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ON A GENERALIZATION OF
FENCHEL’S THEOREM

Y. D. CHAI AND MOONJEONG KIM

ABSTRACT. In this paper, we present the proof of generalized Fenchel’s
theorem by estimating the Gauss-Kronecker curvature of the tube of
a nondegenerate closed curve in K”.

1. Introduction

Fenchel’s well-known theorem on the total curvature f k ds of a simple
closed curve a in R® consists of the inequality [ xds > 27, together with
the statement that the equality holds if and only if the curve is a plane
convex curve. After Fenchel’s original work [2], there has been a variety
of settings ([3], (4], [5], [6], [7])-

In this paper, we take natural coordinates of the tube of a given non-
degenerate curve in Euclidean n-space to estimate total curvature of the
tube. This estimat. provides a proof of generalized Fenchel’s theorem:

Let a be a closed curve in R*. Then [ kds > 2, with the equality if
and only if the curve is a convex plane curve.

2. Preliminaries

Let a be a curve in R™""!, which, for convenience, is supposed to be
parametrized by arc length, so that ||a(s)|| = 1. Suppose that the curve
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is non-degenerate, or equivalently
a(s) A a'(s) A---Aat™(s)

is not identically zero.
For a Frenet frame

(a(s), ex(s), - - - enls))

of the curve a, the Frenet equations are

do

— — e

ds !

de;

d_sz = —kKi-1(8)ei-1 + Ki(s)€ir
The k; (¢ =1,---,n) uniquely determine a up to rigid motion.
Furthermore, {eg, €3, - -, €,} span the normal space to the curve.

Let S be an oriented hypersurface in R**! andlet p € S. Let Z be any
non-zero normal vector field on S such that N = Z/ || Z|| and let {v1, - -1}
be any basis for S, and K be the Gauss - Kronecker curvature. Using the
fact that dN(v) and V, N have the same vector part forallv € S, ,p€ S,
we find that

V,,IN 11
Kp) = (=1)"det| _° det |
N(p) N(p)
dN () 2}
= det : det E ,
dN(I/n) Vp
N¥"(N(p)) N(p)

where N°" is the standard orientation on S™.

LEMMA 1. Let T be a torus in R**!. The total curvature of T' satisfies
the inequality;

/ |K|do > 2Vol(S™),
T

where do is the volume form on T'.
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PROOF. Let T" be the region of T where K is nonnegative and let T~
be the region of T' where K is nonpositive. Then

/|K|da = Kdo + |K|do.

T T+ T-

Note that [,.. Kdo represents the area of the image under the Gauss map
(counting multiplicities) of the part of 7' where K > 0.

But each half-line through the origin in R""! appears at least once as a
normal direction of T*. So the Gauss map G : T* — S™ covers the
entire unit sphere S™; hence [, Kdo > Vol(S™).

Since [ Kdo = [,.. Kdo + [, Kdo and [, Kdo =0,

Kdo =— | Kdo < -Vol(S").
T~ T+
But [, |K|do = — [,  Kdo. Thus [. |K|do > Vol(S"). Therefore
Jp|Kldo = [.. Kdo + [,_|K|do > 2Vol(S™). O

LEMMA 2. Let T be a torus in R*"!. Then [ |K|do = 2Vol(S") if and
only if T is a regular torus.

PROOF. (“Only if "part)

Note that
2Vol(5"):/|K|do=/ Kda+/ |K|do.
T T+ T-

From the fact that [, Kdo = [, Kdo + [, Kdo and [, Kdo = 0, we
have
Kdo=—- | Kdo
T- T+
and
Kdo=—- | Kdo=| —Kdo= | K|do.
T~ T- T- T-
Thus [, Kdo = —Vol(S™) and [,.. Kdo = Vol(S").
Hence, the spherical image of Gauss map on T~ covers S™ without overlap-
ping and the spherical image of Gauss map on T also covers S™ without

overlapping. This is possible only when T is a regular torus. “If’ part is
obvious. U
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3. Result
Now we will derive the lower bound of the total curvature of a in R™*1.

THEOREM 1. For a simple closed curve a in R**!,

/kdsz 2m,

with the equality if and only if « is a convex plane curve.

PROOF. Let T be the tube of radius ¢ around a(s). For a sufficiently
small ¢, T is a smooth hypersurface parametrized by

X(s,01, - ,0,1) =a(s) +tN(s,0;,--,6,_1),
0S91 _<_2’/T, OSQQ, 7971—1 S’]T,

where

N(s,61, -+ ,0,—1) = (sinfysinby---sinf, ;)es(s)
+(cos f;sinfy - - - sinf,_q)es(s)
+ -+ (cosb;_osinb;_; - --sinb,_;)e;(s)
+ -+ cosb,_1en41(s).

Then

XS
)

do = det : dsdf;---df,_; and
Xenwl
N,
NS XS
N01 X91

K = det : / det :
N5n_1 XG,,-;
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Hence
N
Ny,
Kdo = : dsdby ---df, 1.
Nen—-l
N
On the other hand,

Ny = (—kKysinb;---sinf,_j)e; + ---
+(Ki—1cosb;_3sinb;_o---sinf,_; — k;cosb;_;sinb; ---sinb,_1)e;
+ -+ (KpcosB,_osinb,_1)eq 1.

Ny = (sinfysinby---cosb;sinb;,1---sinb,_1)eg + - - -

+(— sin 02 sin 0’i+1 ---8in 6’n_1)eH2,
where 1 <i1<n-—1.
N
Ny,
det : = —K;8in 6, sin’fy - - - sin™"1 G,,_;.

Nen—l
N

So for the region T* where the Gauss-Kronecker curvature of T is non-
negative, we have

Kdo
T+
£l T g T ™
=/ nlds/ / / / sin 6 sin?@y - - -sin® 1 6,,_1df; - - - db,,_;.
0 0o Jo 0 Jo
Hence,
ok | k-1 /e
K1ds, n =2k
(1) K do — 1.3.2...(%_1) o

T+ T ¢
m‘/ofﬂllds, n=2k+1
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where k = 1,2,.--. On the other hand, we have the following inequality
from lemma 1
(2) K do > Vol(S™).

T+

From (1) and (2), in R™*!,
1-3-5.--(2k = 1)7?

¢
ds > 21k~ 3)
(3) /OKI *2%92.1.9.3... &r

k! ’

n =2k

n=2k+1

where k =1,2,.--.
Either case of the right hand side of (3) gives 2r. Hence f(f Kids > 27.

Observe that if « is not a plane convex curve, T' cannot be a regular torus.
So from lemma 1 and lemma 2, ... kdo > Vol(S").

Now it follows fol kido > 2m from (1) and (2). This completes the proof
of our theorem. a

THEOREM 2. If k(s) < 1/R for a closed curve a in R*, R being a
constant, then o has a length L > 2w R. The shortest closed curve with
curvature k(s) < 1/R is a circle of radius R.

PRrOOF. Note that

L L L
L=/ dsZ/ Rnds=R/ kds > 27 R.
0 0 0

So any such a curve has length at least 2rR. The length of the shortest
closed curve with curvature k(s) < % must be 27R or fOL kds = 2m, since
a circle of radius R satisfies L = 27 R. From our theorem 1, the shortest
curve must be a plane convex curve. Now the Schur’s theorem [1] says
that the equality of the distance between their end points holds if and
only if two arcs are congruent. Since the circle of radius R is the case,
we conclude that it must itself be a circle because both of the distances
between their end points are 0. 0
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