• 제목/요약/키워드: maskless lithography

검색결과 29건 처리시간 0.031초

펨토초 레이저를 이용한 미세 PR 패터닝 (Femtosecond Laser Lithography for Maskless PR Patterning)

  • 손익부;고명전;김영섭;노영철
    • 한국정밀공학회지
    • /
    • 제26권6호
    • /
    • pp.36-40
    • /
    • 2009
  • Development of maskless lithography techniques can provide a potential solution for the photomask cost issue. Furthermore, it could open a market for small scale manufacturing applications. Since femtosecond lasers have been found suitable for processing of a wide range of materials with sub-micrometer resolution, it is attractive to use this technique for maskless lithography. As a femtosecond laser has recently been developed, both of high power and high photon density are easily obtained. The high photon density results in photopolymerization of photoresist whose absorption spectrum is shorter than that of the femtosecond laser. The maskless lithography using the two-photon absorption (TPA) makes micro structures. In this paper, we present a femtosecond laser direct write lithography for submicron PR patterning, which show great potential for future application.

Optical System with 4 ㎛ Resolution for Maskless Lithography Using Digital Micromirror Device

  • Lee, Dong-Hee
    • Journal of the Optical Society of Korea
    • /
    • 제14권3호
    • /
    • pp.266-276
    • /
    • 2010
  • In the present study, an optical system is proposed for maskless lithography using a digital micromirror device (DMD). The system consists of an illumination optical system, a DMD, and a projection lens system. The illumination optical system, developed for 95% uniformity, is composed of fly's eye lens plates, a 405 nm narrow band pass filter (NBPF), condensing lenses, a field lens and a 250W halogen lamp. The projection lens system, composed of 8 optical elements, is developed for 4 ${\mu}m$ resolution. The proposed system plays a role of an optical engine for PCB and/or FPD maskless lithography. Furthermore, many problems arising from the presence of masks in a conventional lithography system, such as expense and time in fabricating the masks, contamination by masks, disposal of masks, and the alignment of masks, may be solved by the proposed system. The proposed system is verified by lithography experiments which produce a line pattern with the resolution of 4 ${\mu}m$ line width.

역학적 유체 리소그래피 기술 (Dynamic Flow Lithography Technologies)

  • 정수은;박욱;권성훈
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권6호
    • /
    • pp.453-460
    • /
    • 2009
  • In this review paper, concepts in optofluidics are applied to an advanced manufacturing technology based on self-assembled microparts. The "optical" aspect of optofluidics will be described in the context of photolithography, and the "fluidic" aspect will be discussed in the context of self-assembly. First, optofluidic maskless lithography will be introduced as a dynamic fabrication method to generate microparticles in microfluidic channels. Next, the history and application of optofluidic lithography will be presented.

Maskless Lithography system을 이용한 TSP 검사 용 micro bump 제작에 관한 연구. (A study of fabrication micro bump for TSP testing using maskless lithography system.)

  • 김기범;한봉석;양지경;한유진;강동성;이인철
    • 한국산학기술학회논문지
    • /
    • 제18권5호
    • /
    • pp.674-680
    • /
    • 2017
  • 본 논문은 현재 개인 휴대기기 및 대형 디스플레이 장비의 제어에서 폭넓게 사용되고 있는 터치스크린 패널 (TSP; Touch Screen Panel)의 정상 작동 유무를 확인하기 위한 micro bump 제작 기술에 관한 연구이다. 터치스크린 패널은 감압식, 정전식 등의 여러 가지 방식이 있으나 지금은 편리성에 의하여 정전식 방식이 주도하고 있다. 정전식의 경우 해당하는 좌표의 접촉에 따라 전기적 신호가 변화하게 되고, 이를 통하여 접촉 위치를 확인할 수 있으며 따라서 접촉 위치에 따른 전기 특성 검사가 필수적이다. 검사공정에서 TSP의 모델이 변경됨에 따라 새로운 micro bump를 제작이 및 검사 프로그램의 수정이 필수적이다. 본 논문에서는 새로운 micro bump 제작 시 mask를 사용하지 않아 보다 경제적이며 변화에 대응이 유연한 maskless lithography 시스템을 이용하여 micro bump 제작 가능성에 대하여 확인하였다. 이를 위하여 제작되는 bump의 pitch에 따른 전기장 간섭 시뮬레이션을 진행하였으며, maskless lithogrphy 공정을 적용하기 위한 패턴 이미지를 생성하였다. 이후 MEMS 기술에 해당하는 PR(Photo Resist) 패터닝 공정에서 노광(Lithography) 공정 및 현상(Developing) 공정을 통하여 PR 마스크를 제작한 후 electro-plating 공정을 통하여 micro bump를 제작하였다.

