• Title/Summary/Keyword: malondialdehyde

Search Result 1,032, Processing Time 0.025 seconds

Assessment of Rhizosphere Microbial Community Structure in Tomato Plants after Inoculation of Bacillus Species for Inducing Tolerance to Salinity (토마토에 염류 내성을 유도하는 바실러스 균주 처리 후 근권 미생물 군집 구조 연구)

  • Yoo, Sung-Je;Lee, Shin Ae;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.49-59
    • /
    • 2021
  • BACKGROUND: Soil salinity causes reduction of crop productivity. Rhizosphere microbes have metabolic capabilities and ability to adaptation of plants to biotic and abiotic stresses. Plant growth-promoting bacteria (PGPB) could play a role as elicitors for inducing tolerance to stresses in plants by affecting resident microorganism in soil. This study was conducted to demonstrate the effect of selected strains on rhizosphere microbial community under salinity stress. METHODS AND RESULTS: The experiments were conducted in tomato plants in pots containing field soil. Bacterial suspension was inoculated into three-week-old tomato plants, one week after inoculation, and -1,000 kPa-balanced salinity stress was imposed. The physiological and biochemical attributes of plant under salt stress were monitored by evaluating pigment, malondialdehyde (MDA), proline, soil pH, electrical conductivity (EC) and ion concentrations. To demonstrate the effect of selected Bacillus strains on rhizosphere microbial community, soil microbial diversity and abundance were evaluated with Illumina MiSeq sequencing, and primer sets of 341F/805R and ITS3/ITS4 were used for bacterial and fungal communities, respectively. As a result, when the bacterial strains were inoculated and then salinity stress was imposed, the inoculation decreases the stress susceptibility including reduction in lipid peroxidation, enhanced pigmentation and proline accumulation which subsequently resulted in better plant growth. However, bacterial inoculations did not affect diversity (observed OTUs, ACE, Chao1 and Shannon) and structure (principle coordinate analysis) of microbial communities under salinity stress. Furthermore, relative abundance in microbial communities had no significant difference between bacterial treated- and untreated-soils under salinity stress. CONCLUSION: Inoculation of Bacillus strains could affect plant responses and soil pH of tomato plants under salinity stress, whereas microbial diversity and abundance had no significant difference by the bacterial treatments. These findings demonstrated that Bacillus strains could alleviate plant's salinity damages by regulating pigments, proline, and MDA contents without significant changes of microbial community in tomato plants, and can be used as effective biostimulators against salinity stress for sustainable agriculture.

Effect of Styrene on Hepatic Activities of Antioxidant Enzymes in Rats (스티렌이 흰쥐의 간 조직 중 항산화계 효소 활성에 미치는 영향)

  • Lee, Jong-Ryol;Kim, Dong Hun;Lee, Sang-Min
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.4
    • /
    • pp.678-687
    • /
    • 2021
  • Styrene is a commercially important chemical used mainly in the production of raw materials and plastics. To determine the effect of styrene on hepatic activities of antioxidant enzymes, styrene was treated to Sprague-Dawley rats at 50 mg/kg, 200 mg/kg and 400 mg/kg (i.p) twice a day for 4 days. There were determined the significantly increased activities of serum AST (aspartate aminotransferase), ALT (alanine aminotransferse), and the increased content of MDA (malondialdehyde) at the dose of 400 mg/kg compared to the control. The hepatic activities of XO (xanthine oxidase) and CYPdAH (cytochrome P450 dependant aniline oxidase) in the dose of 400 mg/kg compared to the dose of 200 mg/kg were more increased, which means the excessive ROS (reactive oxygen species)s were produced during Phase I. In addition, significantly decreased were rates of the hepatic activities of GPx (glutathione peroxidase), CAT (catalase), SOD (superoxide dismutase) and GST (glutathione S-transferase) at the dose of 400 mg/kg compared to the control. And, the group at the dose of 400 mg/kg showed more significantly decreased GSH (glutathione) level than the group at the dose of 200 mg/kg. The decrease in GSH could ascribe to the toxic metabolites of styrene, such as styrene oxide. In conclusion, these results indicate that the excessive ROSs and the toxic metabolites of styrene may result in the hepatotoxicity, and be related to their imbalanced activities for antioxidant enzymes.

