Browse > Article
http://dx.doi.org/10.12791/KSBEC.2022.31.4.311

Enhancement of Photosynthetic Characteristics and Antioxidant Enzyme Activities on Chili Pepper Plants by Salicylic Acid Foliar Application under High Temperature and Drought Stress Conditions  

Lee, Jinhyoung (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA)
Lee, Heeju (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA)
Wi, Seunghwan (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA)
Lee, Hyejin (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA)
Choi, Haksoon (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA)
Nam, Chunwoo (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA)
Jang, Seonghoe (World Vegetable Center Korea Office (WKO))
Publication Information
Journal of Bio-Environment Control / v.31, no.4, 2022 , pp. 311-318 More about this Journal
Abstract
Salicylic acid (SA), a phenolic compound, plays a pivotal role in regulating a wide range of physiological and metabolic processes in plants such as antioxidant cellular defense, photosynthesis, and biotic and abiotic stress responses during the growth and development. We examined the effect of exogenous SA application (100 mg·L-1) on the growth, yield, photosynthetic characteristics, lipid peroxidation, and antioxidant enzyme activity of chili pepper plants under high temperature and drought stress conditions. SA treatment induced increases of net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) under the stress condition with the highest level after the third treatment. The contents of malondialdehyde and H2O2 were significantly lower in the third treatment of SA compared to the control. The activity of ascorbate peroxidase, catalase, peroxidase and superoxide dismutase, increased in treated plants by up to 247, 318, 55 and 54%, respectively compared to the nontreated control. There was no significant difference in the growth characteristics between SA-treated and nontreated plants, while the SA treatment increased marketable yield (kg/10a) by about 15% compared to the nontreated control. Taken together, these results suggest that foliar application of SA alleviates physiological damages caused by the combination of drought and heat stress, and enhances the photosynthetic capacity and antioxidant enzyme activities, thereby improving tolerance to a combination of water deficit and heat stress in chili pepper plants.
Keywords
antioxidant enzyme; drought; high temperature; photosynthesis; salicylic acid;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Chomkitichai W., A. Chumyam, P. Rachtanapun, J. Uthaibutra, and K. Saengnil 2014, Reduction of reactive oxygen species production and membrane damage during storage of 'Daw' longan fruit by chlorine dioxide. Sci Hortic 170:143-149. doi:10.1016/j.scienta.2014.02.036   DOI
2 Wang L., L. Fan, W. Loescher, W. Duan, G. Liu, J. Cheng, H. Luo, and S. Li 2010, Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol 10:34. doi:10.1186/1471-2229-10-34   DOI
3 Zhou R., X. Yu, C.O. Ottosen, E. Rosenqvist, L. Zhao, Y. Wang, W. Yu, T. Zhao, and Z. Wu 2017, Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol 17:24. doi:10. 1186/s12870-017-0974-x   DOI
4 Kaya C. 2021, Nitrate reductase is required for salicylic acid-induced water stress tolerance of pepper by upraising the AsA-GSH pathway and glyoxalase system. Physiol Plant 172:351-370. doi:doi:10.1111/ppl.13153   DOI
5 Demidchik V. 2015, Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212-228. doi:10.1016/j.envexpbot.2014.06.021   DOI
6 Dobon-Suarez A., M.J. Gimenez, M.E. Garcia-Pastor, and P.J. Zapata 2021, Salicylic acid foliar application increases crop yield and quality parameters of green pepper fruit during postharvest storage. Agronomy 11:2263. doi:10.3390/agronomy11112263   DOI
7 Fayez K.A., and S.A. Bazaid 2014, Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J Saudi Soc Agric Sci 13:45-55. doi:10.1016/j.jssas.2013.01.001   DOI
8 Jahan M.S., W.G. Yu, S. Sheng, Z.G. Min, C.N. Zheng, W. Jianqiang, S.N. Jin, and S.G. Suna 2019, Exogenous salicylic acid increases the heat tolerance in tomato (Solanum lycopersicum L.) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species. Sci Hortic 247:421-429. doi:10.1016/j.scienta.2018.12.047   DOI
9 Kawano T., and F. Bouteau 2013, Crosstalk between intracellular and extracellular salicylic acid signaling events leading to long-distance spread of signals. Plant Cell Rep 32:1125-1138. doi:10.1007/s00299-013-1451-0   DOI