Maskless 노광공정을 위한 LDI(Laser Direct Imaging) 시스템 개발 및 단일 레이저 빔 에너지 분포 분석 (Development of a LDI System for the Maskless Exposure Process and Energy Intensity Analysis of Single Laser Beam)

  • 이수진;김종수;신봉철;김동우;조명우
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.834-840
    • /
    • 2010
  • Photo lithography process is very important technology to fabricate highly integrated micro patterns with high precision for semiconductor and display industries. Up to now, mask type lithography process has been generally used for this purpose; however, it is not efficient for small quantity and/or frequently changing products. Therefore, in order to obtain higher productivity and lower manufacturing cost, the mask type lithography process should be replaced. In this study, a maskless lithography system using the DMD(Digital Micromirror Device) is developed, and the exposure condition and optical properties are analyzed and simulated for a single beam case. From the proposed experimental conditions, required exposure experiments were preformed, and the results were investigated. As a results, 10${\mu}m$ spots can be generated at optimal focal length.

Optical Proximity Corrections for Digital Micromirror Device-based Maskless Lithography

  • Hur, Jungyu;Seo, Manseung
    • Journal of the Optical Society of Korea
    • /
    • 제16권3호
    • /
    • pp.221-227
    • /
    • 2012
  • We propose optical proximity corrections (OPCs) for digital micromirror device (DMD)-based maskless lithography. A pattern writing scheme is analyzed and a theoretical model for obtaining the dose distribution profile and resulting structure is derived. By using simulation based on this model we were able to reduce the edge placement error (EPE) between the design width and the critical dimension (CD) of a fabricated photoresist, which enables improvement of the CD. Moreover, by experiments carried out with the parameter derived from the writing scheme, we minimized the corner-rounding effect by controlling light transmission to the corners of a feature by modulating a DMD.

Forming a Fresnel Zone Lens: Effects of Photoresist on Digital-micromirror-device Maskless Lithography with Grayscale Exposure

  • Huang, Yi-Hsiang;Jeng, Jeng-Ywan
    • Journal of the Optical Society of Korea
    • /
    • 제16권2호
    • /
    • pp.127-132
    • /
    • 2012
  • This study discusses photoresist forming using a composite grayscale to fabricate a Fresnel lens. Grayscale lithography is a common production method used to facilitate the forming of lenses with different curvatures and depths. However, this approach is time consuming and expensive. This study proposes a method for overcoming these obstacles by integrating a digital micromirror device and microscope to supplant the traditional physical grayscale mask. This approach provides a simple and practical maskless optical lithography system. According to the results, the two adjacent grayscales displayed substantial differences between the high grayscale and influence the low grayscale that ultimately affected photoresist formation. Furthermore, we show that change of up to 150% in the slope can be achieved by changing the grayscale gradient in the central zone and the ring profile. The results of the optical experiment show a focus change with different gray gradients.

Detecting Digital Micromirror Device Malfunctions in High-throughput Maskless Lithography

  • Kang, Minwook;Kang, Dong Won;Hahn, Jae W.
    • Journal of the Optical Society of Korea
    • /
    • 제17권6호
    • /
    • pp.513-517
    • /
    • 2013
  • Recently, maskless lithography (ML) systems have become popular in digital manufacturing technologies. To achieve high-throughput manufacturing processes, digital micromirror devices (DMD) in ML systems must be driven to their operational limits, often in harsh conditions. We propose an instrument and algorithm to detect DMD malfunctions to ensure perfect mask image transfer to the photoresist in ML systems. DMD malfunctions are caused by either bad DMD pixels or data transfer errors. We detect bad DMD pixels with $20{\times}20$ pixel by white and black image tests. To analyze data transfer errors at high frame rates, we monitor changes in the frame rate of a target DMD pixel driven by the input data with a set frame rate of up to 28000 frames per second (fps). For our data transfer error detection method, we verified that there are no data transfer errors in the test by confirming the agreement between the input frame rate and the output frame rate within the measurement accuracy of 1 fps.

초발수 표면을 만들기 위한 마이크로-나노 몰드 제작 공정 (Manufacturing process of micro-nano structure for super hydrophobic surface)

  • 임동욱;박규백;박정래;고강호;이정우;김지훈
    • Design & Manufacturing
    • /
    • 제15권4호
    • /
    • pp.57-64
    • /
    • 2021
  • In recent materials industry, researches on the technology to manufacture super hydrophobic surface by effectively controlling the wettability of solid surface are expanding. Research on the fabrication of super hydrophobic surface has been studied not only for basic research but also for self-cleaning, anti-icing, anti-friction, flow resistance reduction in construction, textile, communication, military and aviation fields. A super hydrophobic surface is defined as a surface having a water droplet contact angle of 150 ° or more. The contact angle is determined by the surface energy and is influenced not only by the chemical properties of the surface but also by the rough structure. In this paper, maskless lithography using DMD, electro etching, anodizing and hot embossing are used to make the polymer resin PMMA surface super hydrophobic. In the fabrication of microstructure, DMDs are limited by the spacing of microstructure due to the structural limitations of the mirrors. In order to overcome this, maskless lithography using a transfer mechanism was used in this paper. In this paper, a super hydrophobic surface with micro and nano composite structure was fabricated. And the wettability characteristics of the micro pattern surface were analyzed.