• Title/Summary/Keyword: mathematical problem solving process

Search Result 345, Processing Time 0.027 seconds

Problem Solver's Responses According to the Sentence Structures of Mathematical Word Problems (수학 문장제의 문장 구조에 따른 초등학생의 문제해결 반응 비교 분석)

  • Kang, Wha-Na;Paik, Suck-Yoon
    • Journal of Educational Research in Mathematics
    • /
    • v.19 no.1
    • /
    • pp.63-80
    • /
    • 2009
  • This paper has a purpose to find out the important points about linguistic factors suited to the assessment purpose and mathematics teaching/learning that a word-problem sentence has to possess. We also examine the degree of understanding of sentence and the perceptive/emotional reactions of students toward two different kinds of word-problem sentences that have same mathematical contents, but different linguistic structures. The objects of this thesis are 124 students from the third to sixth grade in an elementary school. We execute assessment of simple-sentence-word-problem and complex-sentence-word-problem that have same mathematical contexts, but different linguistic structures. Then we have compared and examined their own process of solving the two types word-problems and we make up questionnaire and have an interview with them. The conclusions are as followings: First, simple-sentence-word-problem is more successful to suggest an information for solving a problem than complex one. Second, it is hard to find the strategy for solving a problem in complex-sentence-word-problem than simple one. Third, students think that suggested information and mathematical knowledge are different according to the linguistic structure in the process of perceiving the information after reading a word-problem. Fourth, in spite of same sentence type, the negative mental reaction is showed greatly to complex-sentence-word-problem even before solving a problem.

  • PDF

A Case study on the Effects of Mathematically Gifted Creative Problem Solving Model in Mathematics Learnings for Ordinary students (수학 영재의 창의적 문제해결 모델(MG-CPS)을 일반학생의 수학 학습에 적용한 사례연구)

  • Kim, Su Kyung;Kim, Eun Jin;Kwean, Hyuk Jin;Han, HyeSook
    • The Mathematical Education
    • /
    • v.51 no.4
    • /
    • pp.351-375
    • /
    • 2012
  • This research is a case study of the changes of students's problem solving ability and affective characteristics when we apply to general students MG-CPS model which is creative problem solving model for gifted students. MG-CPS model which was developed by Kim and Lee(2008) is a problem solving model with 7-steps. For this study, we selected 7 first grade students from girl's high school in Seoul. They consisted of three high level students, two middle level students, and two low level students and then we applied MG-CPS model to these 7 students for 5 weeks. From the study results, we found that most students's describing ability in problem understanding and problem solving process were improved. Also we observed that high level students had improvements in overall problem solving ability, middle level students in problem understanding ability and guideline planning ability, and that low level students had improvements in the problem understanding ability. In affective characteristics, there were no significant changes in high and middle level classes but in low level class students showed some progress in all 6 factors of affective characteristics. In particular, we knew that the cause of such positive changes comes from the effects of information collection step and presenting step of MG-CPS model.

An Analysis of the Pre-service Teachers' Conceptions on Mathematical Problems (수학문제에 대한 예비교사의 인식분석)

  • Park, Mangoo
    • Education of Primary School Mathematics
    • /
    • v.25 no.1
    • /
    • pp.125-141
    • /
    • 2022
  • The purpose of this study is to analyze how pre-service teachers perceive mathematics problems by making good mathematics problems at the elementary school level and applying them to elementary school students. In this study, 86 pre-service teachers enrolled in the second and third grades of A University of Education presented good mathematics problems they thought of. In addition, these pre-service teachers predicted the solution strategies of elementary school students for the proposed mathematics problem and described the teacher's expertise while observing the problem-solving process of elementary school students. As a result of the study, pre-service teachers preferred mathematical problems needed for using mathematical concepts or algorithms, motivation, and open-ended problems as good mathematics problems, and thought that students' in-depth observation and analysis experiences could help improve teachers' problem-solving expertise. In order to enhance teachers' expertise in solving mathematics problems, the researcher proposed for pre-service teachers to observe students' mathematics problem-solving processes, to experience in developing high-quality mathematics problems, and also to distribute high-quality mathematics problems linked to textbook problems.

