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Abstract. New sufficient conditions for the existence of at least one solution of Neumann
type boundary value problems for second order nonlinear differential equations{

(p(t)φ(x′(t)))′ = f(t, x(t), x(τ1(t)), · · · , x(τm(t))), t ∈ [0, T ],
x′(0) = 0, x′(T ) = 0,

are established.

1. Introduction

Recently, there have been many papers discussed the solvability of two-point,
or multi-point boundary value problems for second order or higher order ordinary
or functional differential equations, we refer the readers to the text books [1], [2]
and papers [6]-[9], [13]-[15] and the references therein.

Xuan and Chen in [3] studied the solvability of singular one dimensional
p−Laplacian-like equation with Neumann boundary conditions

(1)
{

(A(|u′|)u′)′ − g(u(t)) = h(t), 0 < t < 1,
u′(0) = u′(1) = 0,

where A(ξ) is positive for ξ > 0, h(t) ∈ L1[0, 1], g is a continuous function defined
on (−∞, 0) ∪ (0,+∞) such that g(ξ) → 0 as |ξ| → 0, g(ξ) → +∞ as ξ → 0+,
g(ξ) → −∞ as ξ → 0−, and g(ξ)ξ > 0 for ξ 6= 0. Suppose

(i) H(ξ) = ξA(|ξ|) is strictly increasing homeomorphism of (0,+∞) with
H(0) = 0.

(ii) limξ→0+ g(ξ) = +∞ and
∫ 1

0
g(ξ)dξ = +∞, g(ξ) > 0 and limξ→+∞ g(ξ) = 0.
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It was proved that problem (1) has at least one solution for each h ∈ L1[0, 1] if
and only if

∫ 1

0
h(t)dt < 0.

Cabada, Habets and Lois in [5] considered the solvability of the following prob-
lem

(2)
{

u′′ = f(t, u, u′), a < t < b,
u′(a) = u′(b) = 0,

where f is continuous. The existence and approximation of solutions of problem
(2) were studied in the presence of lower and upper solutions in reverse order.

In [10], Boucherif and Al-Malki studied the following problem

(3) y′′ = f(t, y, y′), y′(0) = y′(1) = 0.

It was proved that if f is an L1−Caratheodory function, and
(C1) there exists M0 > 0 such that

[∫ 1

0
f(t, M0, 0)dt

] [∫ 1

0
f(t,−M0, 0)dt

]
< 0;

(C2) there exist q ∈ L1[0, 1] and Φ ∈ [0,+∞) → (0,+∞) nondecreasing with
1/Φ integrable over bounded intervals, and∫ +∞

M0

dσ

Φ(σ)
> ||q||L1

such that |f(t, y, z)| ≤ q(t)Φ(|z|) for all (t, y) ∈ I × [−M0,M0] and all z ∈ R; Then
problem (3) has at least one solution.

Atslaga in [11] studied the following problem

(4) x′′ = f(x), x′(0) = x′(1) = 0.

Under the assumptions that f is continuous, f has simple zeros at p1 < p2 < p3 <
p4 < p5, and f(−∞) = −∞ and f(+∞) = +∞, the multiplicity results for the
problem (4) were proved.

In paper [12], Girg studied the following problem

(5)
{

(φ(u′(t)))′ + g(u′(t)) + h(u(t)) = f(t), 0 < t < T,
u′(0) = u′(T ) = 0.

Let f(t) = f̃ + f with f = 1
T

∫ T

0
f(t)dt. Denote

C̃[0, T ] =

{
u ∈ C[0, T ] :

∫ T

0

u(t)dt = 0

}
, C̃T = CT ∩ C̃[0, T ].

Under the following assumptions:
(i) φ is an increasing homeomorphism of I1 onto I2, where I1, I2 ⊂ R are open

intervals containing zero and φ(0) = 0.
(ii) g is continuous.
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(iii) h is continuous, bounded real function having limits in ±∞ with

h(−∞) := lim
ξ→−∞

h(ξ) < lim
ξ→+∞

h(ξ) =: h(+∞).

(iv) φ is odd and there exist c, δ > 0 and p > 1 such that for all z ∈ (−δ, δ) ∩
Domφ : c|z|p−1 ≤ |φ(z)|.