10 Khodary S. 2004, Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. Int J Agric Biol 6:5-8.
11 Aires E.S., A.K.L. Ferraz, B.L. Carvalho, F.P. Teixeira, F.F. Putti, E.P. Souza, J.D. Rodrigues, and E.O. Ono 2022, Foliar application of salicylic acid to mitigate water stress in tomato. Plants 22:1771. doi:10.3390/plants11131775   DOI
12 Song E.Y., K.H. Moon, I.C. Son, C.H. Kim, C.K. Lim, D. Son, and S.J. Oh 2014, Impact of elevated temperature in growing season on growth and fruit quality of pepper (Capsicum annuum L.). Korean J Agric For Meteorol 16:349-358. (in Korean) doi:10.5532/KJAFM.2014.16.4.349   DOI
13 Xie Z., Y. Chu, W. Zhang, D. Lang, and X. Zhang 2019, Bacillus pumilus alleviates drought stress and increases metabolite accumulation in Glycyrrhiza uralensis Fisch. Environ Exp Bot 158:99-106. doi:10.1016/j.envexpbot.2018.11.021   DOI
14 Zhang Z., M. Lan, X. Han, J.H. Wu, and W.P. Gefu 2020, Response of ornamental pepper to high-temperature stress and role of exogenous salicylic acid in mitigating high temperature. J Plant Growth Reg 39:133-146. doi:10.1007/s00344-019-09969-y   DOI
15 Lobato A.K.S., M.A.M. Barbosa, A.A. Alsahli, E.J.A. Lima, and B.R.S. Silva1 2021, Exogenous salicylic acid alleviates the negative impacts on production components, biomass and gas exchange in tomato plants under water deficit improving redox status and anatomical responses. Physiol Plant 172:869-884. doi:10.1111/ppl.13329   DOI
16 Manaa A., E. Gharbi, H. Mimouni, S. Wasti, S. Aschi-Smiti, S. Lutts, and H.B. Ahmed 2014, Simultaneous application of salicylic acid and calcium improves salt tolerance in two contrasting tomato (Solanum lycopersicum) cultivars. S Afr J Bot 95:32-39. doi:10.1016/j.sajb.2014.07.015   DOI
17 Abayomi Y.A., M.O. Aduloju, M.A. Egbewunmi, and B.O. Seleiman 2012, Effects of soil moisture contents and rates of NPK fertilizer application on growth and fruit yields of pepper (Capsicum spp.) genotypes. Int J Agric Sci 2:651-663.
18 Arfan M., H.R. Athar, and M. Ashraf 2007, Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress?. J Plant Physiol 164:685-694. doi:10.1016/j.jplph.2006.05.010   DOI
19 Bannister J.V., W.H. Bannister, and G. Rotilio 1987, Aspects of the structure, function, and applications of superoxide dismutase. Crit Rev Biochem Mol Biol 22:111-180. doi:10.3109/10409238709083738   DOI
20 Bradford M.M. 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254. doi:10.1016/0003-2697(76)90527-3   DOI
21 Baxter A., R. Mittler, and N. Suzuki 2014, ROS as key players in plant stress signalling. J Exp Bot 65:1229-1240. doi:10.1093/jxb/ert375   DOI
22 Bahram B. 2010, Induction of drought tolerance by salicylic acid in seedlings of cucumber (Cucumis sativus L.). J Hortic Sci Biotechnol 85:191-196. doi:10.1080/14620316.2010.11512653   DOI
23 Widuri L.L., B. Lakitan, J. Sakagami, S. Yabuta, K. Kartika, and E. Siaga 2020, Short-term drought exposure decelerated growth and photosynthetic activities in chili pepper (Capsicum annuum L.). Ann Agric Sci 65:149-158. doi:10.1016/j.aoas.2020.09.002   DOI
24 Lee S.G., C.S. Choi, J.G. Lee, Y.A. Jang, H.J. Lee, W.B. Chae, and K.R. Do 2014, Influence of shading and irrigation on the growth and development of leaves tissue in hot pepper. Hortic Sci Technol 32:448-453. (in Korean) doi:10.7235/hort.2014.14015   DOI
25 Lee S.G., H.J. Lee, S.K. Kim, B.H. Mun, J.H. Lee, H. S. Lee, and K.R. Do 2018, Influence of drought and high temperature on the physiological response and yield in hot pepper. J Environ Sci Int 27:251-259. (in Korean) doi:10.5322/JESI.2018.27.4.251   DOI
26 Lee S.G., S.K. Kim, H.J. Lee, H.S. Lee, and J.H. Lee 2017, Impact of moderate and extreme climate change scenarios on growth, morphological features, photosynthesis, and fruit production of hot pepper. Ecol Evol 8:197-206. doi:10.1002/ece3.3647   DOI
27 Rural Development Administration (RDA) 2016, The technique of pepper cultivation (Text of standard agriculture). RDA, Jeonju, Korea.
