Acknowledgement
This research was financially supported by the projects of Wuhan Science and Technology Bureau (No. 201802040101 1304), the Project of Natural Science Foundation of Hubei Province (No. 2019CFB831), the open Project of Hubei Key Laboratory of Animal Nutrition and Feed Science (No. 201901), the National Natural Science Foundation of China (No. 31772615), and the Project of Innovative Research Groups of the Natural Science Foundation of Hubei Province (No. 2019CFA015).
References
- Otani S, Coopersmith CM. Gut integrity in critical illness. J Intensive Care 2019;7:17. https://doi.org/10.1186/s40560-019-0372-6
- Vanuytsel T, van Wanrooy S, Vanheel H, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 2014;63:1293-9. https://doi.org/10.1136/gutjnl-2013-305690
- Galesi FL, Ayanwuyi LO, Mijares MG, et al. Role of Hypothalamic-Pituitary-Adrenal axis and corticotropin-releasing factor stress system on cue-induced relapse to alcohol seeking. Eur J Pharmacol 2016;788:84-9. https://doi.org/10.1016/j.ejphar.2016.06.020
- Neurath MF. New targets for mucosal healing and therapy in inflammatory bowel diseases. Mucosal Immunol 2014;7:6-19. https://doi.org/10.1038/mi.2013.73
- Tinoco-Veras CM, Santos AAQA, Stipursky J, et al. Transforming growth factor β1/SMAD signaling pathway activation protects the intestinal epithelium from clostridium difficile toxin-A-induced damage. Infect Immun 2017;85:e00430-17. https://doi.org/10.1128/IAI.00430-17
- Song HP, Hou XQ, Li RY, et al. Atractylenolide I stimulates intestinal epithelial repair through polyamine-mediated Ca2+ signaling pathway. Phytomedicine 2017;28:27-35. https://doi.org/10.1016/j.phymed.2017.03.001
- Lan A, Blachier F, Benamouzig R, et al. Mucosal healing in inflammatory bowel diseases: is there a place for nutritional supplementation? Inflamm Bowel Dis 2015;21:198-207. https://doi.org/10.1097/MIB.0000000000000177
- Schunemann DP, Grivicivh I, Regner A, et al. Glutamate promotes cell growth by EGFR signaling on U-87MG human glioblastoma cell line. Pathol Oncol Res 2010;16:285-93. https://doi.org/10.1007/s12253-009-9223-4
- Blachier F, Boutry C, Bos C, Tome D. Metabolism and functions of L-glutamate in the epithelial cells of the small and large intestines. Am J ClinNutr 2009;90:814S-21S. https://doi.org/10.3945/ajcn.2009.27462S
- Wu G. Functional amino acids in growth, reproduction and health. Adv Nutr 2010;1:31-7. https://doi.org/10.3945/an.110.1008
- Soszynski D. The inhibition of nitric oxide synthase suppresses LPS- and psychological-stress-induced fever in rats. Physiol Behav 2001;72:65-72. https://doi.org/10.1016/s0031-9384(00)00375-9
- Guilloteau P, Zabielski R, Hammon HM, Metges CC. Nutritional programming of gastrointestinal tract development. Is the pig a good model for man? Nutr Res Rev 2010;23:4-22. https://doi.org/10.1017/S0954422410000077
- Kang P, Wang X, Wu H, et al. Glutamate alleviates muscle protein loss by modulating TLR4, NODs, Akt/FOXO and mTOR signaling pathways in LPS-challenged piglets. PLoS ONE 2017;12:e0182246. https://doi.org/10.1371/journal.pone.0182246
- Yang RK, Han XN, Uchiyama T, et al. IL-6 is essential for development of gut barrier dysfunction after hemorrhagic shock and resuscitation in mice. Am J Physiol Gastrointest Liver Physiol 2003;285:G621-9. https://doi.org/10.1152/ajpgi.00177.2003
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and 2 (Delta Delta C (T)) method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262
- Brosnan JT, Brosnan ME. Glutamate: a truly functional amino acid. Amino Acids 2013;45:413-8. https://doi.org/10.1007/s00726-012-1280-4
- Levite M. Glutamate, T cells and multiple sclerosis. J Neural Transm (Vienna) 2017;124:775-98. https://doi.org/10.1007/s00702-016-1661-z
- Rezaei R, Knabe DA, Tekwe CD, et al. Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids 2013;44:911-23. https://doi.org/10.1007/s00726-012-1420-x
- Song ZH, Tong G, Xiao K, Jiao LF, Ke YI, Hu CH. L-Cysteine protects intestinal integrity, attenuates intestinal inflammation and oxidant stress, and modulates NF-κB and Nrf2 pathways in weaned piglets after LPS challenge. Innate Immun 2016;22:152-61. https://doi.org/10.1177/1753425916632303
- Qiu YQ, Yang XF, Wang L, Gao KG, Jiang ZY. L-Arginine inhibited inflammatory response and oxidative stress induced by lipopolysaccharide via arginase-1 signaling in IPEC-J2 cells. Int J Mol Sci 2019;20:1800. https://doi.org/10.3390/ijms20071800
- Sies H. Oxidative stress: From basic research to clinical application. Am J Med 1991;91:31S-8S. https://doi.org/10.1016/0002-9343(91)90281-2