It was proved that problem (5) has at least one solution if√
3
T

b−
√

T sup
ξ∈R

|h(ξ)| > 0,

||f̃ ||L2 <

√
3
T

b−
√

T sup
ξ∈R

|h(ξ)|,

and
s(f̃) + h(−∞) < f < s(f̃) + h(+∞).

We note that the solvability of problem (5) is not addressed in paper [12] when
h in (5) is unbounded, and there is no paper concerned with the solvability of Neu-
mann boundary value problems for second order functional differential equations.

Mawhin′s continuation theorem of coincidence degree, see [15], is used to get
periodic solutions of first or second order ordinary or functional differential equa-
tions, and get solutions of multi-point boundary value problems for second or three
order differential equations. The known literature shows us that this theorem is an
effective tool to get solutions of differential equations, however, there is no paper
concerned with the existence of solutions of Neumann boundary value problems for
second order differential equations with p−Laplacian-like operator.

Motivated by papers mentioned above, we study boundary value problems for
second order nonlinear functional differential equation with p−Laplacian-like oper-
ator

(6)

 (p(t)φ(x′(t)))′ = f(t, x(t), x(τ1(t)), · · · , x(τm(t))), t ∈ [0, T ],
x′(0) = 0,
x′(T ) = 0,

where T > 0, f is a continuous function, p continuous with p(t) > 0 for all t ∈ [0, T ],
φ is continuous with yφ(y) > 0 for y 6= 0, τi : [0, T ] → [0, T ] are continuous
differentiable functions with τ ′i(t) 6= 0 for all t ∈ [0, T ].

The purpose of this paper is to establish new existence results for solutions of
problem (6), by using Mawhin′s continuation theorem of coincidence degree, via to
establish sufficient conditions for the existence of at least one solutions of BVP (6).
It is interesting that we allow f to be sublinear, at most linear or superlinear.

This paper is organized as follows. In Section 2, we make preparations, and in
Section 3, the main results are given, the examples will be presented in Section 4.
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2. Preparations

Let C0 be the set of all continuous functions on [0, T ] and X = C0 × C0, Y =
X × R2, the norm is defined by ||(x, y)|| = max{||x||∞, ||y||∞} for (x, y) ∈ X and
||(u, v, a, b)|| = max{||u||∞, ||v||∞, |a|, |b|} for each (u, v, a, b) ∈ Y . Then X and Y
are Banach spaces.

Let D(L) = {(x, y) ∈ X : x′ ∈ C0, (py)′ ∈ C0}. Define the linear operator
L : D(L) ∩X → Y by

L

(
x(t)
y(t)

)
=


x′(t)
(p(t)y(t))′

y(0)
y(T )

 for all (x, y) ∈ D(L) ∩X.

Define the nonlinear operator N : X → Y , for all (x, y) ∈ X, by

N

(
x(t)
y(t)

)
=


φ−1(y(t))
f(t, x(t), x(τ1(t)), · · · , x(τm(t)))
0
0

 .

We omit the proofs of the following results since the proofs are simple and
standard.

(i) KerL = {(a, 0) : a ∈ R};
(ii) ImL = {(u, v, a, b) ∈ Y :

∫ T

0
v(t)dt = p(T )b− p(0)a};

(iii) L is a Fredholm operator of index zero;
(iv) There are projectors P : X → X and Q : Y → Y such that KerL = ImP

and KerQ = ImL. There is an isomorphism ∧ : KerL → Y/ImL.
(v) Let Ω ⊂ X be an open bounded subset with Ω ∩ D(L) 6= ∅, then N is

L−compact on Ω;
(vi) (x, y) ∈ D(L) is a solution of the operator equation L(x, y) = N(x, y)

implies that x is a solution of problem (6).
Let F (t) = f(t, x(t), x(τ1(t)), · · · , x(τm(t))). In fact, we have, for a, b ∈ R,

(x, y) ∈ X and (u, v, a, b) ∈ Y , that

P

(
x(t)
y(t)

)
=

(
x(0)
0

)
,

Q


u(t)
v(t)
a
b

 =


0
1
T

(∫ T

0
v(t)dt− p(T )b + p(0)a

)
0
0

 ,

Kp


u(t)
v(t)
a
b

 =

( ∫ t

0
u(s)ds

p(0)
P (t)a + 1

p(t)

∫ t

0
v(s)ds

)
if
∫ T

0

v(t)dt = p(T )b− p(0)a,
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Kp(I −Q)N
(

x(t)
y(t)

)
= Kp(I −Q)


φ−1(y(t))
f(t, x(t), φ−1(y(t)))
0
0



= Kp


φ−1(y(t))
F (t)− 1

T

(∫ T

0
F (t)dt

)
0
0


=

( ∫ t

0
φ−1(y(s))ds

1
p(t)

(∫ t

0
F (s)ds− t

T

(∫ T

0
F (t)dt

)) ) ,

∧
(

a
0

)
=


0
a
0
0

 .

