LINEARLY INVARIANT FUNCTIONS

Tal Sung Song

ABSTRACT. Linear invariance is closely related to the concept of uniform local univalence. We give a geometric proof that a holomorphic locally univalent function defined on the open unit disk is linearly invariant if and only if it is uniformly locally univalent.

1. Introduction

A holomorphic locally univalent function f defined on the open unit disk D is called linearly invariant if

$$||f||_{L} = \sup \left\{ \left| \left(1 - |z|^{2} \right) \frac{f''(z)}{2f'(z)} - \overline{z} : z \in D \right| \right\} < \infty.$$

Let $L(f,z) = \left| \left(1 - |z|^2 \right) f''(z) / 2f'(z) - \overline{z} \right|$, and let $T \in Aut(D)$, the group of conformal automorphisms of D. Then

$$\begin{split} L\left(f\circ T,z\right) &= \left|\frac{1}{2}\left(1-|z|^2\right)\left[\frac{f''\left(T\left(z\right)\right)}{f'\left(T\left(z\right)\right)}T'\left(z\right) + \frac{T''\left(z\right)}{T'\left(z\right)}\right] - \overline{z}\right| \\ &= \left|\frac{T'\left(z\right)}{|T'\left(z\right)|}\right|\left|\frac{1}{2}\left(1-|z|^2\right)\left|T'\left(z\right)\right|\frac{f''\left(T\left(z\right)\right)}{f'\left(T\left(z\right)\right)} + \left[\frac{1}{2}\left(1-|z|^2\right)\frac{T''\left(z\right)}{T'\left(z\right)} - \overline{z}\right]\frac{|T'\left(z\right)|}{T'\left(z\right)}\right| \\ &= \left|\frac{1}{2}\left[1-|T\left(z\right)|^2\right]\frac{f''\left(T\left(z\right)\right)}{f'\left(T\left(z\right)\right)} - \overline{T'\left(z\right)}\right| = L\left(f,T\left(z\right)\right). \end{split}$$

This shows that the quantity $||f||_L$ is invariant under the group Aut(D) of conformal automorphisms of D: if T is a conformal automorphism of D, then $||f \circ T||_L = ||f||_L$. By calculation, $||f||_L = 1$ if f is a conformal

Received February 25, 1995. Revised September 16, 1995.

¹⁹⁹¹ AMS Subject Classification: 30C55, 30D45.

Key words: hyperbolic metric, linear invariance, uniform local univalence.

The Present Studies were Supported by the Basic Science Research Institude Program, Ministry of Education, Project No. BSRI-94-1411.

automorphism of D. In fact, $||f||_L = 1$ if and only if f is a convex univalent function [7].

Linear invariance is closely related to the concept of uniform local univalence. The notion of uniform local univalence is defined relative to hyperbolic geometry on D. For a general discussion of hyperbolic geometry, see [2], [4] and [5]. The hyperbolic distance function on D induced by the hyperbolic metric $\lambda_D(z)|dz| = 2|dz|/(1-|z|^2)$ is

$$d_h(a,b) = 2 \tanh^{-1} \left| \frac{a-b}{1-a\overline{b}} \right|.$$

The hyperbolic disk in D with center $a \in D$ and hyperbolic radius ρ , $0 < \rho \le \infty$, is defined by

$$D_h(a, \rho) = \{z \in D : d_h(a, z) < \rho\}.$$

We let D(a,r) denote the euclidean disk with center a and radius r. The hyperbolic disk $D_h(a,\rho)$ is a euclidean disk D(c,r), where

$$c = \frac{1 - \left(\tanh\frac{\rho}{2}\right)^2}{1 - \left(\tanh\frac{\rho}{2}\right)^2 |a|^2} a,$$

$$r = \tanh \frac{\rho}{2} \frac{1 - |a|^2}{1 - \left(\tanh \frac{\rho}{2}\right)^2 |a|^2}.$$

In particular, we have $D_h(0,\rho) = D\left(0,\tanh\frac{\rho}{2}\right)$. Suppose f is a holomorphic function on D. For $z \in D$, let $\rho(z,f)$ be the hyperbolic radius of the largest hyperbolic disk in D centered at z in which f is univalent. Set

$$\rho(f) = \inf \left\{ \rho(z, f) : z \in D \right\}.$$

A function f is called uniformly locally univalent (in the hyperbolic sense) in D if $\rho(f) > 0$.