Glutamate attenuates lipopolysaccharide induced intestinal barrier injury by regulating corticotropin-releasing factor pathway in weaned pigs

  • Guo, Junjie;Liang, Tianzeng;Chen, Huifu;Li, Xiangen;Ren, Xiaorui;Wang, Xiuying;Xiao, Kan;Zhao, Jiangchao;Zhu, Huiling;Liu, Yulan
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1235-1249
    • /
    • 2022
  • Objective: The purpose of this study was to evaluate the protection of glutamate (GLU) against the impairment in intestinal barrier function induced by lipopolysaccharide (LPS) stress in weaned pigs. Methods: Twenty-four weaned pigs were divided into four treatments containing: i) non-challenged control, ii) LPS-challenged control, iii) LPS+1.0% GLU, and iv) LPS+2.0% GLU. On day 28, pigs were treated with LPS or saline. Blood samples were collected at 0, 2, and 4 h post-injection. After blood samples collection at 4 h, all pigs were slaughtered, and spleen, mesenteric lymph nodes, liver and intestinal samples were obtained. Results: Dietary GLU supplementation inhibited the LPS-induced oxidative stress in pigs, as demonstrated by reduced malondialdehyde level and increased glutathione level in jejunum. Diets supplemented with GLU enhanced villus height, villus height/crypt depth and claudin-1 expression, attenuated intestinal histology and ultrastructure impairment induced by LPS. Moreover, GLU supplementation reversed intestinal intraepithelial lymphocyte number decrease and mast cell number increase induced by LPS stress. GLU reduced serum cortisol concentration at 4 h after LPS stress and downregulated the mRNA expression of intestinal corticotropin-releasing factor signal (corticotrophin-releasing factor [CRF], CRF receptor 1 [CRFR1], glucocorticoid receptor, tryptase, nerve growth factor, tyrosine kinase receptor A), and prevented mast cell activation. GLU upregulated the mRNA expression of intestinal transforming growth factor β. Conclusion: These findings indicate that GLU attenuates LPS-induced intestinal mucosal barrier injury, which is associated with modulating CRF signaling pathway.

Enhancement of Photosynthetic Characteristics and Antioxidant Enzyme Activities on Chili Pepper Plants by Salicylic Acid Foliar Application under High Temperature and Drought Stress Conditions (고온 및 건조 스트레스 조건 하에서 살리실산 경엽처리에 의한 고추의 광합성 특성 및 항산화효소 활성 증대)

  • Lee, Jinhyoung;Lee, Heeju;Wi, Seunghwan;Lee, Hyejin;Choi, Haksoon;Nam, Chunwoo;Jang, Seonghoe
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.311-318
    • /
    • 2022
  • Salicylic acid (SA), a phenolic compound, plays a pivotal role in regulating a wide range of physiological and metabolic processes in plants such as antioxidant cellular defense, photosynthesis, and biotic and abiotic stress responses during the growth and development. We examined the effect of exogenous SA application (100 mg·L-1) on the growth, yield, photosynthetic characteristics, lipid peroxidation, and antioxidant enzyme activity of chili pepper plants under high temperature and drought stress conditions. SA treatment induced increases of net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) under the stress condition with the highest level after the third treatment. The contents of malondialdehyde and H2O2 were significantly lower in the third treatment of SA compared to the control. The activity of ascorbate peroxidase, catalase, peroxidase and superoxide dismutase, increased in treated plants by up to 247, 318, 55 and 54%, respectively compared to the nontreated control. There was no significant difference in the growth characteristics between SA-treated and nontreated plants, while the SA treatment increased marketable yield (kg/10a) by about 15% compared to the nontreated control. Taken together, these results suggest that foliar application of SA alleviates physiological damages caused by the combination of drought and heat stress, and enhances the photosynthetic capacity and antioxidant enzyme activities, thereby improving tolerance to a combination of water deficit and heat stress in chili pepper plants.

