DOI QR코드

DOI QR Code

Detecting Digital Micromirror Device Malfunctions in High-throughput Maskless Lithography

  • Kang, Minwook (Nano Photonics Laboratory, School of Mechanical Engineering, Yonsei University) ;
  • Kang, Dong Won (Nano Photonics Laboratory, School of Mechanical Engineering, Yonsei University) ;
  • Hahn, Jae W. (Nano Photonics Laboratory, School of Mechanical Engineering, Yonsei University)
  • Received : 2013.08.01
  • Accepted : 2013.10.10
  • Published : 2013.12.25

Abstract

Recently, maskless lithography (ML) systems have become popular in digital manufacturing technologies. To achieve high-throughput manufacturing processes, digital micromirror devices (DMD) in ML systems must be driven to their operational limits, often in harsh conditions. We propose an instrument and algorithm to detect DMD malfunctions to ensure perfect mask image transfer to the photoresist in ML systems. DMD malfunctions are caused by either bad DMD pixels or data transfer errors. We detect bad DMD pixels with $20{\times}20$ pixel by white and black image tests. To analyze data transfer errors at high frame rates, we monitor changes in the frame rate of a target DMD pixel driven by the input data with a set frame rate of up to 28000 frames per second (fps). For our data transfer error detection method, we verified that there are no data transfer errors in the test by confirming the agreement between the input frame rate and the output frame rate within the measurement accuracy of 1 fps.

Keywords

References

  1. http://www.ti.com/lit/an/dlpa008/dlpa008.pdf, Last accessed 14th Feb. (2013).
  2. D. Armitage, I. Underwood, and S.-T. Wu, Introduction to Microdisplays (John Wiley & Sons Ltd., Wiltshire, UK, 2006), p. 13.
  3. Q. Li, Y. Liu, Y. Tian, X. Li, and S. Wang, Informatics and Management Science V (Springer-Verlag London, UK, 2013), pp. 29-35.
  4. D. B. Beasley, M. Bender, J. Crosby, and T. Messer, "Dynamic infrared scene projectors based upon the DMD," Proc. SPIE 7210, 72100I (2009). https://doi.org/10.1117/12.808329
  5. P. M. Lane, A. L. P. Dlugan, R. R.-Kortum, and C. E. MacAulay, "Fiber-optic confocal microscopy using a spatial light modulator," Opt. Lett. 25, 1780-1782 (2000). https://doi.org/10.1364/OL.25.001780
  6. M. Liang, R. L. Stehr, and A. W. Krause, "Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination," Opt. Lett. 22, 751-753 (1997). https://doi.org/10.1364/OL.22.000751
  7. Y. Zhang, S. Strube, G. Molnar, H. U. Danzebrink, G. Dai, H. Bosse, and W. Hou, "Parallel large-range scanning confocal microscope based on a digital micromirror device," Optik 124, 1585-1588 (2012).
  8. K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, "High-resolution maskless lithography," J. Micro/Nanolitho MEMS MOEMS 2, 331-339 (2003). https://doi.org/10.1117/1.1611182
  9. K. F. Chan, Z. Feng, R. Yang, and W. Mei, "High resolution maskless lithography by the integration of microoptics and point array technique," Proc. SPIE 4985, 37-43 (2003).
  10. K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, "Fabrication of three-dimensional microstructure using maskless gray-scale lithography," Sens. Actuators A 130-131, 387-392 (2006). https://doi.org/10.1016/j.sna.2005.12.008
  11. H. Ryoo, D. W. Kang, and J. W. Hahn, "Analysis of the effective reflectance of digital micromirror devices and process parameters for maskless photolithography," Microelectronic Engineering 88, 235-239 (2011). https://doi.org/10.1016/j.mee.2010.10.039
  12. J. G. Hur, "Maskless fabrication of three-dimensional micro-structures with high isotropic resolution: practical and theoretical considerations," Appl. Opt. 50, 2383-2390 (2011). https://doi.org/10.1364/AO.50.002383
  13. D.-H. Lee, "Optical system with 4 ${\mu}m$ resolution for maskless lithography using digital micromirror device," J. Opt. Soc. Korea 14, 266-276 (2010). https://doi.org/10.3807/JOSK.2010.14.3.266
  14. J. Hur and M. Seo, "Optical proximity corrections for digital micromirror device-based maskless lithography," J. Opt. Soc. Korea 16, 221-227 (2012). https://doi.org/10.3807/JOSK.2012.16.3.221
  15. Y. Kim, S. Kim, H. Jung, E. Lee, and J. W. Hahn, "Plasmonic nano lithography with a high scan speed contact probe," Opt. Express 17, 19476-19485 (2009). https://doi.org/10.1364/OE.17.019476
  16. D. J. D. Carter, D. Gil, R. Menon, M. K. Mondol, and H. I. Smith, "Maskless, parallel patterning with zone- plate array lithography," J. Vac. Sci. Technol. B 17, 3449-3452 (1999).
  17. R. Menon, A. Patel, D. Chao, M. Walsh, and H. I. Smith, "Zone-plate-array lithography (ZPAL): optical maskless lithography for cost-effective patterning," Proc. SPIE 5751, 330-339 (2005).
  18. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," J. Vac. Sci. Technol. B 14, 4129-4133 (1996). https://doi.org/10.1116/1.588605
  19. H. Kim, K. Cho, Y.-K. Kim, J.-W. Shin, H.-J. Shin, and J.-H. Moon, "Automatic test equipment for the micro-mirror array," Proc. SPIE 3276, 103-110 (1998).
  20. F. J. Reuter, Method and apparatus for dynamic DMD testing, U.S. Patent No. 6, 788, 416 B2 (2004).
  21. http://www.mitsubishielectric.com.au/assets/vis/DLP_Projector_Pixel_Info.pdf, Last accessed 14th Feb. (2013).

Cited by

  1. Keystone error analysis of projection optics in a maskless lithography system vol.16, pp.2, 2015, https://doi.org/10.1007/s12541-015-0049-6