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LINEARLY INVARIANT FUNCTIONS

Tal SunGg SONG

ABSTRACT. Linearinvariance is closely related to the concept of uniform
local univalence. We give a geometric proof that a holomorphic locally
univalent function defined on the open unit disk is linearly invariant if
and only if it is uniformly locally univalent.

1. Introduction

A holomorphic locally univalent function f defined on the open unit
disk D is called linearly invariant if

(1- ;|)f” )) E::ED‘}<O@

Let L(f,z) = (1 - ]:[2> (=) /24 (z) = Z|, and let T € Aut (D), the

group of conformal automorphisms of D. Then

L{foT z)= ’.]. (1 - |;['—‘) {___.f (T.(__:))T’( )+ _1__:1] _—5|

IFllz = SUP{

2 Fr(=) T ()
T/( ) H - flf(]'(:)) l:l e ‘TN(:) ] T (= !l
T ()l |2 N gy + 1 () g - ()
_ __'_,f”mn,-,—~ -
= |31 IF(~)I]f,(T( T = LT

This shows that the quantity ||f||, is invariant under the group Aut (D)
of conformal automorphisms of D : if T is a conformal automorphism of

D, then ||f o T||, = ||f]l; . By calculation, ||f]|, = 1if f is a conformal
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automorphism of D. In fact, ||f||, = 1 if and only if f is a convex
univalent function [7].

Linear invariance is closely related to the concept of uniform local
univalence. The notion of uniform local univalence is defined relative
to hyperbolic geometry on D. For a general discussion of hyperbolic
geometry, see [2], [4] and [5]. The hyperbolic distarce function on D

induced by the hyperbolic metric Ap (z) [dz] = 2|dz|, (1 - |z|2) is

a—b

1—ab

dp (a,b) = 2tanh !

The hyperbolic disk in D with center @ € D and hyperbolic radius p,
0 < p £ @, is defined by

Dyla,p)={:€D:djla,z)<p}.

We let D (a,r) denote the euclidean disk with center ¢ and radius . The
hyperbolic disk Dy, («a, p) is a euclidean disk D (¢,7), where

1 — (tanh !;’)z
c = 3 2 a,
1~ (tanh £)7 |a|

2
1 — lal?
r= tm)hj/)Z el — -
=1- (tanh £)" Ja|
In particular, we have D, (0,p) = D (0,tanh §). Suppose f is a holo-
morphic function on D. For = € D, let p(z, f) be the hyperbolic radius
of the largest hyperbolic disk in D centered at z in which f is univalent.
Set

p(f)=inf{p(z,f): 2 € D}.

A function f is called uniformly locally univalent (in the hyperbolic sense)
i Dif p(f)>0.

In this paper we investigate some properties of linearly invariant func-
tions. In Section 2 we give an upper bound for the linear invariant norm.
Ma and Minda (6] extended the notions of linear invar:ance and uniform
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local univalence to arbitrary hyperbolic regions and proved that two no-
tions are equivalent. In Section 3 we give a new proof of this result in
the special case of the open unit disk D by using elementary ideas from
hyperbolic geometry on D.

2. Linear invariant norm

Let f € S, the class of normalized univalent functions in D. Then

(=) 2z 4
1 - b S y ~ D~.
W) )f’(-?) 1—|z) 1|z ©
and hence
f(0)
2 4
(2) ‘f,(o) <

See, for example [1, p.84]. Although, (1) and (2) are stated for the class
S, they are valid for any holomorphic univalent function in D since the
expression f"/f'is unchanged if f is replaced by af +b, a,b € C, a # 0.

THEOREM 1. Suppose that f is a holomorphic locally univalent fune-
tion of the open unit disk D into itself. Then

LWl < S e

PROOF. The inequality 1 < ||f||; is well known. We include a proof
for the convenience. Let a = ||f]|,. If a = co. we are done. Suppose
a<oo If|z] <r <1, then

’_027 log [(1—r%) f' (,.f_u”r _
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and hence
9 2\ i 2a
(3) l-é-;l()g[(l—l' )j’(r(‘i)] < T
Integration of (3) along a radius yields
2 . 1 + |ZI
3 — |zl z < a'log —
g (1 1) £/12)] | < alog 77

Since |Re w| < |w], it follows that

S - < [

[

or

(1- =" (141"

(4) “—“-(,—g <) € ————
(1 )