A Case Study on Student Self-Evaluation of Wrong Answers in School Mathematics (수학 교과에서의 학생의 오답원인 자기평가에 관한 사례 연구)

  • Hwang, Hye Jeang;Kim, Myeong Soo
    • Communications of Mathematical Education
    • /
    • v.28 no.2
    • /
    • pp.255-279
    • /
    • 2014
  • This study is to investigate the change of intelligent and affective domains through the student self-evaluation to identify causes of wrong answers. Through this evaluation, students could have opportunities to solve the given mathematical problems basically and to reflect their problem-solving process, and further to recognize which mathematical content(concepts or expressions, symbols, etc.) led them to solve the problems incorrectly or wrong. Through this process, they would correct their wrong process and answers and to reinforce the prerequisite knowledges relevant to the problems, and furthermore, to enhance problem-solving abilities. To accomplish this, this study was executed as a case study on the subject of four tenth graders. The subject consisted of two boys and two girls. In this study, three essay types of mathematical problems in tenth grade level were chosen from several domestic tests in Korea. Based on the original three essay type of problems, three types of similar problems, namely equivalent problem, similar problem, and isomorphic problems were reconstructed, respectively by the researchers. The subjects were guided to solve the original three problems, and they corrected their wrong parts of the first problem of the three problems. They solved an equivalent problem of the first problem and executed self evaluation and also corrected wrong parts. Next, they dealt with a similar problem of the first problem and executed self evaluation and also corrected wrong parts. Next, while dealing with an isomorphic problem of the first problem, the subjects did the same things. Thus, for the second and third original problems, the study was implemented in the same way. To explore their intelligent and affective domains through student self-evaluation in-depth, the subjects were interviewed formally before and after conducting the experiment and interviewed informally two times, and the recordings were audio-typed.

Development and application of program for mathematically gifted students based on mathematical modeling : focused on Voronoi diagram and Delaunay triangulation (영재교육을 위한 수학적 모델링 프로그램의 개발 및 적용 :보로노이 다이어그램과 들로네 삼각분할을 중심으로)

  • Yu, Hong-Gyu;Yun, Jong-Gug
    • Communications of Mathematical Education
    • /
    • v.31 no.3
    • /
    • pp.257-277
    • /
    • 2017
  • The purpose of this research is divide into two kinds. First, develop the mathematical modeling program for mathematically gifted students focused on Voronoi diagram and Delaunay triangulation, and then gifted teachers can use it in the class. Voronoi diagram and Delaunay triangulation are Spatial partition theory use in engineering and geography field and improve gifted student's mathematical connections, problem solving competency and reasoning ability. Second, after applying the developed program to the class, I analyze gifted student's core competency. Applying the mathematical modeling program, the following findings were given. First, Voronoi diagram and Delaunay triangulation are received attention recently and suitable subject for mathematics gifted education. Second,, in third enrichment course(Student's Centered Mathematical Modeling Activity), gifted students conduct the problem presentation, division of roles, select and collect the information, draw conclusions by discussion. In process of achievement, high level mathematical competency and intellectual capacity are needed so synthetic thinking ability, problem solving, creativity and self-directed learning ability are appeared to gifted students. Third, in third enrichment course(Student's Centered Mathematical Modeling Activity), problem solving, mathematical connections, information processing competency are appeared.

Development of the Problems and Rubrics for Performance Assessment in Elementary School Mathematics (수학과 수행평가 문항 및 분석기준 개발 연구)

  • Kim Min-Kyeong;Cho Mi-Kyung
    • The Mathematical Education
    • /
    • v.45 no.1 s.112
    • /
    • pp.1-24
    • /
    • 2006
  • The purpose of the study was to design and develop the performance assessment problems and the rubric of holistic evaluation approach for elementary school students in higher levels (6 graders). Problems include 6 tasks related to all content areas such as number and operation, etc. In addition, the results show the analyses of children's problem solving process and investigate how the performance assessment problems could be developed in order to develop children's higher-order thinking and problem solving skills.