To get the existence results for solutions of BVP (6), we need a fixed point
theorem. Let X and Y be Banach spaces, L : D(L) ⊂ X → Y be a Fredholm
operator of index zero, P : X → X, Q : Y → Y be projectors such that

Im P = Ker L, Ker Q = Im L, X = Ker L⊕Ker P, Y = Im L⊕ Im Q.

It follows that
L|D(L)∩Ker P : D(L) ∩Ker P → Im L

is invertible, we denote the inverse of that map by Kp. If Ω is an open bounded
subset of X, D(L)∩Ω 6= ∅, the map N : X → Y will be called L−compact on Ω if
QN(Ω) is bounded and Kp(I −Q)N : Ω → X is compact.

Lemma 2.1[4]. Let L be a Fredholm operator of index zero and let N be L−compact
on Ω. Assume that the following conditions are satisfied:
(i) Lx 6= λNx for every (x, λ) ∈ [(D(L) \KerL) ∩ ∂Ω]× (0, 1);
(ii) Nx /∈ ImL for every x ∈ KerL ∩ ∂Ω;
(iii) deg(∧QN

∣∣∣KerL, Ω ∩ KerL, 0) 6= 0, where ∧ : Y/ImL → KerL is the isomor-

phism. Then the equation Lx = Nx has at least one solution in D(L) ∩ Ω.

3. Main results

In this section, we prove the main results of this paper.

Lemma 3.1. Suppose
(A) there exists constant A > 0, p > 1 such that

|x|p ≤ Aφ(x)x for all x ∈ R.
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(C) there exist continuous functions h : [0, T ] × Rm+1 → R, gi : [0, T ] × R → R,
and r such that
(i) f(t, x, x1, · · · , xm) = h(t, x, x1, · · · , xm) + g0(t, x) +

∑m
i=1 gi(t, xi) + r(t) holds

for all (t, x, x1, · · · , xm) ∈ [0, T ]×Rm+1.
(ii) there exist constants θ ≥ 1 and β > 0 such that

h(t, x, x1, · · · , xm)x ≥ β|x|θ+1

holds for all (t, x, x1, · · · , xm) ∈ [0, T ]×Rm+1.
(iii) lim|x|→+∞ supt∈[0,T ]

|gi(t,x)|
|x|θ = ri ∈ [0,+∞)(i = 0, · · · ,m).

Let Ω1 = {(x, y) : L(x, y) = λN(x, y), ((x, y), λ) ∈ [(D(L) \KerL)]× (0, 1)}. Then

Ω1 is bounded if r0 +
∑m

i=1 δ
θ

θ+1
i ri < β, where δi = maxt∈[0,T ]

1
|τ ′i(t)|

.

Proof. For (x, y) ∈ Ω1, we have L • (x, y) = λN • (x, y), λ ∈ (0, 1), i.e.

(7)

 x′(t) = λφ−1(y(t)),
(p(t)y(t))′ = λf(t, x(t), , x(τ1(t)), · · · , x(τm(t))),
y(0) = 0, y(T ) = 0.

It follows that{
[p(t)φ(x′(t))]′ = φ(λ)λf (t, x(t), x(τ1(t)), · · · , x(τm(t))) ,
x′(0) = 0, x′(T ) = 0.

Then

−
∫ T

0

p(t)φ(x′(t))x′(t)dt =
∫ T

0

[p(t)φ(x′(t))]′x(t)dt

= φ(λ)λ
∫ T

0

f (t, x(t), x(τ1(t)), · · · , x(τm(t)))x(t)dt.

