.

is non-degenerate, or equivalently

$$\alpha(s) \wedge \alpha'(s) \wedge \cdots \wedge \alpha^{(n)}(s)$$

is not identically zero.

For a Frenet frame

$$(\alpha(s), e_1(s), \cdots, e_n(s))$$

of the curve α , the Frenet equations are

$$\begin{array}{lcl} \frac{d\alpha}{ds} & = & e_1 \\ \frac{de_i}{ds} & = & -\kappa_{i-1}(s)e_{i-1} + \kappa_i(s)e_{i+1}. \end{array}$$

The κ_i $(i = 1, \dots, n)$ uniquely determine α up to rigid motion. Furthermore, $\{e_2, e_3, \dots, e_n\}$ span the normal space to the curve.

Let S be an oriented hypersurface in R^{n+1} and let $p \in S$. Let Z be any non-zero normal vector field on S such that $N = Z/\|Z\|$ and let $\{\nu_1, \dots \nu_n\}$ be any basis for S_p and K be the Gauss - Kronecker curvature. Using the fact that $dN(\nu)$ and $\nabla_{\nu}N$ have the same vector part for all $\nu \in S_p$, $p \in S$, we find that

$$K(p) = (-1)^n \det egin{pmatrix}
abla_{
u_1} \\
\vdots \\

abla_{
u_n} N \\
N(p)
\end{pmatrix} / \det egin{pmatrix}
u_1 \\
\vdots \\

u_n \\
N(p)
\end{pmatrix}$$
 $= \det egin{pmatrix} dN(
u_1) \\
\vdots \\
dN(
u_n) \\
N^{S^n}(N(p))
\end{pmatrix} / \det egin{pmatrix}
u_1 \\
\vdots \\
u_n \\
N(p)
\end{pmatrix},$

where N^{S^n} is the standard orientation on S^n .

LEMMA 1. Let T be a torus in \mathbb{R}^{n+1} . The total curvature of T satisfies the inequality;

$$\int_{T} |K| d\sigma \ge 2Vol(S^n),$$

where $d\sigma$ is the volume form on T.

PROOF. Let T^+ be the region of T where K is nonnegative and let $T^$ be the region of T where K is nonpositive. Then

$$\int_T |K| d\sigma = \int_{T^+} K d\sigma + \int_{T^-} |K| d\sigma.$$

Note that $\int_{T^+} K d\sigma$ represents the area of the image under the Gauss map (counting multiplicities) of the part of T where $K \geq 0$.

But each half-line through the origin in R^{n+1} appears at least once as a normal direction of T^+ . So the Gauss map $G: T^+ \longrightarrow S^n$ covers the entire unit sphere S^n ; hence $\int_{T^+} K d\sigma \ge Vol(S^n)$. Since $\int_T K d\sigma = \int_{T^+} K d\sigma + \int_{T^-} K d\sigma$ and $\int_T K d\sigma = 0$,

$$\int_{T^{-}} K d\sigma = -\int_{T^{+}} K d\sigma \le -Vol(S^{n}).$$

But $\int_{T^-} |K| d\sigma = -\int_{T^-} K d\sigma$. Thus $\int_{T^-} |K| d\sigma \geq Vol(S^n)$. Therefore $\int_T |K| d\sigma = \int_{T^+} K d\sigma + \int_{T^-} |K| d\sigma \geq 2Vol(S^n)$.

LEMMA 2. Let T be a torus in \mathbb{R}^{n+1} . Then $\int_T |K| d\sigma = 2Vol(S^n)$ if and only if T is a regular torus.

PROOF. ("Only if "part) Note that

$$2Vol(S^n) = \int_T |K| d\sigma = \int_{T^+} K d\sigma + \int_{T^-} |K| d\sigma.$$

From the fact that $\int_T K d\sigma = \int_{T^+} K d\sigma + \int_{T^-} K d\sigma$ and $\int_T K d\sigma = 0$, we have

$$\int_{T^{-}} K d\sigma = - \int_{T^{+}} K d\sigma$$

and

$$\int_{T^{-}}Kd\sigma=-\int_{T^{-}}Kd\sigma=\int_{T^{-}}-Kd\sigma=\int_{T^{-}}|K|d\sigma.$$

Thus $\int_{T^{-}} K d\sigma = -Vol(S^{n})$ and $\int_{T^{+}} K d\sigma = Vol(S^{n})$.