If a < 1, then it follows from (4) that |f'(z)] — oo as |z| — 1, con-
trary to the minimum principle applied to f'. Thus. we obtain the in-
equality 1 < ||f]|, . Next, we establish the upper bound. We may as-
sume that p(f) > 0. For each @« € D, let g(z) = (foT)(z), where
T(z)=(z+a)/(1+7az). Then ¢ is nuivalent in eacl: hyperbolic disk of
radius p(f). In particular, ¢ is uni\alont i the euclidean disk centered
at 0 with radius r = tanh [p(f)/2]. Let h(z) = g(rz)/r. Then h is

univalent in D. So. by (2), |1 (0)] < 4|/’ (0)|. Therefore
L(fi)=L{f.T(0))=L(foT,0)=L(g.0)
g (0)| 1)) 2
C20(0)] T 2 (A (0)] T
This yields
2 2
1fll, € = = — .
r o tanh [p(f) /2]
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3. Linear invariance and uniform local univalence

Let ép (z) = dist(z,0D); this is the radius of the largest disk in D
with center z. Note that ¢p () = 1 — |z|. Becker (2] proved that if f is
holomorphic and locally univalent in D, and if

(1 N ‘:Iz) (=)

for all z in D, then f is univalent in D. The tollowing result is a slight

<1
— e

f(z)
modification of Becker’s univalence criterion.

LEMMA 2. Suppose f is holomorphic and Iocally univalent in D. Let
a€Dandé=ép(a). If

M
B}

<

(6~ |z - a})"’ =

f'
for all z € D (a,8), where M > 2. then f is univalent in D (a,6/M).
PROOF. Forz e D.let g(z)=(fo hy(z), where w = h(z)=oz/M+

a. Then ;
()= 2 i I )
¢ ()= — —= ,
g T\t T
u(~)_ 0 : f” 0 -
g =)= A ' A .
so that
2 g""(2) My? 2 "{w)
(1= ) |58 )= [ (37 o= o] 4 [ 5

_ 1 2 a2 20 | £ )
—TE[‘\’ - M 'll’—-(llJ fi(w)

/I( ,)
< 5 (6 =l = al) (0 + o — ol | 42
1. i 5 (w)
< 77320 (0 — fw — af) f,(f'f)
2 M
Sa7 =1

for all z in D. Hence, by Becker's univalence criterion, ¢ is univalent in
D,so f =¢goh™!is univalent in D (a,0 /ML) .
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LEMMA 3. Suppose f is holomorphic and locally univalent in D. If f
is linearly invariant, then there exists r > 0 such that f is univalent in
D (a,ré(a)) for each a in D.

PROOF. Let é = é(a) =1—|¢|. Since f is linearly invariant, it follows
from Theorem 1 that there exists A/ > 1 such that

2 )
l(l ~ kl ) 2f7(z)
for all z in D. This implies that

-k < (1- k) [

<M

() fr(z)
forall zin D. If z € D(a,d), then
fll (:) fll (:)
d—|z—al)|=——1 < (1 =) |=——=| <2(M +1).
61— o [ < -1 |2 <2004

Let r = 1/(M +1). Since M + 1 > 2, it follows from Lemma 2 that f
is univalent in D (a,76(a)).

LEMMA 4. Let Dj (a,p) be a hyperbolic disk in D, and let r =
tanh (p/2). Then

for all z in D.
PRrROOF. We have

rz+a a = Ym;
dy, ( ,a) = 2tanh ~*

1+ar:

‘1 _ o IEtE

1+arz
14ars

= 2tanh "' |z| < 2tanh 7'r = p.

This completes the proof.

We now show that the notion of linear invariance is equivalent to the
notion of uniform local univalence.
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THEOREM 5. A holomorphic locallv univalent function f defined on
the open unit disk D is linearly invariant if and only if it is uniformly
locally univalent in the hyperbolic sense.

PROOF. First, suppose f is linearly invariant. Then, by Lemma 3,
there exists » > 0 such that f is univalent in D (a,r6 («)) for each a in
D. Let c € D and let s € (0,1). Then f is univalent in the euclidean

disk
1—s° 1— s
D|———scr|l - ——=|
1— 52 1—3s2]°

ORI | B P A MJ

— . .
1 — 42 ]("f2 1 — &2 |(2

We note that if 5 < :;-7', then
3 (1 - )Cl2)< 25 (1 —|c|)
<r [1 — e = s ic)* + 82 |c|] .
This implies that f is univalent in the euclidean disk

1o s (1=4ef)

- C. -
1 — s? |(:|') 1 — 5?2 [Clz

Let p = 2tanh ~'s. Then fis univalent in Dy (o, p).
Next, suppose that there exists p > 0 such that f is univalent in each
hyperbolic disk of radius p. Let ¢ € D and r = tanh{p/2). Then, by

Lemma 4,
r:+c

1+70rz
for all z in D. Hence, the function ¢ defined by
L F(E) - fo
”

(1= 1) £ (e

€ Dy (c.p)

g(z)=
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is univalent in D. We have

¢" (0) = ( H)f” )) %r.

Therefore, by Bieberbach-deBrange Theorem, we have

-1 51

This shows that f is linearly invariant.

g" (0)
2

<

2
-, € D.
r
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