In this paper we investigate some properties of linearly invariant functions. In Section 2 we give an upper bound for the linear invariant norm. Ma and Minda [6] extended the notions of linear invariance and uniform

local univalence to arbitrary hyperbolic regions and proved that two notions are equivalent. In Section 3 we give a new proof of this result in the special case of the open unit disk D by using elementary ideas from hyperbolic geometry on D.

2. Linear invariant norm

Let $f \in S$, the class of normalized univalent functions in D. Then

(1)
$$\left| \frac{f''(z)}{f'(z)} - \frac{2\overline{z}}{1 - |z|^2} \right| \le \frac{4}{1 - |z|^2}, \ z \in D,$$

and hence

$$\left|\frac{f''(0)}{f'(0)}\right| \le 4.$$

See, for example [1, p.84]. Although, (1) and (2) are stated for the class S, they are valid for any holomorphic univalent function in D since the expression f''/f' is unchanged if f is replaced by af + b, $a, b \in \mathbb{C}$, $a \neq 0$.

THEOREM 1. Suppose that f is a holomorphic locally univalent function of the open unit disk D into itself. Then

$$1 \leq \|f\|_L \leq \frac{2}{\tanh\left[\rho\left(f\right)/2\right]}.$$

PROOF. The inequality $1 \le ||f||_L$ is well known. We include a proof for the convenience. Let $\alpha = ||f||_L$. If $\alpha = \infty$, we are done. Suppose $\alpha < \infty$. If |z| < r < 1, then

$$\left| \frac{\partial}{\partial r} \log \left[\left(1 - r^2 \right) f' \left(r e^{it} \right) \right] \right| = \left| \frac{-2r}{1 - r^2} + \frac{f'' \left(r e^{it} \right)}{f' \left(r e^{it} \right)} e^{it} \right|$$

$$= \frac{2}{1 - r^2} \left| \left(1 - r^2 \right) \frac{f'' \left(r e^{it} \right)}{2f' \left(r e^{it} \right)} - r e^{-it} \right|.$$

and hence

(3)
$$\left| \frac{\partial}{\partial r} \log \left[(1 - r^2) f'(re^{it}) \right] \right| \leq \frac{2\alpha}{1 - r^2}.$$

Integration of (3) along a radius yields

$$\left|\log\left[\left(1-\left|z\right|^{2}\right)f'(z)\right]\right| \leq \alpha\log\frac{1+\left|z\right|}{1-\left|z\right|}.$$

Since $|Re|w| \leq |w|$, it follows that

$$\left[\frac{1-|z|}{1+|z|}\right]^{\alpha} \le \left(1-|z|^2\right)|f'(z)| \le \left[\frac{1+|z|}{1-|z|}\right]^{\alpha}$$

or

(4)
$$\frac{(1-|z|)^{\alpha-1}}{(1+|z|)^{\alpha+1}} \le |f'(z)| \le \frac{(1+|z|)^{\alpha-1}}{(1-|z|)^{\alpha+1}}.$$

If $\alpha < 1$, then it follows from (4) that $|f'(z)| \to \infty$ as $|z| \to 1$, contrary to the minimum principle applied to f'. Thus, we obtain the inequality $1 \le ||f||_L$. Next, we establish the upper bound. We may assume that $\rho(f) > 0$. For each $a \in D$, let $g(z) = (f \circ T)(z)$, where $T(z) = (z+a)/(1+\overline{a}z)$. Then g is univalent in each hyperbolic disk of radius $\rho(f)$. In particular, g is univalent in the euclidean disk centered at 0 with radius $r = \tanh[\rho(f)/2]$. Let h(z) = g(rz)/r. Then h is univalent in D. So, by (2), $|h''(0)| \le 4|h'(0)|$. Therefore

$$L(f,a) = L(f,T(0)) = L(f \circ T,0) = L(g,0)$$
$$= \left| \frac{g''(0)}{2g'(0)} \right| = \frac{1}{2r} \frac{|h''(0)|}{|h'(0)|} \le \frac{2}{r}.$$