Hence, the spherical image of Gauss map on T^- covers S^n without overlapping and the spherical image of Gauss map on T^+ also covers S^n without overlapping. This is possible only when T is a regular torus. "If" part is obvious.

3. Result

Now we will derive the lower bound of the total curvature of α in \mathbb{R}^{n+1} .

THEOREM 1. For a simple closed curve α in \mathbb{R}^{n+1} ,

$$\int_{\Omega} k \, ds \ge 2\pi,$$

with the equality if and only if α is a convex plane curve.

PROOF. Let T be the tube of radius t around $\alpha(s)$. For a sufficiently small t, T is a smooth hypersurface parametrized by

$$X(s, \theta_1, \dots, \theta_{n-1}) = \alpha(s) + tN(s, \theta_1, \dots, \theta_{n-1}),$$

$$0 \le \theta_1 \le 2\pi, \ 0 \le \theta_2, \dots, \theta_{n-1} \le \pi,$$

where

$$N(s, \theta_1, \dots, \theta_{n-1}) = (\sin \theta_1 \sin \theta_2 \dots \sin \theta_{n-1}) e_2(s)$$

$$+(\cos \theta_1 \sin \theta_2 \dots \sin \theta_{n-1}) e_3(s)$$

$$+ \dots + (\cos \theta_{i-2} \sin \theta_{i-1} \dots \sin \theta_{n-1}) e_i(s)$$

$$+ \dots + \cos \theta_{n-1} e_{n+1}(s).$$

Then

$$d\sigma = \det egin{pmatrix} X_s \ X_{ heta_1} \ dots \ X_{ heta_{n-1}} \ X_{ heta_{n-1}} \ N_{oldsymbol{\cdot}} \end{pmatrix} ds d heta_1 \cdots d heta_{n-1} \quad ext{and}$$
 $K = \det egin{pmatrix} N_s \ N_{ heta_1} \ dots \ N_{ heta_{n-1}} \ N \ \end{pmatrix} igg/ \det egin{pmatrix} X_s \ X_{ heta_1} \ dots \ X_{ heta_{n-1}} \ N \ \end{pmatrix}$

Hence

$$Kd\sigma = \left(egin{array}{c} N_s \ N_{ heta_1} \ dots \ N_{ heta_{n-1}} \ N \end{array}
ight) ds d heta_1 \cdots d heta_{n-1}.$$

On the other hand,

$$N_s = (-\kappa_1 \sin \theta_1 \cdots \sin \theta_{n-1})e_1 + \cdots + (\kappa_{i-1} \cos \theta_{i-3} \sin \theta_{i-2} \cdots \sin \theta_{n-1} - \kappa_i \cos \theta_{i-1} \sin \theta_i \cdots \sin \theta_{n-1})e_i + \cdots + (\kappa_n \cos \theta_{n-2} \sin \theta_{n-1})e_{n+1}.$$

$$N_{\theta_i} = (\sin \theta_1 \sin \theta_2 \cdots \cos \theta_i \sin \theta_{i+1} \cdots \sin \theta_{n-1}) e_2 + \cdots + (-\sin \theta_i \sin \theta_{i+1} \cdots \sin \theta_{n-1}) e_{i+2},$$

where $1 \le i \le n-1$.

$$\det \left(egin{array}{c} N_s \ N_{ heta_1} \ dots \ N_{ heta_{n-1}} \ N \end{array}
ight) = -\kappa_1\sin heta_1\sin^2 heta_2\cdot\cdot\cdot\sin^{n-1} heta_{n-1}.$$

