DOI QR코드

DOI QR Code

Dynamic Flow Lithography Technologies

역학적 유체 리소그래피 기술

  • Chung, Su-Eun (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Park, Wook (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Kwon, Sung-Hoon (School of Electrical Engineering and Computer Science, Seoul National University)
  • 정수은 (서울대학교 전기컴퓨터공학부) ;
  • 박욱 (서울대학교 전기컴퓨터공학부) ;
  • 권성훈 (서울대학교 전기컴퓨터공학부)
  • Published : 2009.12.31

Abstract

In this review paper, concepts in optofluidics are applied to an advanced manufacturing technology based on self-assembled microparts. The "optical" aspect of optofluidics will be described in the context of photolithography, and the "fluidic" aspect will be discussed in the context of self-assembly. First, optofluidic maskless lithography will be introduced as a dynamic fabrication method to generate microparticles in microfluidic channels. Next, the history and application of optofluidic lithography will be presented.

Keywords

References

  1. L.F. Cheow, L. Yobas & D.L. Kwong, "Digital microfluidics:Droplet based logic gates." Appl. Phys. Lett. vol. 90, pp.-, 2007
  2. G.F. Christopher & S.L. Anna, "Microfluidic methods for generating continuous droplet streams." J. Phys. D. vol. 40, pp.R319-R336, 2007 https://doi.org/10.1088/0022-3727/40/19/R01
  3. A.D. Griffiths & D.S. Tawfik, "Miniaturising the laboratory in emulsion droplets." Trends in Biotech. vol. 24, pp.395-402, 2006 https://doi.org/10.1016/j.tibtech.2006.06.009
  4. B.T. Kelly, J.C. Baret, V. Taly, et al., "Miniaturizing chemistry and biology in microdroplets." Chem. Commun. vol., pp.1773-1788, 2007
  5. T. Thorsen, R.W. Roberts, F.H. Arnold, et al.,"Dynamic pattern formation in a vesicle-generating microfluidic device." Phys. Rev. Lett. vol. 86, pp.4163-4166, 2001 https://doi.org/10.1103/PhysRevLett.86.4163
  6. T. Nisisako, T. Torii & T. Higuchi, "Droplet formation in a microchannel network." Lab Chip. vol. 2, pp.24-26, 2002 https://doi.org/10.1039/b108740c
  7. J.D. Tice, H. Song, A.D. Lyon, et al., "Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers." Langmuir. vol. 19, pp.9127-9133, 2003 https://doi.org/10.1021/la030090w
  8. T. Nisisako, T. Torii & T. Higuchi, "Novel microreactors for functional polymer beads." Chem. Eng. J. vol. 101, pp.23-29, 2004 https://doi.org/10.1016/j.cej.2003.11.019
  9. B. Zheng, J.D. Tice & R.F. Ismagilov, "Formation of droplets of in microfluidic channels alternating composition and applications to indexing of concentrations in droplet-based assays." Anal. Chem. vol. 76, pp.4977-4982, 2004 https://doi.org/10.1021/ac0495743
  10. S. Okushima, T. Nisisako, T. Torii, et al., "Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices." Langmuir. vol. 20, pp.9905-9908, 2004 https://doi.org/10.1021/la0480336
  11. S.L. Anna, N. Bontoux & H.A. Stone, "Formation of dispersions using “flow focusing” in microchannels." Appl. Phys. Lett. vol. 82, pp.364-366, 2003 https://doi.org/10.1063/1.1537519
  12. P. Garstecki, I. Gitlin, W. DiLuzio, et al., "Formation of monodisperse bubbles in a microfluidic flow-focusing device." Appl. Phys. Lett. vol. 85, pp.2649-2651, 2004 https://doi.org/10.1063/1.1796526
  13. W.J. Jeong, J.Y. Kim, J. Choo, et al., "Continuous fabrication of biocatalyst immobilized microparticles using photopolymerization and immiscible liquids in microfluidic systems." Langmuir. vol. 21, pp.3738-3741, 2005 https://doi.org/10.1021/la050105l
  14. P.C. Lewis, R.R. Graham, Z.H. Nie, et al., "Continuous synthesis of copolymer particles in microfluidic reactors." Macromolecules. vol. 38, pp.4536-4538, 2005 https://doi.org/10.1021/ma050101n
  15. Z.H. Nie, S.Q. Xu, M. Seo, et al., "Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors." J. Amer. Chem. Soc. vol. 127, pp.8058-8063, 2005 https://doi.org/10.1021/ja042494w
  16. A.S. Utada, E. Lorenceau, D.R. Link, et al., "Monodisperse double emulsions generated from a microcapillary device." Science. vol. 308, pp.537-541, 2005 https://doi.org/10.1126/science.1109164
  17. T. Nisisako, T. Torii, T. Takahashi, et al., "Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system." Adv. Mater. vol. 18, pp. 1152-+, 2006 https://doi.org/10.1002/adma.200502431
  18. Y.N. Xia & G.M. Whitesides, "Soft lithography." Angew. Chem. vol. 37, pp.551-575, 1998
  19. D. Dendukuri, K. Tsoi, T.A. Hatton, et al., "Controlled synthesis of nonspherical microparticles using microfluidics." Langmuir. vol. 21, pp.2113-2116, 2005 https://doi.org/10.1021/la047368k
  20. M. Seo, Z.H. Nie, S.Q. Xu, et al., "Microfluidics: From dynamic lattices to periodic arrays of polymer disks." Langmuir. vol. 21, pp.4773-4775, 2005 https://doi.org/10.1021/la050070p