- Duan JL, Yin J, Ren WK, et al. Dietary supplementation with L-glutamate and L-aspartate alleviates oxidative stress in weaned piglets challenged with hydrogen peroxide. Amino Acids 2016;48:53-64. https://doi.org/10.1007/s00726-015-2065-3
- Xiao W, Fang Y, Holst JJ, Hartmann B, Yang H, Teitelbaum DH. Glutamate prevents intestinal atrophy via luminal nutrient sensing in a mouse model of total parenteral nutrition. FASEB J 2014;28:2073-87. https://doi.org/10.1096/fj.13-238311
- Duan JL, Yin J, Wu MM, et al. Dietary glutamate supplementation ameliorates mycotoxin-induced abnormalities in the intestinal structure and expression of amino acid transporters in young pigs. PLOS ONE 2014;9:e112357. https://doi.org/10.1371/journal.pone.0112357
- Jing J, Yin L, Li JY, et al. Glutamate attenuates lipopolysaccharide-induced oxidative damage and mRNA expression changes of tight junction and defensin proteins, inflammatory and apoptosis response signaling molecules in the intestine of fish. Fish Shellfish Immunol 2017;70:473-84. https://doi.org/10.1016/j.fsi.2017.09.035
- Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 2011;141:769-76. https://doi.org/10.3945/jn.110.135657
- Jiao N, Wu ZL, Ji Y, Wang B, Dai Z, Wu G. L-glutamate enhances barrier and antioxidative functions in intestinal porcine epithelial cells. J Nutr 2015;145:2258-64. https://doi.org/10.3945/jn.115.217661
- Wu L, Liao P, He L, et al. Dietary L-arginine supplementation protects weanling pigs from deoxynivalenol-induced toxicity. Toxins (Basel) 2015;7:1341-54. https://doi.org/10.3390/toxins7041341
- Wu X, Shu XG, Xie CY, et al. The acute and chronic effects of monosodium L-glutamate on serum iron and total iron-binding capacity in the jugular artery and vein of pigs. Biol Trace Elem Res 2013;153:191-5. https://doi.org/10.1007/s12011-013-9668-x
- Moore KA, Lemischka IR. Stem cells and their niches. Science 2006;311:1880-5. https://doi.org/10.1126/science.1110542
- Corpeleijn WE, Riedijk MA, Zhou Y, et al. Almost all enteral aspartate is taken up in first-pass metabolism in enterally fed preterm infants. Clin Nutr 2010;29:341-6. https://doi.org/10.1016/j.clnu.2009.11.008
- Tome D. The roles of dietary glutamate in the intestine. Ann Nutr Metab 2018;73(Suppl. 5):15-20. https://doi.org/10.1159/000494777
- Ruth MR, Field CJ. The immune modifying effects of amino acids on gut-associated lymphoid tissue. J Anim Sci Biotechnol 2013;4:27. https://doi.org/10.1186/2049-1891-4-27
- Akiba Y, Watanabe C, Mizumori M, Kaunitz JD. Luminal L-glutamate enhances duodenal mucosal defense mechanisms via multiple glutamate receptors in rats. Am J Physiol Gastroinstest Liver Physiol 2009;297:G781-91.https://doi.org/10.1152/ajpgi.90605.2008
- Smith F, Clark JE, Overman BL, et al. Early weaning stress impairs development of mucosal barrier function in the porcine intestine. Am J Physiol Gastrointest Liver Physiol 2010;298:G352-63. https://doi.org/10.1152/ajpgi.00081.2009
- Theoharides TC, Donelan JM, Papadopoulou N, Cao J, Kempuraj D, Conti P. Mast cells as targets of corticotropin-releasing factor and related peptides. Trends PharmacolSci 2004;25:563-8. https://doi.org/10.1016/j.tips.2004.09.007
- Meddings JB, Swain MG. Environmental stress-induced gastrointestinal permeability is mediated by endogenous glucocorticoids in the rat. Gastroenterology 2000;119:1019-28. https://doi.org/10.1053/gast.2000.18152
- Wang H, Zhang C, Wu GY, et al. Glutamine enhances tight junction protein expression and modulates corticotropin-releasing factor signaling in the jejunum of weanling piglets. J Nutr 2015;145:25-31. https://doi.org/10.3945/jn.114.202515
- Barreau F, Cartier C, Ferrier L, Floramonti J, Bueno L. Nerve growth factor mediates alterations of colonic sensitivity and mucosal barrier induced by neonatal stress in rats. Gastroenterology 2004;127:524-34. https://doi.org/10.1053/j.gastro.2004.05.019
- Dothel G, Barbaro MR, Boudin H, et al. Nerve fiber outgrowth is increased in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology 2015;148:1002-11. https://doi.org/10.1053/j.gastro.2015.01.042
- Chen X, Yang Z, Hu H, et al. Differentiation and proliferation of intestinal stem cells and its underlying regulated mechanisms during weaning. Curr Protein Pept Sci 2019;20:690-5. https://doi.org/10.2174/1389203720666190125101834
- Xiao K, Song ZH, Jiao LF, Ke YL, Hu CH. Developmental changes of TGF-β1 and Smads signaling pathway in intestinal adaption of weaned pigs. PLoS ONE 2014;9:e104589. https://doi.org/10.1371/journal.pone.0104589
- Qin Q, Xu X, Wang XY, et al. Glutamate alleviates intestinal injury, maintains mTOR and suppresses TLR4 and NOD signaling pathways in weanling pigs challenged with lipopolysaccharide. Sci Rep 2018;8:15124. https://doi.org/10.1038/s41598-018-33345-7