Browse > Article
http://dx.doi.org/10.4014/jmb.2104.04013

Antioxidant Activity of Novel Casein-Derived Peptides with Microbial Proteases as Characterized via Keap1-Nrf2 Pathway in HepG2 Cells  

Zhao, Xiao (Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University)
Cui, Ya-Juan (Beijing Institute of Nutrition Resources)
Bai, Sha-Sha (Beijing Institute of Nutrition Resources)
Yang, Zhi-Jie (Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University)
Cai, Miao (Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University)
Megrous, Sarah (Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University)
Aziz, Tariq (Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University)
Sarwar, Abid (Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University)
Li, Dong (Beijing Institute of Nutrition Resources)
Yang, Zhen-Nai (Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.8, 2021 , pp. 1163-1174 More about this Journal
Abstract
Casein-derived antioxidant peptides by using microbial proteases have gained increasing attention. Combination of two microbial proteases, Protin SD-NY10 and Protease A "Amano" 2SD, was employed to hydrolyze casein to obtain potential antioxidant peptides that were identified by LC-MS/MS, chemically synthesized and characterized in a oxidatively damaged HepG2 cell model. Four peptides, YQLD, FSDIPNPIGSEN, FSDIPNPIGSE, YFYP were found to possess high 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability. Evaluation with HepG2 cells showed that the 4 peptides at low concentrations (< 1.0 mg/ml) protected the cells against oxidative damage. The 4 peptides exhibited different levels of antioxidant activity by stimulating mRNA and protein expression of the antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), as well as nuclear factor erythroid-2-related factor 2 (Nrf2), but decreasing the mRNA expression of Kelch-like ECH-associated protein 1 (Keap1). Furthermore, these peptides decreased production of reactive oxygen species (ROS) and malondialdehyde (MDA), but increased glutathione (GSH) production in HepG2 cells. Therefore, the 4 casein-derived peptides obtained by using microbial proteases exhibited different antioxidant activity by activating the Keap1-Nrf2 signaling pathway, and they could serve as potential antioxidant agents in functional foods or pharmaceutic preparation.
Keywords
Microbial protease; casein hydrolysate; antioxidant peptide; Keap1-Nrf2 pathway; HepG2 cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhang DD. 2006. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab. Rev. 38: 769-789.   DOI
2 Ahmed BS, Zhiyong H, Mahmoud AEA, Maomao Z, Shuang Z, Fang Q, et al. 2017. Fractionation and identification of novel antioxidant peptides from buffalo and bovine casein hydrolysates. Food Chem. 232: 753-762.   DOI
3 Nielsen PM, Petersen D, Dambmann C. 2001. Improved method for determining food protein degree of hydrolysis. J. Food Sci. 5: 642-646.   DOI
4 Abd EM, El-Shibiny S. 2017. Preparation, properties, and uses of enzymatic milk protein hydrolysates. Crit. Rev. Food Sci. Nutr. 57: 1119-1132.   DOI
5 Silva SV, Malcata FX. 2005. Caseins as source of bioactive peptides. Int. Dairy J. 15: 1-15.   DOI
6 Ledesma-Martinez E, Weiss-Steider B, Rivera-Martinez AR, Santiago-Osorio E. 2019. Casein and peptides derived from casein as antileukaemic agents. J. Oncol. 2019: 8150967.
7 Tunick MH, Ren DX, Van Hekken DL, Bonnaillie L, Paul M, Kwoczak R, et al. 2016. Effect of heat and homogenization on in vitro digestion of milk. J. Dairy Sci. 99: 4124-4139.   DOI
8 Egusa SA, Nishimura T. 2013. Antioxidative properties of peptides obtained from porcine myofibrillar proteins by a protease treatment in an Fe (II)-induced aqueous lipid peroxidation system. Biosci. Biotechnol. Biochem. 77: 2201-2204.   DOI
9 Medzhitov R. 2008. Origin and physiological roles of inflammation. Nature 454: 428-435.   DOI
10 Harvey CJ, Thimmulappa RK, Sing A, Blake DJ, Ling G, Wakabayashi N, et al. 2016. Protective effects of maillard reaction products of whey protein concentrate against oxidative stress through an Nrf2-dependent pathway in HepG2 cells. Biol. Pharm. Bull. 39: 1437-1447.   DOI
11 Zhang H, Wang J, Liu Y, Gong L, Sun B. 2016. Wheat bran feruloyl oligosaccharides ameliorate AAPH-induced oxidative stress in HepG2 cells via Nrf2 signalling. J. Funct. Foods 25: 333-340.   DOI
12 Dickinson DA, Forman HJ. 2002. Cellular glutathione and thiols metabolism. Biochem. Pharmacol. 64: 1019-1026.   DOI
13 Saerom K, Hye-Ryung C, Yoon-Jeong K, Yoon-Sik L, Kyoung-Chan P, Seon-Yeong K. 2020. Milk protein-derived antioxidant tetrapeptides as potential hypopigmenting agents. Antioxidants (Basel) 9: 1106.   DOI
14 De Gobba C, Tompa G, Otte J. 2014. Bioactive peptides from caseins released by cold active proteolytic enzymes from Arsukibacterium ikkense. Food Chem.165: 205-215.   DOI
15 Mada SB, Reddi S, Kumar N, Vij R, Yadav R, Kapila S, et al. 2018. Casein-derived antioxidative peptide prevents oxidative stress-induced dysfunction in osteoblast cells. Pharm. Nutr. 6: 169-179.