Since p(t) > 0 for all t ∈ [0, T ], φ(x)x ≥ 0 for all x ∈ R, we get∫ T

0

f (t, x(t), x(τ1(t)), · · · , x(τm(t)))x(t)dt ≤ 0.

It follows from (C)(i) that∫ T

0

h (t, x(t), x(τ1(t)), · · · , x(τm(t)))x(t)dt +
∫ T

0

g0(t, x(t))x(t)dt

+
∫ T

0

r(t)x(t)dt +
m∑

i=1

∫ T

0

gi(t, x(τi(t)))x(t)dt ≤ 0.

(C)(ii) implies that

β

∫ T

0

|x(t)|θ+1dt ≤ −
∫ T

0

g0(t, x(t))x(t)dt−
∫ T

0

r(t)x(t)dt−
m∑

i=1

∫ T

0

gi(t, x(τi(t)))x(t)dt.
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Choose ε > 0 such that

(8) β > (r0 + ε) +
m∑

i=1

δ
θ

θ+1
i (ri + ε).

Choose δ > 0 such that

|gi(t, x)| ≤ |x|θ(ri + ε), |x| > δ, t ∈ [0, T ], i = 0, · · · ,m.

Then

β

∫ T

0

|x(t)|θ+1dt

≤
∫ T

0

|g0(t, x(t))||x(t)|dt +
m∑

i=1

∫ T

0

|gi(t, x(τi(t)))||x(t)dt + ||r||
∫ T

0

|x(t)|dt

≤
∫

t∈[0,T ],|x(t)|>δ

|g0(t, x(t))||x(t)|dt +
∫

t∈[0,T ],|x(t)|≤δ

|g0(t, x(t))||x(t)|dt

+ ||r||
∫ T

0

|x(t)|dt +
m∑

i=1

∫
t∈[0,T ],|x(τi(t))|>δ

|gi(t, x(τi(t)))||x(t)|dt

+
m∑

i=1

∫
t∈[0,T ],|x(τi(t))|≤δ

|gi(t, x(τi(t)))||x(t)|dt

≤ ||r||
∫ T

0

|x(t)|dt + δT max
t∈[0,T ],|x|≤δ

|g0(t, x)|+ (r0 + ε)
∫

t∈[0,T ],|x(t)|>δ

|x(t))|θ+1dt

+
m∑

i=1

max
t∈[0,T ],|x|≤δ

|gi(t, x)|
∫

t∈[0,T ],|x(τi(t))|≤δ

|x(t)|dt

+
m∑

i=1

(ri + ε)
∫

t∈[0,T ],|x(τi(t))|>δ

|x(τi(t))|θ|x(t)|dt

≤ ||r||
∫ T

0

|x(t)|dt + Tδ max
t∈[0,T ],|x|≤δ

|g0(t, x)|

+ (r0 + ε)
∫ T

0

|x(t))|θ+1dt +
m∑

i=1

(ri + ε)
∫ T

0

|x(τi(t))|θ|x(t)|dt

+
m∑

i=1

max
t∈[0,T ],|x|≤δ

|gi(t, x)|
∫

t∈[0,T ],|x(τi(t))|≤δ

|x(t)|dt
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≤ ||r||
∫ T

0

|x(t)|dt + Tδ max
t∈[0,T ],|x|≤δ

|g0(t, x)|+ (r0 + ε)
∫ T

0

|x(t))|θ+1dt

+
m∑

i=1

max
t∈[0,T ],|x|≤δ

|gi(t, x)|
∫

t∈[0,T ],|x(τi(t))|≤δ

|x(t)|dt

+
m∑

i=1

(ri + ε)

(∫ T

0

|x(τi(t))|θ+1dt

) θ
θ+1
(∫ T

0

|x(t)|θ+1dt

) 1
θ+1

= ||r||
∫ T

0

|x(t)|dt + Tδ max
t∈[0,T ],|x|≤δ

|g0(t, x)|+ (r0 + ε)
∫ T

0

|x(t))|θ+1dt

+
m∑

i=1

max
t∈[0,T ],|x|≤δ

|gi(t, x)|
∫

t∈[0,T ],|x(τi(t))|≤δ

|x(t)|dt

+
m∑

i=1

(ri + ε)

(∫ τi(T )