28 Shao G.C., R.Q. Guo, N. Liu, S.E. Yu, and W.G. Xing 2011, Photosynthetic, chlorophyll fluorescence and growth changes in hot pepper under deficit irrigation and partial root zone drying. Afr J Agric Res 6:4671-4679. doi:10.5879/AJAR11.812   DOI
29 Chandrakar V., A. Dubey, and S. Keshavkant 2016, Modulation of antioxidant enzymes by salicylic acid in arsenic exposed Glycine max L. J Soil Sci Plant Nutr 16:662-676. doi:10.4067/S0718-95162016005000048   DOI
30 Song E.Y., K.H. Moon, I.C. Son, S.H. Wi, C.H. Kim, C.K. Lim, and S.J. Oh 2016, Impact of elevated temperature and CO2 on growth and fruit quality of pepper (Capsicum annuum L.). Korean J Agric For Meteorol 18:179-187. (in Korean) doi:10.5532/KJAFM.2016.18.4.179   DOI
31 Mardani H., H. Bayat, A.H. Saeidnejad, and E.E. Rezaie 2012, Assessment of salicylic acid impacts on seedling characteristic of cucumber (Cucumis sativus L.) under water stress. Not Sci Biol 4:112-115. doi:10.15835/nsb.4.1.7258   DOI
32 Mittler R., and E. Blumwald 2010, Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443-462. doi:10.1146/annurev-arplant-042809-112116   DOI
33 Otalora G., M.C. Pinero, J.C. Collado-Gonzalez, J. Lopez-Marin, and F.M.D.A. Amor 2020, Exogenous salicylic acid modulates the response to combined salinity-temperature stress in pepper plants (Capsicum annuum L. var. Tamarin). Plants 9:1790. doi:10.3390/plants9121790   DOI
34 Ou J.L., X.Z. Dai, Z.Q. Zhang, and X.X. Zou 2011, Responses of pepper to waterlogging stress. Photosynthetica 49:339-345. doi:10.1007/s11099-011-0043-x   DOI
35 Elwan M.W.M., and M.A.M. El-Hamahmy 2009, Improved productivity and quality associated with salicylic acid application in greenhouse pepper. Sci Hortic 122:521-526. doi:10.1016/j.scienta.2009.07.001   DOI
36 KOSTAT (Statistics Korea) 2021, Crop production statistics. Availabe via http://www.kosis.kr. Accessed 30 November 2021
37 Dhindsa R.S., P. Plumb-Dhindsa, and T.A. Thorpe 1981, Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93-101. doi:10.1093/jxb/32.1.93   DOI
38 Hwang J.M., and G.S. Tae 2001, Changes in the growth of red pepper (Capsicum annuum L.) and soil moisture according to irrigation and cultivating methods. Hortic Environ Biotechnol 42:295-299. (in Korean)
39 Kang K.S., C.J. Lim, T.J. Han, J.C. Kim, and C.D. Jin 1998, Activation of ascorbate-glutathione cycle in Arabidopsis leaves in responses to aminotriazol. J Plant Biol 41:155-161. doi:10.1007/BF03030248   DOI
40 Khanna P., K. Kaur, and A.K. Gupta 2016, Salicylic acid induces differential antioxidant response in spring maize under high temperature stress. Indian J Exp Biol 54:386-393.
41 Lee J.H., H.J. Lee, S.H. Wi, I.H. Yu, K.H. Yeo, S.W. An, Y.A. Jang, and S.H. Jang 2021, Enhancement of growth and antioxidant enzyme activities on Kimchi cabbage by melatonin foliar application under high temperature and drought stress conditions. Hortic Sci Technol 39:583-592. (in Korean) doi:10.7235/HORT.20210052   DOI
42 El-Hady N.A.A.A., A.I. SlSayed, S.S. El-saadany, P.A. Deligios, and L. Ledda 2021, Exogenous application of foliar salicylic acid and propolis enhances antioxidant defenses and growth parameters in tomato plants. Plants 10:74. doi:10.3390/plants10010074   DOI
43 Rajametov S.N., E.Y. Yang, M.C. Cho, S.Y. Chae, H.B. Jeong and W.B. Chae 2021, Heat?tolerant hot pepper exhibits constant photosynthesis via increased transpiration rate, high proline content and fast recovery in heat stress condition. Sci Rep 11:14328. doi:10.1038/s41598-021-93697-5   DOI
44 Pagamas P., and E. Nawata 2008, Sensitive stages of fruit and seed development of chili pepper (Capsicum annum L. var. Shishito) exposed to high-temperature stress. Sci Hortic 117:21-25. doi:10.1016/j.scienta.2008.03.017   DOI
45 Parashar A., M. Yusuf, Q. Fariduddin, and A. Ahmad 2014, Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese. Int J Biol Macromol 70:551-558. doi:10.1016/j.ijbiomac.2014.07.014   DOI