16 Kim S, Je J, Kim S. 2007. Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. J. Nutr. Biochem. 18: 31-38.   DOI
17 Federica T, Federico F, Laura M, Alessandra F, Valeria S, Alessandro G, et al. 2020. Identification of new peptides from fermented milk showing antioxidant properties: mechanism of action. Antioxidants (Basel) 9: 117.   DOI
18 Ganapathy V, Brandsch M, Leibach FH. 1994. Intestinal transport of amino acids and peptides. In Johnson LR (ed.), pp.1773. Physiology of the gastrintestinal tract, V01. 52[c]. Raven Press, New York.
19 Rioux LE, Karakaya S, Recio I, Picariello G, Portmann R, Alvito P, et al. 2016. The harmonized INFOGEST in vitro digestion method: from knowledge to action. Food Res. Int. 88: 217-225.   DOI
20 Shanmugam VP, Kapila S, Kemgang TS, Kapila R. 2015. Antioxidative peptide derived from enzymatic digestion of buffalo casein. Int. Dairy J. 42: 1-5.   DOI
21 Youssef AA, Hamin N, Jose CR, Hamilton C. 2019. Peptides with antioxidant properties identified from casein, whey, and egg albumin hydrolysates generated by two novel fungal proteases. Prep. Biochem. Biotechnol. 49: 639-648.   DOI
22 Tong XH, Lian ZT, Miao LM, Qi BK, Zhang LY, Wang H, et al. 2020. An innovative two-step enzyme-assisted aqueous extraction for the production of reduced bitterness soybean protein hydrolysates with high nutritional value. LWT-Food Sci. Technol. 134: 110151.   DOI
23 Shivanna K, Nataraj BH. 2020. Revisiting therapeutic and toxicological fingerprints of milk-derived bioactive peptides: an overview. Food Biosci. 38: 100771.   DOI
24 Kristinsson HG, Rasco BA. 2000. Kinetics of the hydrolysis of Atlantic salmon (Salmo salar) muscle proteins by alkaline proteases and a visceral serine protease mixture. Process Biochem. 36: 131-139.   DOI
25 Tomatsu M, Shimakage A, Shinbo M, Yamada S, Takahashi S. 2013. Novel angiotensin I-converting enzyme inhibitory peptides derived from soya milk. Food Chem. 136: 612-616.   DOI
26 Lawrence MT, Shigefumi S, Julian DMC, Decker EA. 2000. Mechanisms of the antioxidant activity of a high molecular weight fraction of whey. J. Agric. Food Chem. 48: 1473-1478.   DOI
27 Paolella S, Falavigna C, Faccini A, Virgili R, Sforza S, Dall'Asta C, et al. 2015. Effect of dry-cured ham maturation time on simulated gastrointestinal digestion: characterization of the released peptide fraction. Food Res. Int. 67: 136-144.   DOI
28 Devendra K, Manish KC, Raghvendar S, Nitin M, Pavan K. 2015. Enzymatic hydrolysis of camel milk casein and its antioxidant properties. Dairy Sci. Technol. 96: 391-404.