Korean Red Pine (Pinus densiflora) Bark Extract Attenuates Aβ-Induced Cognitive Impairment by Regulating Cholinergic Dysfunction and Neuroinflammation

  • Go, Min Ji;Kim, Jong Min;Kang, Jin Yong;Park, Seon Kyeong;Lee, Chang Jun;Kim, Min Ji;Lee, Hyo Rim;Kim, Tae Yoon;Joo, Seung Gyum;Kim, Dae-Ok;Heo, Ho Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1154-1167
    • /
    • 2022
  • In this study, we investigated the anti-amnesic effect of Korean red pine (Pinus densiflora) bark extract (KRPBE) against amyloid beta1-42 (Aβ1-42)-induced neurotoxicity. We found that treatment with KRPBE improved the behavioral function in Aβ-induced mice, and also boosted the antioxidant system in mice by decreasing malondialdehyde (MDA) content, increasing superoxide dismutase (SOD) activities, and reducing glutathione (GSH) levels. In addition, KRPBE improved the cholinergic system by suppressing reduced acetylcholine (ACh) content while also activating acetylcholinesterase (AChE), regulating the expression of choline acetyltransferase (ChAT), postsynaptic density protein-95 (PSD-95), and synaptophysin. KRPBE also showed an ameliorating effect on cerebral mitochondrial deficit by regulating reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and ATP levels. Moreover, KRPBE modulated the expression levels of neurotoxicity indicators Aβ and phosphorylated tau (p-tau) and inflammatory cytokines TNF-α, p-IκB-α, and IL-1β. Furthermore, we found that KRPBE improved the expression levels of neuronal apoptosis-related markers BAX and BCl-2 and increased the expression levels of BDNF and p-CREB. Therefore, this study suggests that KRPBE treatment has an anti-amnestic effect by modulating cholinergic system dysfunction and neuroinflammation in Aβ1-42-induced cognitive impairment in mice.

Antioxidant Activity of Novel Casein-Derived Peptides with Microbial Proteases as Characterized via Keap1-Nrf2 Pathway in HepG2 Cells

  • Zhao, Xiao;Cui, Ya-Juan;Bai, Sha-Sha;Yang, Zhi-Jie;Cai, Miao;Megrous, Sarah;Aziz, Tariq;Sarwar, Abid;Li, Dong;Yang, Zhen-Nai
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1163-1174
    • /
    • 2021
  • Casein-derived antioxidant peptides by using microbial proteases have gained increasing attention. Combination of two microbial proteases, Protin SD-NY10 and Protease A "Amano" 2SD, was employed to hydrolyze casein to obtain potential antioxidant peptides that were identified by LC-MS/MS, chemically synthesized and characterized in a oxidatively damaged HepG2 cell model. Four peptides, YQLD, FSDIPNPIGSEN, FSDIPNPIGSE, YFYP were found to possess high 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability. Evaluation with HepG2 cells showed that the 4 peptides at low concentrations (< 1.0 mg/ml) protected the cells against oxidative damage. The 4 peptides exhibited different levels of antioxidant activity by stimulating mRNA and protein expression of the antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), as well as nuclear factor erythroid-2-related factor 2 (Nrf2), but decreasing the mRNA expression of Kelch-like ECH-associated protein 1 (Keap1). Furthermore, these peptides decreased production of reactive oxygen species (ROS) and malondialdehyde (MDA), but increased glutathione (GSH) production in HepG2 cells. Therefore, the 4 casein-derived peptides obtained by using microbial proteases exhibited different antioxidant activity by activating the Keap1-Nrf2 signaling pathway, and they could serve as potential antioxidant agents in functional foods or pharmaceutic preparation.