τi(0)

|x(s)|θ+1

τ ′i(t)
ds

) θ
θ+1
(∫ T

0

|x(t)|θ+1dt

) 1
θ+1

≤ ||r||T
θ

θ+1

(∫ T

0

|x(t)|θ+1dt

) 1
θ+1

+ Tδ max
t∈[0,T ],|x|≤δ

|g0(t, x)|

+ (r0 + ε)
∫ T

0

|x(t))|θ+1dt +
m∑

i=1

max
t∈[0,T ],|x|≤δ

|gi(t, x)|
∫ T

0

|x(t)|dt

+
m∑

i=1

(ri + ε)δ
θ

θ+1
i

∫ T

0

|x(s)|θ+1ds

≤ ||r||T
θ

θ+1

(∫ T

0

|x(t)|θ+1dt

) 1
θ+1

+ Tδ max
t∈[0,T ],|x|≤δ

|g0(t, x)|

+ (r0 + ε)
∫ T

0

|x(t))|θ+1dt +
m∑

i=1

max
t∈[0,T ],|x|≤δ

|gi(t, x)|T
θ

θ+1

(∫ T

0

|x(t)|θ+1dt

) 1
θ+1

+
m∑

i=1

(ri + ε)δ
θ

θ+1
i

∫ T

0

|x(s)|θ+1ds.

It follows from (8) that there is a constant M1 > 0 such that
∫ T

0
|x(t)|θdt ≤ M1.

There exists µ ∈ [0, T ] such that |x(µ)| ≤ (M1/T )
1
θ .

It is easy to see that there exists δ > 0 such that p(t) ≥ δ for all t ∈ [0, T ]. Then

δ

∫ T

0

φ(x′(t))x′(t)dt ≤
∫ T

0

p(t)φ(x′(t))x′(t)dt = −
∫ T

0

[p(t)φ(x′(t))]′x(t)dt

= −φ(λ)λ
∫ T

0

f (t, x(t), x(τ1(t)), · · · , x(τm(t)))x(t)dt
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= −φ(λ)λ

[∫ T

0

h (t, x(t), x(τ1(t)), · · · , x(τm(t)))x(t)dt

+
∫ T

0

g0(t, x(t))x(t)dt +
∫ T

0

r(t)x(t)dt +
m∑

i=1

∫ T

0

gi(t, x(τi(t)))x(t)dt

]

≤ −φ(λ)λ

[
β

∫ T

0

|x(t)|θ+1dt +
∫ T

0

g0(t, x(t))x(t)dt

+
∫ T

0

r(t)x(t)dt +
m∑

i=1

∫ T

0

gi(t, x(τi(t)))x(t)dt

]

≤
∫ T

0

|g0(t, x(t))||x(t)|dt +
∫ T

0

|r(t)||x(t)|dt +
m∑

i=1

∫ T

0

|gi(t, x(τi(t)))||x(t)|dt

≤
∫

t∈[0,T ],|x(t)|>δ

|g0(t, x(t))||x(t)|dt +
∫

t∈[0,T ],|x(t)|≤δ

|g0(t, x(t))||x(t)|dt

+ ||r||
∫ T

0

|x(t)|dt +
m∑

i=1

∫
t∈[0,T ],|x(τi(t))|>δ

|gi(t, x(τi(t)))||x(t)|dt

+
m∑

i=1

∫
t∈[0,T ],|x(τi(t))|≤δ

|gi(t, x(τi(t)))||x(t)|dt

≤ ||r||
∫ T

0

|x(t)|dt + δT max
t∈[0,T ],|x|≤δ

|g0(t, x)|+ (r0 + ε)
∫

t∈[0,T ],|x(t)|>δ

|x(t))|θ+1dt

+
m∑

i=1

max
t∈[0,T ],|x|≤δ

|gi(t, x)|
∫

t∈[0,T ],|x(τi(t))|≤δ

|x(t)|dt

+
m∑

i=1

(ri + ε)
∫

t∈[0,T ],|x(τi(t))|>δ

|x(τi(t))|θ|x(t)|dt

≤ ||r||
∫ T

0

|x(t)|dt + Tδ max
t∈[0,T ],|x|≤δ

|g0(t, x)|

+ (r0 + ε)
∫ T

0

|x(t))|θ+1dt +
m∑

i=1

(ri + ε)
∫ T

0

|x(τi(t))|θ|x(t)|dt

+
m∑

i=1

max
t∈[0,T ],|x|≤δ

|gi(t, x)|
∫

t∈[0,T ],|x(τi(t))|≤δ

|x(t)|dt

≤ ||r||
∫ T

0

|x(t)|dt + Tδ max
t∈[0,T ],|x|≤δ

|g0(t, x)|+ (r0 + ε)
∫ T

0

|x(t))|θ+1dt

+
m∑

i=1

max
t∈[0,T ],|x|≤δ

|gi(t, x)|
∫

t∈[0,T ],|x(τi(t))|≤δ

|x(t)|dt

+
m∑

i=1

(ri + ε)