29 Rossini K, Norena CPZ, Cladera-Olivera F, Brandelli A. 2009. Casein peptides with inhibitory activity on lipid oxidation in beef homogenates and mechanically deboned poultry meat. LWT Food Sci. Technol. 42: 862-867.   DOI
30 Martina BO, Richard JF. 2015. Identifification of short peptide sequences in complex milk protein hydrolysates. Food Chem. 184: 140-146.   DOI
31 Shahidi F, Zhong Y. 2010. Novel antioxidants in food quality preservation and health promotion. Eur. J. Lipid Sci. Technol. 9: 930-940.   DOI
32 Rival SG, Fornaroli S, Boeriu CG, Wichers HJ. 2001. Caseins and casein hydrolysates. 1. Lipoxygenase inhibitory properties. J. Agric. Food Chem. 49: 287-294.   DOI
33 Mizuno S, Nishimura S, Matsuura K, Gotou T, Yamamoto N. 2004. Release of short and proline-rich antihypertensive peptides from casein hydrolysate with an Aspergillus oryzae protease. J. Dairy Sci. 87: 3183-3188.   DOI
34 Wu JH, Sun BG, Luo XL, Zhao MM, Zheng FP, Sun JY, 2018. Cytoprotective effects of a tripeptide from Chinese Baijiu against AAPH-induced oxidative stress in HepG2 cells via Nrf2 signaling. RSC Adv. 8: 10898-10906.   DOI
35 Naveen K, Savita D, Sanusi BM, Srinu R, Rajeev K, Suman K. 2020. Anti-apoptotic effect of buffalo milk casein derived bioactive peptide by directing Nrf2 regulation in starving fibroblasts. Food Biosci. 35: 100566.   DOI
36 Devi Savita, Kumar N, Kapila S, Mada SB, Reddi S, Vij R, et al. 2017. Buffalo casein derived peptide can alleviates H2O2 induced cellular damage and necrosis in fibroblast cells. Exp. Toxicol. Pathol. 69: 485-495.   DOI
37 Yi GF, Jalal UD, Zhao F, Liu XQ. 2020. Effect of soybean peptides against hydrogen peroxide induced oxidative stress in HepG2 cells via Nrf2 signaling. Food Funct. 11: 2725-2737.   DOI
38 Tonolo F, Folda A, Cesaro L, Scalcon V, Marin O, Ferro S, et al. 2020. Milk-derived bioactive peptides exhibit antioxidant activity through the Keap1-Nrf2 signaling pathway. J. Funct. Foods 64: 103696.   DOI
39 Zhang HC, Ma KX, Yang YJ, Shi CY, Chen GW, Liu DZ. 2018. Molecular cloning, characterization, expression and enzyme activity of catalase from planarian Dugesia japonica in response to environmental pollutants. Ecotoxicol. Environ. Saf. 165: 88-95.   DOI
40 Khalili J, Biloklytska HF. 2008. Salivary malondialdehyde levels in clinically healthy and periodontal diseased individuals. Oral Dis. 14: 754-760.   DOI
41 Wang CY, Zheng L, Su GW, Zen XA, Sun BG, Zhao MM. 2020. Evaluation and exploration of potentially bioactive peptides in casein hydrolysates against liver oxidative damage in STZ/HFD induced diabetic rats. J. Agric. Food Chem. 68: 2393-2405.   DOI
42 Tkachev VO, Menshchikova EB, Zenkov NK. 2011. Mechanism of the Nrf2/Keap1/ARE signaling system. Biochemistry 76: 407-422.   DOI
43 Minerva RG, Mi-Kyoung K, Patrick MD, Ken I. Masayuki Y, Paul T. Thomas WK. 2001. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc. Natl. Acad. Sci. USA 98: 3410-3415.   DOI
44 Zhang L, Zhang X, Liu CH, Li CY, Li SY, Li TZ, et al. 2013. Manufacture of Cheddar cheese using probiotic Lactobacillus plantarum K25 and its cholesterol-lowering effects in a mice model. World J. Microbiol. Biotechnol. 29: 127-135.   DOI
45 Efthalia K, Dimitrios S, Aggeliki T, Dimitrios K. 2016. Increase in antioxidant activity by sheep/goat whey protein through nuclear factor-like 2 (Nrf2) is cell type dependent. Food Chem. Toxicol. 97: 47-56.   DOI
46 Mariana D, Eric AD. 2005. Antioxidant mechanisms of caseinophosphopeptides and casein hydrolysates and their application in ground beef. J. Agric. Food Chem. 52: 8208-8213.   DOI
47 Nguyen T, Sherratt PJ, Pickett CB. 2003. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu. Rev. Pharmacol. Toxicol. 43: 233-260.   DOI
48 Malgorzata UA, Edmund N, Joanna L. 2001. Increased plasma glutathione peroxidase activity in patients with acute myocardial infarction. Med. Sci. Monit. 7: 415-420.
49 Fu Y, Bak KH, Liu J, De Gobba C, Tostesen M, Hansen ET, et al. 2019. Protein hydrolysates of porcine hemoglobin and blood: peptide characteristics in relation to taste attributes and formation of volatile compounds. Food Res. Int. 121: 28-38.   DOI
50 Harvey CJ, Thimmulappa RK, Singh A, Blake DJ, Ling G, Wakabayashi N, et al. 2009. Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic. Biol. Med. 46: 443-453.   DOI
51 O'Keeffe M, FitzGerald R. 2015. Identification of short peptide sequences in complex milk protein hydrolysates. Food Chem. 184: 140-146.   DOI
52 Irshad I, Kanekanian A, Peters A, Masud T. 2015. Antioxidant activity of bioactive peptides derived from bovine casein hydrolysate fractions. J. Food Sci. Technol. 52: 231-239.   DOI
53 Sadat L, Cakir-Kiefer C, N'Negue MA, Gaillard JL, Miclo L. 2011. Isolation and identification of anti-oxidative peptides peptides from bovine α-lactallbumin. Int. Dairy J. 21: 214-221.   DOI
54 Li Z, Jiang A, Yue T, Wang J, Wang Y, Su J. 2013. Purification and identification of five novel antioxidant peptides from goat milk casein hydrolysates. J. Dairy Sci. 96: 4242-4251.   DOI
55 Phelan M, Aherne A, FitzGerald RJ, O'Brien NM. 2009. Casein-derived bioactive peptides: Biological effects, industrial uses, safety aspects and regulatory status. Int. Dairy J. 19: 643-654.   DOI