• 제목/요약/키워드: m-point boundary value problem

검색결과 31건 처리시간 0.032초

ON DICHOTOMY AND CONDITIONING FOR TWO-POINT BOUNDARY VALUE PROBLEMS ASSOCIATED WITH FIRST ORDER MATRIX LYAPUNOV SYSTEMS

  • Murty, M.S.N.;Kumar, G. Suresh
    • 대한수학회지
    • /
    • 제45권5호
    • /
    • pp.1361-1378
    • /
    • 2008
  • This paper deals with the study of dichotomy and conditioning for two-point boundary value problems associated with first order matrix Lyapunov systems, with the help of Kronecker product of matrices. Further, we obtain close relationship between the stability bounds of the problem on one hand, and the growth behaviour of the fundamental matrix solution on the other hand.

THE CONVERGENCE OF FINITE DIFFERENCE APPROXIMATIONS FOR SINGULAR TWO-POINT BOUNDARY VALUE PROBLEMS

  • Lee, H.Y.;Seong, J.M.;Shin, J.Y.
    • 대한수학회지
    • /
    • 제36권2호
    • /
    • pp.299-316
    • /
    • 1999
  • We consider two finite difference approxiamations to a singular boundary value problem arising in the study of a nonlinear circular membrane under normal pressure. It is shown that the rates of convergence are O(h) and O($h^2$), respectively. An iterative scheme is introduced which converges to the solution of the finite difference equations. Finally the numerical experiments are given

  • PDF

THE EXISTENCE OF TWO POSITIVE SOLUTIONS FOR $m$-POINT BOUNDARY VALUE PROBLEM WITH SIGN CHANGING NONLINEARITY

  • Liu, Jian
    • Journal of applied mathematics & informatics
    • /
    • 제30권3_4호
    • /
    • pp.517-529
    • /
    • 2012
  • In this paper, the existence theorem of two positive solutions is established for nonlinear m-point boundary value problem by using an inequality for the following third-order differential equations $$({\phi}(u^{\prime\prime}))^{\prime}+a(t)f(t,u(t))=0,\;t{\in}(0,1)$$, $${\phi}(u^{\prime\prime}(0))=\sum^{m-2}_{i=1}a_i{\phi}(u^{\prime\prime}({\xi}_i)),\;u^{\prime}(1)=0,\;u(0)=\sum^{m-2}_{i=1}b_iu({\xi}_i)$$, where ${\phi}:R{\rightarrow}R$ is an increasing homeomorphism and homomorphism and $\phi(0)=0$. The nonlinear term f may change sign, as an application, an example to demonstrate our results is given.

SPECTRAL ANALYSIS FOR THE CLASS OF INTEGRAL OPERATORS ARISING FROM WELL-POSED BOUNDARY VALUE PROBLEMS OF FINITE BEAM DEFLECTION ON ELASTIC FOUNDATION: CHARACTERISTIC EQUATION

  • Choi, Sung Woo
    • 대한수학회보
    • /
    • 제58권1호
    • /
    • pp.71-111
    • /
    • 2021
  • We consider the boundary value problem for the deflection of a finite beam on an elastic foundation subject to vertical loading. We construct a one-to-one correspondence �� from the set of equivalent well-posed two-point boundary conditions to gl(4, ℂ). Using ��, we derive eigenconditions for the integral operator ��M for each well-posed two-point boundary condition represented by M ∈ gl(4, 8, ℂ). Special features of our eigenconditions include; (1) they isolate the effect of the boundary condition M on Spec ��M, (2) they connect Spec ��M to Spec ����,α,k whose structure has been well understood. Using our eigenconditions, we show that, for each nonzero real λ ∉ Spec ����,α,k, there exists a real well-posed boundary condition M such that λ ∈ Spec ��M. This in particular shows that the integral operators ��M, arising from well-posed boundary conditions, may not be positive nor contractive in general, as opposed to ����,α,k.

POSITIVE SOLUTIONS OF NONLINEAR m-POINT BVP FOR AN INCREASING HOMEOMORPHISM AND POSITIVE HOMOMORPHISM ON TIME SCALES

  • Han, Wei;Jin, Zhen;Zhang, Guang
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1171-1184
    • /
    • 2010
  • In this paper, by using fixed point theorems in cones, the existence of positive solutions is considered for nonlinear m-point boundary value problem for the following second-order dynamic equations on time scales $({\phi}(u^{\Delta}))^{\nabla}+a(t)f(t,\;u(t))=0$, t $\in$ (0, T), $u(0)=\sum\limits^{m-2}_{i=1}a_iu(\xi_i)$, $\phi(u^{\Delta}(T))=\sum\limits^{m-2}_{i=1}b_i{\phi}(u^{\Delta}(\xi_i))$, where $\phi$ : R $\rightarrow$ R is an increasing homeomorphism and positive homomorphism and ${\phi}(0)=0$. In [27], we obtained the existence results of the above problem for an increasing homeomorphism and positive homomorphism with sign changing nonlinearity. The purpose of this paper is to supplement with a result in the case when the nonlinear term f is nonnegative, and the most point we must point out for readers is that there is only the p-Laplacian case for increasing homeomorphism and positive homomorphism due to the sign restriction. As an application, one example to demonstrate our results are given.

