FINITE BCK-ALGEBRAS ARE SOLVABLE

Wieslaw A. Dudek

Abstract

We present a short and very elementary proof that each finite BCK-algebra is solvable. It is a positive answer to the question posed in [4].

Various types of BCK-algebras - as algebras strongly connected with nonclassical propositional calculi - are studied by many authors. A short survey of basic results on BCK-algebras one can find in the book [2]. The list of some unsolved (rather hard) problems on BCK-algebras one can find in [1].

Let X be a non-empty set with a binary operation \cdot denoted by juxtaposition and distinguished element 0 . To save the simplicity of formulaes the part of brackets will be replaced by dots. For example, instead of $((x y)(x z))(y z)=$ $((x y) z) y$ we'll write $(x y \cdot x z) \cdot y z=(x y \cdot z) x$.

An algebra $(X, \cdot, 0)$ is called a $B C K$-algebra if for any $x, y, z \in X$ the following axioms:
(1) $(x y \cdot x z) \cdot z y=0$,
(2) $(x \cdot x y) y=0$,
(3) $x x=0$,
(4) $0 x=0$,
(5) $x y=y x=0 \longrightarrow x=y$
are satisfied.
One can prove (cf. for example [2]) that in any BCK-algebra X we have
(6) $x y \cdot z=x z \cdot y$,
(7) $x 0=x$,
(8) $x y \leq x$,
where \leq is a partial order on X defined by $x \leq y \longleftrightarrow x y=0$.
It is not difficult to see that $x \wedge y=y \cdot y x$ is a lower bound of x and y. A BCKalgebra which is a lower semilattice with respect to \leq is called commutative. This name is motivated by the fact that such BCK-algebra is characterized by the identity $x \wedge y=y \wedge x$ (cf. [2] and [5]) or by the identity [x, y] $=0$, where $[x, y]=(x \wedge y)(y \wedge x)$. Properties of the operation [,] are described in [3] and [4].

Received August 5, 2015; Revised August 20, 2015.
2010 Mathematics Subject Classification. 03G25, 06F35.
Key words and phrases. BCK-algebra, solvable BCK-algebra, commutative BCK-algebra.

A BCK-algebra X is called solvable if there exists a natural number n such that $X^{(n)}=\{0\}$, where $X^{\prime}=[X, X]$ is a product of a finite number of elements of the form $[x, y]$, where $x, y \in X$ and $X^{(k+1)}=\left[X^{(k)}, X^{(k)}\right]$. Then $X^{(k+1)}$ is a BCK-algebra contained in $X^{(k)}$ (cf. [4]). Moreover, a BCK-algebra X is commutative if and only if $X^{\prime}=\{0\}$ (cf. [3]).

In [4] Najafi and Borumand Saied posed a question whether every finite BCK-algebra is solvable. Below we present a positive answer to this question.

Lemma 1. In any BCK-algebra X for every $x, y \in X$
(a) $[x, y] \leq y \cdot y x \leq x$,
(b) $[x, y]=x \longleftrightarrow x=0$,
(c) $x \neq 0 \longrightarrow[x, y]<x$.

Proof. (a) Let $z=[x, y]$. Then $z(y \cdot y x)=(y \cdot y x)(x \cdot x y) \cdot(y \cdot y x)=0 \cdot(x \cdot x y)=0$. Thus $z \leq y \cdot y x \leq x$.
(b) If $[x, y]=x$, then by (a) we obtain $x \leq y \cdot y x \leq x$. Thus $y \cdot y x=x$, whence $x y=(y \cdot y x) y=y y \cdot y x=0 \cdot y x=0$. So, $x \leq y$. But in this case $[x, y]=(y \cdot y x)(x \cdot x y)=(y \cdot x y) \cdot x 0=(y \cdot y x) x=y x \cdot y x=0$. Hence $x=0$. The converse statement is obvious.
(c) It is a consequence of (a) and (b).

Theorem 1. Any finite BCK-algebra is solvable.
Proof. Let X be a finite BCK-algebra and M be the set of all its maximal elements. Suppose that $|X|=n \geq 2$. Then M has at least one element and $[0, y]=0 \notin M$ for every $y \in X$. For $x \neq 0$ there is $m \in M$ such that $x \leq m$. This, by Lemma 1 , implies $[x, y]<x \leq m$, so $[x, y] \notin M$ for all $x, y \in X$. Since for any $u, v \in X \backslash M$ we have $u v \leq u<m, u v \in X \backslash M$, which means that X^{\prime} is a subalgebra contained in $X \backslash M$. Hence $|X|>\left|X^{\prime}\right|$. By induction $|X|>\left|X^{\prime}\right|>\left|X^{\prime \prime}\right|>\cdots>\left|X^{(k)}\right|=1$ for some $k<n$. It is not difficult to see that k is less than the length of the longest sequence $0<a_{1}<a_{2}<\cdots<a_{m}$ of elements of X.

References

[1] W. A. Dudek, Unsolved problems in BCK-algebras, East Asian Math. J. 17 (2001), 115128.
[2] J. Meng and Y. B. Jun, BCK-Algebras, Kyung Moon Sa Co. Seoul, Korea, 1994.
[3] A. Najafi, Pseudo-commutators in BCK-algebras, Pure Math. Sci. 2 (2013), 29-32.
[4] A. Najafi and A. Borumand Saied, Solvable BCK-algebras, Çankaya Univ. J. Sci. Engineering 11 (2014), 19-28.
[5] S. Tanaka, A new class of algebras, Math. Sem. Notes Kobe Univ. 3 (1975), no. 1, 37-43.
Faculty of Pure and Applied Mathematics
Wroceaw University of Science and Technology
Wyb. Wyspiańskiego 27
50-370 Wroceaw
Poland
E-mail address: wieslaw.dudek@pwr.edu.pl