So for the region T^+ where the Gauss-Kronecker curvature of T is nonnegative, we have

$$\int_{T^+} K d\sigma$$

$$= \int_0^\ell \kappa_1 ds \int_0^\pi \int_0^\pi \cdots \int_0^\pi \int_0^\pi \sin \theta_1 \sin^2 \theta_2 \cdots \sin^{n-1} \theta_{n-1} d\theta_1 \cdots d\theta_{n-1}.$$

Hence,

(1)
$$\int_{T^{+}} K \ d\sigma = \begin{cases} \frac{2^{k} \cdot \pi^{k-1}}{1 \cdot 3 \cdot 5 \cdots (2k-1)} \int_{0}^{\ell} \kappa_{1} ds, & n = 2k \\ \frac{\pi^{k}}{1 \cdot 2 \cdot 3 \cdots k} \int_{0}^{\ell} \kappa_{1} ds, & n = 2k+1 \end{cases}$$

where $k = 1, 2, \cdots$. On the other hand, we have the following inequality from lemma 1

(2)
$$\int_{T^+} K \ d\sigma \ge Vol(S^n).$$

From (1) and (2), in R^{n+1} ,

(3)
$$\int_0^\ell \kappa_1 \ ds \ge \begin{cases} \frac{1 \cdot 3 \cdot 5 \cdots (2k-1)\pi^{\frac{3}{2}}}{2^{k-1}(k-\frac{1}{2})!}, & n=2k \\ \frac{2 \cdot 1 \cdot 2 \cdot 3 \cdots k\pi}{k!}, & n=2k+1 \end{cases}$$

where $k = 1, 2, \cdots$.

Either case of the right hand side of (3) gives 2π . Hence $\int_0^l \kappa_1 ds \geq 2\pi$. Observe that if α is not a plane convex curve, T cannot be a regular torus. So from lemma 1 and lemma 2, $\int_{T^+} k d\sigma > Vol(S^n)$.

Now it follows $\int_0^l k_1 d\sigma > 2\pi$ from (1) and (2). This completes the proof of our theorem.

THEOREM 2. If $\kappa(s) \leq 1/R$ for a closed curve α in \mathbb{R}^n , R being a constant, then α has a length $L \geq 2\pi R$. The shortest closed curve with curvature $\kappa(s) \leq 1/R$ is a circle of radius R.

PROOF. Note that

$$L = \int_0^L ds \ge \int_0^L R\kappa ds = R \int_0^L \kappa ds \ge 2\pi R.$$

So any such a curve has length at least $2\pi R$. The length of the shortest closed curve with curvature $k(s) \leq \frac{1}{R}$ must be $2\pi R$ or $\int_0^L k ds = 2\pi$, since a circle of radius R satisfies $L = 2\pi R$. From our theorem 1, the shortest curve must be a plane convex curve. Now the Schur's theorem [1] says that the equality of the distance between their end points holds if and only if two arcs are congruent. Since the circle of radius R is the case, we conclude that it must itself be a circle because both of the distances between their end points are 0.

References

^[1] S. S. Chern, Studies in global geometry and analysis, M.A.A. 4 (1967), 16-56.

^[2] W. Fenchel, Uber Krummung und Windung geschlossener Raumkurven, Math. Ann. 101 (1929), 238 - 252.

- [3] _____, The differential geometry of closed space curves, Bull. Amer. Math. Soc. 57 (1951), 44-54.
- [4] H. W. Guggenheimer, *Differential Geometry*, McGraw-Hill, New York, 1963, pp. 251-252.
- [5] D. Laugwitz, Differential and Riemannian Geometry, Academic Press, New York, 1965, pp. 203-204.
- [6] R. Osserman, Curvature in the Eighties, Amer. Monthly (1990), 731-756.
- [7] K. Voss, Eine Bemerkung über die Totalkrümmung geschlossener Raumkurven, Arch. Math. 6 (1955), 259-263.

Department of Mathematics
Sungkyunkwan University
Suwon 440-746, Korea
E-mail: ydchai@yurim.skku.ac.kr
kmj@math.skku.ac.kr