Effect of SAL5 on chronic ethanol-induced fatty liver model (흰쥐에서 SAL5의 알코올성 지방간 형성에 미치는 영향)

  • Kim, Bok-Kyu;Yang, Won-Kyung;Park, Yang-Chun;Jung, Ga-Young;Shin, Eun-Ju;Do, Seon-Gil;Kim, Seung-Hyung
    • The Korea Journal of Herbology
    • /
    • v.33 no.1
    • /
    • pp.17-26
    • /
    • 2018
  • Objective : In this study, we investigated the effect of SAL5(mixing extracts of Schisandra chinensis Baillon, Artemisia capillaris Thunb., and Aloe vera Linne) on chronic ethanol-induced fatty liver model. Methods : Sprague-Dawley male rats were fed Liber-DeCarli (normal), ethanol liquid diet (control), SAL5 (200 mg/kg). We administrated the SAL5 on chronic ethanol-induced fatty liver model for 5 weeks. We measured alkaline phosphtase (ALP), alanine transminase (ALT), aspartate transminase (AST) and ${\gamma}-glutamyl$ transpeptase (${\gamma}-GTP$) in serum and triglyceride (TG), superoxide dismutase (SOD), catalase, glutathione (GSH) and malondialdehyde (MDA) level in liver. Liver histopathology was examined by Hematoxylin-eosin and Oil red O staining of the fixed liver tissues. Real-time PCR was performed to measure the mRNA expression of inflammatory cytokines and MMP-2, MMP-9. Results : SAL5 administration resulted in significantly decreased liver marker enzymes activities of alanine transminase (ALT), ${\gamma}-glutamyl$ transpeptase (${\gamma}-GTP$) in serum and triglyceride (TG) activities in liver. The control group decreased the activities of superoxide dismutase (SOD), catalase (CAT) with the reduced level of glutathione (GSH) in liver. On the other hand, SAL5 group increased the activities of SOD, CAT and the level of GSH. SAL5 delayed the development of an alcoholic fatty liver by reversing fat accumulation in the liver, as evidenced in histological observations. The gene expression of mRNA were significantly decreased at the $IL-1{\beta}$, $TNF-{\alpha}$, NOS-II and MMP-2 by SAL5. Conclusions : These results indicate that SAL5 might have protective effect chronic ethanol-induced fatty liver models.

Antioxidant Effect of Atractylodes macrocephala Koidzumi in DSS-induced Ulcerative Colitis Model (백출(白朮)의 항산화 효과가 DSS 유발 궤양성 대장염 모델에 미치는 영향)

  • Park, Seok Man;Lee, Se Hui;Jeong, Da un;Cho, Su-Jung;Shin, Mi-Rae;Park, Hae-Jin;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.37 no.1
    • /
    • pp.19-29
    • /
    • 2022
  • Objectives : Although the pharmacological effects of anti-inflammatory and antioxidant action of Atractylodes macrocephala Koidzumi water extract (AM) have been proven from many studies, reports on the antioxidant effect of AM on ulcerative colitis (UC) are scarce. Therefore, we aimed at evaluating the anti-oxidant effect of AM on the DSS-induced UC model. Methods : To induce ulcerative colitis, 8-week-old male Balb/c mice received 5% DSS in drinking water for 1 week. After 1 week of adaptation, mice were divided into four groups (n=8 each) for use as normal (Normal), DSS Control (Control), DSS + AM 100 mg/kg (AM100)-treatment, DSS + AM 200 mg/kg (AM200)-treatment. After 1 week of the experiment, the animals were sacrificed, and the extracted colon tissue was analyzed for protein through western blot. Results : As a result of confirming the macroscopic changes in colon tissues to confirm the therapeutic effects of AM, the decrease in colon length was suppressed in the AM treatment group compared to the control group. In addition, as a result of biochemical analysis, AM administration significantly reduced serum glutamic oxalacetic transaminase, glutamic pyruvate transaminase levels and tissue malondialdehyde levels. As a result of confirming the protein expression level through western blot, AM administration significantly decreased the expression of NADPH-related proteins such as NOX2, p22phox, and iNOS, but significantly increased the expression of SOD, catalase, and GPx-1/2. Conclusions : AM may improve DSS-induced UC in mice by modulating NADPH and antioxidant-related proteins. In conclusion, AM showed an antioxidant effect through the improvement of oxidative stress on UC.