This yields

$$||f||_{L} \le \frac{2}{r} = \frac{2}{\tanh[\rho(f)/2]}.$$

3. Linear invariance and uniform local univalence

Let $\delta_D(z) = dist(z, \partial D)$; this is the radius of the largest disk in D with center z. Note that $\delta_D(z) = 1 - |z|$. Becker [2] proved that if f is holomorphic and locally univalent in D, and if

$$\left(1-\left|z\right|^{2}\right)\left|\frac{f''\left(z\right)}{f'\left(z\right)}\right|\leq1$$

for all z in D, then f is univalent in D. The following result is a slight modification of Becker's univalence criterion.

LEMMA 2. Suppose f is holomorphic and locally univalent in D. Let $a \in D$ and $\delta = \delta_D(a)$. If

$$(\delta - |z - a|) \left| \frac{f''(z)}{f'(z)} \right| \le \frac{M}{2}$$

for all $z \in D(a, \delta)$, where $M \ge 2$, then f is univalent in $D(a, \delta/M)$.

PROOF. For $z \in D$, let $g(z) = (f \circ h)(z)$, where $w = h(z) = \delta z/M + a$. Then

$$g'(z) = \frac{\delta}{M} f'\left(\frac{\delta}{M}z + a\right),$$
$$g''(z) = \left(\frac{\delta}{M}\right)^2 f''\left(\frac{\delta}{M}z + a\right),$$

so that

$$\left(1 - |z|^2\right) \left| \frac{g''(z)}{g'(z)} \right| = \left[1 - \left(\frac{M}{\delta}\right)^2 |w - a|^2\right] \frac{\delta}{M} \left| \frac{f''(w)}{f'(w)} \right|
= \frac{1}{M\delta} \left[\delta^2 - M^2 |w - a|^2\right] \left| \frac{f''(w)}{f'(w)} \right|
\leq \frac{1}{M\delta} \left(\delta - |w - a|\right) \left(\delta + |w - a|\right) \left| \frac{f''(w)}{f'(w)} \right|
\leq \frac{1}{M\delta} 2\delta \left(\delta - |w - a|\right) \left| \frac{f''(w)}{f'(w)} \right|
\leq \frac{2}{M} \frac{M}{2} = 1$$

for all z in D. Hence, by Becker's univalence criterion, g is univalent in D, so $f = g \circ h^{-1}$ is univalent in $D(a, \delta/M)$.

LEMMA 3. Suppose f is holomorphic and locally univalent in D. If f is linearly invariant, then there exists r > 0 such that f is univalent in $D(a, r\delta(a))$ for each a in D.

PROOF. Let $\delta = \delta(a) = 1 - |a|$. Since f is linearly invariant, it follows from Theorem 1 that there exists $M \ge 1$ such that

$$\left| \left(1 - \left| z \right|^2 \right) \frac{f''(z)}{2f'(z)} - \overline{z} \right| \le M$$

for all z in D. This implies that

$$(1-|z|)\left|\frac{f''(z)}{f'(z)}\right| \le \left(1-|z|^2\right)\left|\frac{f''(z)}{f'(z)}\right| \le 2\left(M+1\right)$$

for all z in D. If $z \in D(a, \delta)$, then

$$\left(\delta - \left|z - a\right|\right) \left|\frac{f''(z)}{f'(z)}\right| \leq \left(1 - \left|z\right|\right) \left|\frac{f''(z)}{f'(z)}\right| \leq 2\left(M + 1\right).$$

Let r = 1/(M+1). Since $M+1 \ge 2$, it follows from Lemma 2 that f is univalent in $D(a, r\delta(a))$.

LEMMA 4. Let $D_h(a, \rho)$ be a hyperbolic disk in D, and let $r = \tanh(\rho/2)$. Then

$$\frac{rz+a}{1+\overline{a}rz} \in D_h\left(a,\rho\right)$$

for all z in D.