EXISTENCE OF EVEN NUMBER OF POSITIVE SOLUTIONS TO SYSTEM OF FRACTIONAL ORDER BOUNDARY VALUE PROBLEMS

  • Krushna, B.M.B.;Prasad, K.R.
    • 충청수학회지
    • /
    • 제31권2호
    • /
    • pp.255-268
    • /
    • 2018
  • We establish the existence and multiplicity of positive solutions to a coupled system of fractional order differential equations satisfying three-point boundary conditions by utilizing Avery-Henderson functional fixed point theorems and under suitable conditions.

EXISTENCE RESULTS FOR BOUNDARY VALUE PROBLEMS OF VOLTERRA-FREDHOLM SYSTEM INVOLVING CAPUTO DERIVATIVE

  • Shakir M. Atshan;Ahmed A. Hamoud
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권2호
    • /
    • pp.545-558
    • /
    • 2024
  • In this study, a class of nonlinear boundary fractional Caputo Volterra-Fredholm integro-differential equations (CV-FIDEs) is taken into account. Under specific assumptions about the available data, we firstly demonstrate the existence and uniqueness features of the solution. The Gronwall's inequality, a adequate singular Hölder's inequality, and the fixed point theorem using an a priori estimate procedure. Finally, a case study is provided to highlight the findings.

EXISTENCE RESULTS FOR POSITIVE SOLUTIONS OF NON-HOMOGENEOUS BVPS FOR SECOND ORDER DIFFERENCE EQUATIONS WITH ONE-DIMENSIONAL p-LAPLACIAN

  • Liu, Yu-Ji
    • 대한수학회지
    • /
    • 제47권1호
    • /
    • pp.135-163
    • /
    • 2010
  • Motivated by [Science in China (Ser. A Mathematics) 36 (2006), no. 7, 721?732], this article deals with the following discrete type BVP $\LARGE\left\{{{\;{\Delta}[{\phi}({\Delta}x(n))]\;+\;f(n,\;x(n\;+\;1),{\Delta}x(n),{\Delta}x(n + 1))\;=\;0,\;n\;{\in}\;[0,N],}}\\{\;{x(0)-{\sum}^m_{i=1}{\alpha}_ix(n_i) = A,}}\\{\;{x(N+2)-\;{\sum}^m_{i=1}{\beta}_ix(n_i)\;=\;B.}}\right.$ The sufficient conditions to guarantee the existence of at least three positive solutions of the above multi-point boundary value problem are established by using a new fixed point theorem obtained in [5]. An example is presented to illustrate the main result. It is the purpose of this paper to show that the approach to get positive solutions of BVPs by using multifixed-point theorems can be extended to treat nonhomogeneous BVPs. The emphasis is put on the nonlinear term f involved with the first order delta operator ${\Delta}$x(n).

An Existence Result for Neumann Type Boundary Value Problems for Second Order Nonlinear Functional Differential Equation

  • Liu, Yuji
    • Kyungpook Mathematical Journal
    • /
    • 제48권4호
    • /
    • pp.637-650
    • /
    • 2008
  • New sufficient conditions for the existence of at least one solution of Neumann type boundary value problems for second order nonlinear differential equations $$\array{\{{p(t)\phi(x'(t)))'=f(t,x(t),\;x(\tau_1(t)),\;{\cdots},\;x(\tau_m(t))),\;t\in[0,T],\\x'(0)=0,\;x'(T)=0,}\,}$$, are established.

POSITIVE SOLUTIONS FOR MULTIPOINT BOUNDARY VALUE PROBLEMS WITH ONE-DIMENSIONAL p-LAPLACIAN OPERATOR

  • Xu, Fuyi;Meng, Zhaowei;Zhao, Wenling
    • Journal of applied mathematics & informatics
    • /
    • 제26권3_4호
    • /
    • pp.457-469
    • /
    • 2008
  • In this paper, we study the existence of positive solutions for the following nonlinear m-point boundary value problem with p-Laplacian: $\{{{{(\phi_p(u'))'\;+\;f(t,u(t))=0, \;0<t<1,} \atop u'(0)={\sum}{^{m-2}_{i=1}}\;a_iu'(\xi_i),} \atop u(1)={\sum}{^k_{i=1}}\;b_iu(\xi_i)\;-\;{\sum}{^s_{i=k+1}}\;b_iu(\xi_i)\;-\;{\sum}{^{m-2}_{i=s+1}}\;b_iu'(xi_i),}$ where ${\phi}_p(s)$ is p-Laplacian operator, i.e., ${\phi}_p(s)=\mid s\mid^{p-2}s$, p>1, ${\phi}_q\;=\;({\phi}_p)^{-1}$, $\frac{1}{p}+\frac{1}{q}=1$, $1\;{\leq}\;k\;{\leq}\;s\;{\leq}m\;-\;2$, $b_i\;{\in}\;(0,+{\infty})$ with $0\;<\;{\sum}{^k_{k=1}}\;b_i\;-\;{\sum}{^s_{i=k+1}}\;b_i\;<\;1$, $0\;<\;{\sum}{^{m-2}_{i=1}}\la_i\;<\;1$, $0\;<\;{\xi}_1\;<\;{\xi}_2\;<\;{\cdots}\;<\;{\xi}_{m-2}\;<\;1$, $f\;{\in}\;C([0,\;1]\;{\times}\;[0,\;+{\infty}),\;[0,\;+{\infty}))$. We show that there exists one or two positive solutions by using fixed-point theorem for operator on a cone. The conclusions in this paper essentially extend and improve the known results.

  • PDF