Epigallocatechin-3-gallate suppresses hemin-aggravated colon carcinogenesis through Nrf2-inhibited mitochondrial reactive oxygen species accumulation

  • Seok, Ju Hyung;Kim, Dae Hyun;Kim, Hye Jih;Jo, Hang Hyo;Kim, Eun Young;Jeong, Jae-Hwang;Park, Young Seok;Lee, Sang Hun;Kim, Dae Joong;Nam, Sang Yoon;Lee, Beom Jun;Lee, Hyun Jik
    • Journal of Veterinary Science
    • /
    • v.23 no.5
    • /
    • pp.74.1-74.16
    • /
    • 2022
  • Background: Previous studies have presented evidence to support the significant association between red meat intake and colon cancer, suggesting that heme iron plays a key role in colon carcinogenesis. Epigallocatechin-3-gallate (EGCG), the major constituent of green tea, exhibits anti-oxidative and anti-cancer effects. However, the effect of EGCG on red meat-associated colon carcinogenesis is not well understood. Objectives: We aimed to investigate the regulatory effects of hemin and EGCG on colon carcinogenesis and the underlying mechanism of action. Methods: Hemin and EGCG were treated in Caco2 cells to perform the water-soluble tetrazolium salt-1 assay, lactate dehydrogenase release assay, reactive oxygen species (ROS) detection assay, real-time quantitative polymerase chain reaction and western blot. We investigated the regulatory effects of hemin and EGCG on an azoxymethane (AOM) and dextran sodium sulfate (DSS)-induced colon carcinogenesis mouse model. Results: In Caco2 cells, hemin increased cell proliferation and the expression of cell cycle regulatory proteins, and ROS levels. EGCG suppressed hemin-induced cell proliferation and cell cycle regulatory protein expression as well as mitochondrial ROS accumulation. Hemin increased nuclear factor erythroid-2-related factor 2 (Nrf2) expression, but decreased Keap1 expression. EGCG enhanced hemin-induced Nrf2 and antioxidant gene expression. Nrf2 inhibitor reversed EGCG reduced cell proliferation and cell cycle regulatory protein expression. In AOM/DSS mice, hemin treatment induced hyperplastic changes in colon tissues, inhibited by EGCG supplementation. EGCG reduced the hemin-induced numbers of total aberrant crypts and malondialdehyde concentration in the AOM/DSS model. Conclusions: We demonstrated that EGCG reduced hemin-induced proliferation and colon carcinogenesis through Nrf2-inhibited mitochondrial ROS accumulation.

Anti-inflammatory effect of Uncariae Ramulus et Uncus on alcohol-induced gastritis (알코올성 위염에 대한 조구등(釣鉤藤)의 항염증 효과)

  • Lee, Jin A;Lee, Tae Jong;Kim, Jin Young;Shin, Mi-Rae;Park, Hae-Jin;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.37 no.5
    • /
    • pp.63-74
    • /
    • 2022
  • Objective : Gastritis refers to an inflammatory disease of the gastric mucosa. Alcohol is one of the main aggression factors, causing bleeding and inflammation in the gastric mucosa and it is known to not only increase lipid peroxide levels, but also deplete key antioxidant factors. The purpose of this study was to determine the effect of Uncariae Ramulus et Uncus water extract (URW) in alcohol-induced gastritis. Methods : The total polyphenol and flavonoid contents of URW were confirmed through an in vitro experiment. Also, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity and ferric reducing antioxidant power (FRAP) activity were confirmed. For in vivo experiments, mice were divided into 4 groups (n=8). Also, 1 hr after oral administration of each drug, 50% ethanol was orally administered to induce gastritis. Results : As a result of in vitro experiments, URW showed excellent antioxidant activity. In alcohol-induced gastritis, URW alleviated the damage to the gastric mucosa caused by alcohol. Also, URW decreased reactive oxygen species (ROS) and malondialdehyde (MDA) levels in serum and gastric tissues, and significantly decreased the expression of NADPH oxidases in gastric tissues. In addition, it significantly modulated the nuclear factor erythroid-derived 2-related factor 2 (Nrf2) and nuclear factor-𝜅B p65 (NF-𝜅B) pathways as well as significantly increased the expression of anti-inflammatory proteins. Conclusions : These results suggest that URW not only reduces oxidative stress through excellent antioxidant activity but also relieves gastric mucosal inflammation as a regulator of Nrf2 and NF-𝜅B pathways.