PROOF. We have

$$d_h\left(\frac{rz+a}{1+\overline{a}rz},a\right) = 2\tanh^{-1}\frac{\left|a-\frac{rz+a}{1+\overline{a}rz}\right|}{\left|1-a\frac{r\overline{z}+\overline{a}}{1+ar\overline{z}}\right|}$$
$$= 2\tanh^{-1}r|z| < 2\tanh^{-1}r = \rho.$$

This completes the proof.

We now show that the notion of linear invariance is equivalent to the notion of uniform local univalence.

THEOREM 5. A holomorphic locally univalent function f defined on the open unit disk D is linearly invariant if and only if it is uniformly locally univalent in the hyperbolic sense.

PROOF. First, suppose f is linearly invariant. Then, by Lemma 3, there exists r > 0 such that f is univalent in $D(a, r\delta(a))$ for each a in D. Let $c \in D$ and let $s \in (0,1)$. Then f is univalent in the euclidean disk

$$D\left(\frac{1-s^2}{1-s^2|c|^2}c, r\left[1-\frac{1-s^2}{1-s^2|c|^2}|c|\right]\right)$$

$$= D\left(\frac{1-s^2}{1-s^2|c|^2}c, \frac{r\left[1-|c|-s^2|c|^2+s^2|c|\right]}{1-s^2|c|^2}\right).$$

We note that if $s < \frac{1}{2}r$, then

$$s\left(1-|c|^{2}\right) < 2s\left(1-|c|\right)$$

 $< r\left[1-|c|-s^{2}|c|^{2}+s^{2}|c|\right].$

This implies that f is univalent in the euclidean disk

$$D\left(\frac{1-s^{2}}{1-s^{2}\left|c\right|^{2}}c,\frac{s\left(1-\left|c\right|^{2}\right)}{1-s^{2}\left|c\right|^{2}}\right).$$

Let $\rho = 2 \tanh^{-1} s$. Then f is univalent in $D_h(c, \rho)$.

Next, suppose that there exists $\rho > 0$ such that f is univalent in each hyperbolic disk of radius ρ . Let $c \in D$ and $r = \tanh(\rho/2)$. Then, by Lemma 4,

$$\frac{rz+c}{1+\overline{c}rz}\in D_h\left(c,\rho\right)$$

for all z in D. Hence, the function g defined by

$$g(z) = \frac{1}{r} \frac{f\left(\frac{rz+c}{1+\overline{c}rz}\right) - f(c)}{\left(1 - |c|^2\right) f'(c)}$$

is univalent in D. We have

$$g(0) = 0, g'(0) = 1,$$

$$g''(0) = r\left(1 - |c|^2\right) \frac{f''(c)}{f'(c)} - 2\overline{c}r.$$

Therefore, by Bieberbach-deBrange Theorem, we have

$$\left|\left(1-\left|c\right|^{2}\right)\frac{f''\left(c\right)}{2f'\left(c\right)}-\overline{c}\right|=\left|\frac{g''\left(0\right)}{2r}\right|\leq\frac{2}{r},\;\epsilon\in D.$$

This shows that f is linearly invariant.

References

- 1. L. V. Ahlfors, Conformal invariants. Topics in geometric function theory, McGraw-Hill, New York, 1973.
- A. F. Beardon, The geometry of discrete groups, Springer-Verlag, New York, 1983.
- 3. J. Becker, Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math 255 (1972), 23-43.
- 4. H. M. Farkas and I. Kra, Riemann surfaces, Springer-Verlag, New York, 1980.
- 5. G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, 26, Amer. Math. Soc., Providence, 1969.
- W. Ma and D. Minda, Linear invariance and uniform local univalence, Complex Variables Theory Appl. 16 (1991), 9-19.
- 7. Ch. Pommerenke, Linear-invariante Familien analytischer Funktionen I, Math. Ann. 155 (1964), 108-154.

Department of Mathematics Education Pusan National University Pusan 609-735, Korea