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SHARP MOSER-TRUDINGER INEQUALITIES
MEELAE KiM

ABSTRACT. we used Carleson and Chang’s method to give another
proof of the Moser-Trudinger inequality which was known as a lim-
iting case of the Sobolev imbedding theorem and at the same time
we get sharper information for the bound.

1. Introduction

Let Q be an open bounded domain in the n-dimensional space R*, n >
2. Let W}(Q) be the completion of the function class C3(Q) equipped
with the norm

g = ( L [Vu]qd:z;)% for all u € C1(Q)

Then by the Sobolev imbedding theorem we have qu Q) — LP(Q), 1<
1

i3
g<mn, !

=1_1
=1-1

As a limiting case of this theorem, the Moser-Trudinger inequality
(see [7],[11]) was obtained for functions in W!(Q2) with resulting expo-

nential class integrability and it provides the sharp imbedding of the
space W(Q) into the Orlicz space ™ (see [1]).

More precisely, in [7], Moser proved the following: ifu € W'(Q) n > 2
with [[Vullyyy < 1 then there exists a constant ¢, such that

(1) /Q e dz < cumi(Q),
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1
where p = %, o < ap = w7, m(Q) = [,dr and w,_; is the
(n — 1)-dimensional surface area of the unit sphere.

Here, the sharpness of o, played an important role for solving some
partial differential equation problem [8],(9] and the linearized form of
the inequality has been used in several different geometry problems
[2],{3],[4],(10]. On the other hand, Carleson-Chang proved the existence
of the extremal function of the inequality in [5]. The aim of this paper is
to give another proof of the Moser inequality by using Carleson-Chang’s
result and at the same time we obtain a functional form of the Moser-

Trudinger inequality.

2. Functional form and numerical estimates for Moser-
Trudinger inequality

THEOREM 2.1.  Let Q be a bounded domain in R",n > 2. And let
u € W}(Q) with

/ |Vul]*dz < 1;
Q

then there exist constants Ay, A1, Ay which depend only on n such that

1

anuP < Az [ 1Vu"dz
m_(Q) /Qe dr < Ap + Aie

1
n-1

where p = 2, a, = nw)}, m(Q) = [,dz and w,_, is the (n — 1)-
dimensional surface of the unit sphere.

Particularly, when n = 2 or 3, we have

1 anuP Az fo |Vul"dz
—m(Q)/Qe dzr < Aje™?da .

As earlier studies in the direction of the above theorem we found
several other proof of the Moser inequality (1) in ([1}),([5]),([6]). Usually
they proved the boundedness of the integral by using some constant c,
which depends only on n with the variety of proofs. In fact in [5], the
value ¢, in the inequality (1) is estimated to be about 4.3556, for n = 2.
They were able to compute the value, only when n = 2, by using some
computer experiments.
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REMARK. By letting [, |Vu|’dz = 1 in the resulting inequalities of
the theorem we can get constant bound ¢, in the Moser inequality (1),
for example ¢; = 4.63, c3 = 12.28.

Our proof relies on symmetrization and a change of variable which
was used in [7] to reduce the problem as an one dimensional problem.
By the result of the symmetrization we obtained a rearranged function
u* of u which is defined on the ball Q* centered at the origin with radius
R, flxl <pdz = m($). Since u* is radial, to change the problem as a one
dimensional one we set

) o) = n*wiu'(lz))
(3) %— = ¢t

For our convenience, without loss of generosity assume that m(Q2) =
m (unit ball in R*) (i.e., R=1).

Thus our theorem becomes the following;  if (t) is a C'-function
defined on 0 < ¢t < oo with

o0
(@) W0 =0, §0)20, [ pOrd=s
0
where § < 1, n > 2, then there exist constants Ag, A3, A2 such that

o0
/ PO tdt < Ay + A,

0
Particularly, when n = 2 or 3,

(5) / e’ O tdt < Ae?.
0

To prove the Theorem we will estimate the integral [e#"~*dt on
each interval [0,a) and [a, 00) separately by using some specific point
a € [0, 00) which satisfies the following.

CramM. For each ¢ which satisfies (4) we can choose the point a to
be the first point such that

©) oa)= |1 - =) ey



260 Meelae Kim

Proof of Claim.  Suppose not, then there will be two cases;
1, n=1

(i) for all t > 0, o(t) < [1 — (22 1]at
(ii) for all ¢ > 0, o(t) > [1 - (ﬁ;—l)"—l]%tﬂil_

In case (i) we have

00 00 1
/ A T / -1l gy
0 0

- |- (1_ (ngl)-l)—

If we assume that (ii) is true, and since

-1

4 n
o(t) < (/ <p’(s)"ds> t% forallt>0
0
by Holder’s inequality, we have

(-(=)7) < (frere)

for all ¢ > 0. But this is a contradiction for sufficiently small t.

Now with assuming the existence of the point a, let
000
5 = / J(t)dt.

By the property (6) of a and the fact that ¢™(a) < a™* [ ¢/(s)"ds, 6
and 9, satisfies the following

(7) & > 1—(""1>n_1

n

n—1
(8) b < 1-4 < (n—l) .

n

We need the following lemma to estimate the integral [~ e’ ®~tdt in
the proof of the theorem. And we will prove Lemma 2.3 by using Lemma
2.2 at the end of this section.
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LEMMA 2.2. (Carleson and Chang) Let :
K = {y: C! function on 0 < t < 00, ¥(0) =0, [F¥'(t)"dt< B}
then for each ¢ > 0 we have
sup /°° eVt it < (IR il
K Jo
Also when ¢*3 — oo, the inequality tends asymptotically to an equality.