  21. W. Jeong, J. Kim, S. Kim, et al., "Hydrodynamic microfabrication via “on the fly” photopolymerization of microscale fibers and tubes." Lab Chip. vol. 4, pp.576-580, 2004 https://doi.org/10.1039/b411249k
  22. S.Q. Xu, Z.H. Nie, M. Seo, et al., "Generation of monodisperse particles by using microfluidics: Control over size, shape, and composition." Angew. Chem. vol. 44, pp.724-728, 2005 https://doi.org/10.1002/anie.200462226
  23. O.D. Velev, A.M. Lenhoff & E.W. Kaler, "A class of microstructured particles through colloidal crystallization." Science. vol. 287, pp.2240-2243, 2000 https://doi.org/10.1126/science.287.5461.2240
  24. Y.D. Yin & Y.N. Xia, "Self-assembly of monodispersed spherical colloids into complex aggregates with well-defined sizes, shapes, and structures." Adv. Mater. vol. 13, pp.267-+, 2001 https://doi.org/10.1002/1521-4095(200102)13:4<267::AID-ADMA267>3.0.CO;2-9
  25. V.N. Manoharan, M.T. Elsesser & D.J. Pine, "Dense packing and symmetry in small clusters of microspheres." Science. vol. 301, pp.483-487, 2003 https://doi.org/10.1126/science.1086189
  26. Y.S. Cho, G.R. Yi, J.M. Lim, et al., "Self-organization of bidisperse colloids in water droplets." J. Amer. Chem. Soc. vol. 127, pp.15968-15975, 2005 https://doi.org/10.1021/ja0550632
  27. D.J. Beebe, "Functional hydrogel structures for autonomous flow control inside microfluidic channels." Nature. vol. 404, pp.588-590, 2000 https://doi.org/10.1038/35007047
  28. D. Dendukuri, Pregibon, D.C., Collins, J., Hatton, T.A. & Doyle, P.S., "Continuous-flow lithography for high-throughput microparticle synthesis." Nat. Mater. vol. 5, pp.365-369, 2006 https://doi.org/10.1038/nmat1617
  29. C. Decker & A.D. Jenkins, "Kinetic Approach of O-2 Inhibition in Ultraviolet-Induced and Laser-Induced Polymerizations." Macromolecules. vol. 18, pp.1241-1244, 1985 https://doi.org/10.1021/ma00148a034
  30. D.C. Pregibon, M. Toner & P.S. Doyle, "Multifunctional encoded particles for high-throughput biomolecule analysis." Science. vol. 315, pp.1393-1396, 2007 https://doi.org/10.1126/science.1134929
  31. D. Dendukuri, S.S. Gu, D.C. Pregibon, et al., "Stop-flow lithography in a microfluidic device." Lab Chip. vol. 7, pp.818-828, 2007 https://doi.org/10.1039/b703457a
  32. P. Panda, S. Ali, E. Lo, et al., "Stop-flow lithography to generate cell-laden microgel particles." Lab Chip. vol., pp.-, 2008
  33. A. Bertsch, J.Y. J??uel & J.C. Andr, "Study of the spatial resolution of a new 3D microfabrication process: the microstereophotolithography using a dynamic mask-generator technique." J. Photochem. Photobiol. A. vol. 107, pp.275-281, 1997 https://doi.org/10.1016/S1010-6030(96)04585-6
  34. L.J. Hornbeck. Digital Light Processing TM for High-Brightness, High-Resolution Applications. Vol. 3013 27-40 (1997)
  35. S. Singh-Gasson, R. D. Green, Y. Yue, et al., "Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array." Nat. Biotech. vol. 17, pp.974-978, 1999 https://doi.org/10.1038/13664
  36. R.N.I. http://www.nimblegen.com/technology/manufacture.html
  37. C. Sun, N. Fang, D.M. Wu, et al., "Projection micro-stereolithography using digital micro-mirror dynamic mask." Sens. Actuat. A. vol. 121, pp.113-120, 2005 https://doi.org/10.1016/j.sna.2004.12.011
  38. Y. Lu, G. Mapili, G. Suhali, et al., "A digital micromirror devicebased system for the microfabrication of complex, spatially patterned tissue engineering scaffolds." J. Biomed. Mater. Res. A. vol. 77, pp.396-405, 2006
  39. M. Klosner & K. Jain, "Massively parallel, large-area maskless lithography." vol. 84, pp.2880, 2004
  40. K. Totsu, K. Fujishiro, S. Tanaka, et al., "Fabrication of threedimensional microstructure using maskless gray-scale lithography." Sens. Actuat. A. vol. 130-131, pp.387-392, 2006 https://doi.org/10.1016/j.sna.2005.12.008
  41. G.M. Whitesides, E. Ostuni, S. Takayama, et al., "Soft lithography in biology and biochemistry." Ann. Rev. Biomed. Eng. vol. 3, pp.335-373, 2001 https://doi.org/10.1146/annurev.bioeng.3.1.335
  42. A. M. Biswas, J. Li, J. A. Hiserote, et al., "Extension of 193nm dry lithography to 45-nm half-pitch node: double exposure and double processing technique." Proceedings of SPIE. vol. 6349, pp.63491P, 2006
  43. C.J. Hernandez & T.G. Mason, "Colloidal alphabet soup: Monodisperse dispersions of shape-designed LithoParticles." J. Phys. Chem. C. vol. 111, pp.4477-4480, 2007 https://doi.org/10.1021/jp0672095
  44. S. A. Lee, S. E. Chung, W. Park, et al., "Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography." Lab Chip. vol. 9, pp.1670-1675, 2009 https://doi.org/10.1039/b819999j