  • PDF

On the Level of Intuition of Elementary School Teachers in Problem Solving Process (수학 문제해결과정에서 보이는 초등교사의 직관 수준에 관한 연구)

  • Kim, Hae Gyu
    • School Mathematics
    • /
    • v.14 no.4
    • /
    • pp.579-598
    • /
    • 2012
  • Since elementary school students are in the concrete operational stages, they have to learn mathematics using intuitive methods. So teachers have to have knowledge on the intuition. In this paper we investigated specialized content knowledge on the intuition which have 8 elementary school teachers in problem solving process. They were asked to solve 8 problems in the questionnaire which were provided by the www.mathlove.net. As a result we found that 7 elementary school teachers have a lack of understand on the intuition in problem solving process.

  • PDF

Research Trends in Large Language Models and Mathematical Reasoning (초거대 언어모델과 수학추론 연구 동향)

  • O.W. Kwon;J.H. Shin;Y.A. Seo;S.J. Lim;J. Heo;K.Y. Lee
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.1-11
    • /
    • 2023
  • Large language models seem promising for handling reasoning problems, but their underlying solving mechanisms remain unclear. Large language models will establish a new paradigm in artificial intelligence and the society as a whole. However, a major challenge of large language models is the massive resources required for training and operation. To address this issue, researchers are actively exploring compact large language models that retain the capabilities of large language models while notably reducing the model size. These research efforts are mainly focused on improving pretraining, instruction tuning, and alignment. On the other hand, chain-of-thought prompting is a technique aimed at enhancing the reasoning ability of large language models. It provides an answer through a series of intermediate reasoning steps when given a problem. By guiding the model through a multistep problem-solving process, chain-of-thought prompting may improve the model reasoning skills. Mathematical reasoning, which is a fundamental aspect of human intelligence, has played a crucial role in advancing large language models toward human-level performance. As a result, mathematical reasoning is being widely explored in the context of large language models. This type of research extends to various domains such as geometry problem solving, tabular mathematical reasoning, visual question answering, and other areas.

Analysis on the Problem-Solving Methods of Students on Contextual and Noncontextual problems of Fractional Computation and Comparing Quantities (분수의 연산과 크기 비교에서 맥락 문제와 비맥락 문제에 대한 학생들의 문제해결 방법 분석)

  • Beom, A Young;Lee, Dae Hyun
    • Education of Primary School Mathematics
    • /
    • v.15 no.3
    • /
    • pp.219-233
    • /
    • 2012
  • Practicality and value of mathematics can be verified when different problems that we face in life are resolved through mathematical knowledge. This study intends to identify whether the fraction teaching is being taught and learned at current elementary schools for students to recognize practicality and value of mathematical knowledge and to have the ability to apply the concept when solving problems in the real world. Accordingly, contextual problems and noncontextual problems are proposed around fractional arithmetic area, and compared and analyze the achievement level and problem solving processes of them. Analysis showed that there was significant difference in achievement level and solving process between contextual problems and noncontextual problems. To instruct more meaningful learning for student, contextual problems including historical context or practical situation should be presented for students to experience mathematics of creating mathematical knowledge on their own.

A Study on the GSP in the Viewpoint of Problem Solving ('문제해결' 관점에서의 GSP활용)

  • Kim, Nam-Hee
    • School Mathematics
    • /
    • v.4 no.1
    • /
    • pp.111-125
    • /
    • 2002
  • In this study, we studied some examples using GSP(Geometer's SketchPad) in the process of problem solving that is explained by G. polya. After reconsidering examples, we tried to show that using GSP can help student's intuitive thinking, investigative activities, reflective thinking. Especially, in the three phase of problem solving(understanding the problem, devising a plan, looking back), mathematics teachers may using GSP in order to helping student's understanding. Besides, we tried to suggest the direction to use GSP more adequately in the teaching and Beaming mathematics. First of all, Mathematics teachers using GSP in their class must have ideas how to use it. And they have to be careful on the didactical transposition of mathematical knowledge in the computer-based learning. They also have to lead students move from activities with GSP materials to carrying out the problem solving plan and reflection activities.

  • PDF