LEMMA 2.3.  For each C* function ¢ which satisfies (4) and with
the fixed point a let [ ¢/(t)"dt = &, ; then

i t)~t n-lyn~-1 ;,’l'[
/ POt < et 02T~
a

where

2 (i)

¢y = nntle

Proof of the Theorem. Since 6§, +§; = § and §; > 1 — (21)""1, by
the Lemma 2.3 we have :

o 4
/ POt < et gal-(E) -2 P -le
a

9) = cae“Z‘se[(l“(%)"'l)ﬁ ~la

where ¢z = c;e~(1=(3)"™")_ Thus by (9) and property (6) of a, we get

o0 a oo
/ PO tgt = / e# Ot dt + / e Oty
0 0 a

< / ® la=(E P -t gy
0

(10) i cseczae[<1—<"7**)"—1)#1-ua_

Since (1 — (27,‘—1)"'1)ﬁ —1 < 0, we have

-1

1
x n—-1\ n=1
/ POty < (1 - (1 - (n; 1) ) + ¢z
0
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for all C! function ¢ which satisfies (4) and it proves the first part of
the theorem.

On the other hand, if we rewrite (10) into

Q0
/e“’p(t)"tdt
0
1\ w1
n-1\ n-
< 1_<1_(n 1) )
n

-1

and notice that, when n = 2, 3,

1
cod n—1 A
0<c3e®® — |1 —-(1—
n

for all 0 < 6 <1 then we have

o0
/ POt < cze.
0

Thus, we also have

4 = (1- (1_ (nr—Ll)nﬂ)ﬁ

n+1)7-1 —1 -1\ 72
Al = n'r?:_le%ﬂ(1+%+"'+ﬁ)e~g(ﬂ—-%ze_(l_(%)ﬂ );DT

and finish the proof of theorem.

-1

Before we use Lemma 2.2 to prove Lemma 2.3, we rewrite it for func-
tion defined on B, as follows; let v € C} be a function defined on the
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unit ball B,, then for each ¢ > 0 we have

n—-1)—1
(11) . e™@dzr < R R
m(Bn) B,

where 8 = [ |Vo|rdz.

Proof of Lemma 2.3 To estimate the integral [ e?"®-tdt which
also can be recognized as the following integral

n / em“’n-l utwT (z)d
Wp—1 'zlse—a/n

by (2) and (3), we will use a change of variable and the result of Lemma
2.2.
Set

y = xea/n

- —nzt -1
9(y) = u'(z)—n" " w,p(a)
then g is a radial function defined on the unit ball B, with zero boundary
value and having the following properties

(12) 5 = e / IVgl"dy
lyi<1
and
~n=l -1
9(y) = n7 7 w,n(e(t) - ¢(a)
1 t
= wFu [ e
n-l -1 .f -1
n" o w,N63(t—a)
(13) = R wy6f (= Infy))
for all y € B,. Thus by using (13), we have

00
/ POt = / e fﬁ[" (@) gy
a Wn—1 |$|Se—a/n

} n/ewﬁw“ﬂwﬁw@
Wn-1 Jy<1

IA

n e(p"(a)—a/ |y'-—n5«fhng(y)dy
1 lyl<1

Wy

(14)

IA
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where ¢ = n"% L _o(a)71. In the last estimate we used the fact

that (a + b)#1 < a1 + ﬁabil_l + b#71 if a,b > 0. Notice that since
82 < (1)1, we have ]y|("‘1)‘"5?_h < 1for all y € B,. Thus, from (14)
by using Holder’s inequality we get

00
/ POt < " g / ly |~ Deeati) gy
a Wn—1 lyl<1

S 3

w,

=

IA

1
5t T ) ( / ec<n+1>g(y)dy) e
lyl<1

Note that by (12) we have
/ |Vg|2dz = 8,2,
lyl<1

so if we apply Lemma 2.2 (see (11)) we obtain

00
/ e O~t gy < n%ew(a)-aen—L(1+%+---+ﬁ)ed

a

where
ntl " 2 (1-n)a
CI = (——TL—-:—)-]-—(p(a)n—l e(l ) 52 N
By the property (6) of a and the fact that zel!™™* < 1/e(n — 1) for
z2>0,
1
+ 1)“-1 7 — 1 n—-1\ n-1
Pty iy SO & .
Thus,
o0
/ e’ O-tdr < cle°262e[(l‘("n;l)"_l)ih—lla
a
where

2 1 1 1
o = naiemtatotiy
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3. Applications of 2-dimensional results to 4-dimensional es-
timates for A

As an application of the theorem 2.1 (when n = 2,Q = By), we
extend the inequality for the gradient on B, to the analogue of it for the
Laplacian on B; under the assumption that our function is radial. We
used the property of the Laplacian for the radial function and a change
of variable to obtain the following result.

COROLLARY 3.1. Letu € Cg(By) be aradial function with [, |Au|*dz
< 1. Then there exist Aj(= mA;), A; which depend only on n such that

1
m(By) By

REMARK. In this case (i.e., having assumption about the L, norm of
Au), we may not use symmetrization technique as we did in the proofs
of the previous theorems. Since in general the relation between [|Aulf
and ||Au*||; is unknown. Thus, for using the result of the theorem 3.1,
we restricted our u to a radial function.

2,2 2
6247r w g < AlleAz fB4 | Auf d:r'

REMARK. In [1], Adams showed an analogue of the Moser inequality
for higher-order derivatives. Specifically, when n = 4, it takes the follow-
ing form; let  be a bounded domain in R, u € C}(9), [, |Auf?dz <1
then there exists an constant ¢ such that

1 / 327('2 2
— | &% dx < .
m() Jo
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