(∫ T

0

|x(τi(t))|θ+1dt

) θ
θ+1
(∫ T

0

|x(t)|θ+1dt

) 1
θ+1
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= ||r||
∫ T

0

|x(t)|dt + Tδ max
t∈[0,T ],|x|≤δ

|g0(t, x)|+ (r0 + ε)
∫ T

0

|x(t))|θ+1dt

+
m∑

i=1

max
t∈[0,T ],|x|≤δ

|gi(t, x)|
∫

t∈[0,T ],|x(τi(t))|≤δ

|x(t)|dt

+
m∑

i=1

(ri + ε)

(∫ τi(T )

τi(0)

|x(s)|θ+1

τ ′i(t)
ds

) θ
θ+1
(∫ T

0

|x(t)|θ+1dt

) 1
θ+1

≤ ||r||T
θ

θ+1

(∫ T

0

|x(t)|θ+1dt

) 1
θ+1

+ Tδ max
t∈[0,T ],|x|≤δ

|g0(t, x)|

+ (r0 + ε)
∫ T

0

|x(t))|θ+1dt +
m∑

i=1

max
t∈[0,T ],|x|≤δ

|gi(t, x)|
∫

t∈[0,T ],|x(τi(t))|≤δ

|x(t)|dt

+
m∑

i=1

(ri + ε)δ
θ

θ+1
i

∫ T

0

|x(s)|θ+1ds

≤ ||r||T
θ

θ+1 M
1

θ+1
1 + Tδ max

t∈[0,T ],|x|≤δ
|g0(t, x)|+ (r0 + ε)M1

+
m∑

i=1

max
t∈[0,T ],|x|≤δ

|gi(t, x)|T
θ

θ+1 M
1

θ+1
1 +

m∑
i=1

(ri + ε)δ
θ

θ+1
i M1

=: M2.

It follows that
∫ T

0
φ(x′(t))x′(t)dt ≤ M2/δ. Hence (A) implies that

|x(t)| ≤
∣∣∣∣x(µ) +

∫ t

µ

x′(s)ds

∣∣∣∣
≤ (M1/T )

1
θ +

∫ T

0

|x′(t)|dt ≤ (M1/T )
1
θ + T

p−1
p

(∫ T

0

|x′(t)|pdt

) 1
p

≤ (M1/T )
1
θ + T

p−1
p A

1
p

(∫ T

0

φ(x′(t))x′(t)dt

) 1
p

≤ (M1/T )
1
θ + T

p−1
p A

1
p M2/δ.

Then ||x|| ≤ (M1/T )
1
θ + T

p−1
p A

1
p (M2/δ)

1
p . Hence

|p(t)y(t)| =
∣∣∣∣p(0)y(0) +

∫ t

0

[p(s)y(s)]′ds

∣∣∣∣
≤

∫ T

0

|f(t, x(t), x(τ1(t)), · · · , x(τm(t)))|dt

≤ T max
t∈[0,T ],|xi|≤(M1/T )

1
θ +T

p−1
p A

1
p (M2/δ)

1
p ,i=0,··· ,m

|f(t, x0, x1, · · · , xm)|.
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It follows that

||y|| ≤
T max

t∈[0,T ],|xi|≤(M1/T )
1
θ +T

p−1
p A

1
p (M2/δ)

1
p ,i=0,··· ,m

|f(t, x0, x1, · · · , xm)|

δ
.

Hence, for (x, y) ∈ Ω1, there is H > 0 such that ||(x, y)|| ≤ H. Hence Ω1 is bounded.
�

Suppose
(B) There exists a constant M0 > 0 such that

(9) a

∫ T

0

f(t, a,

m︷ ︸︸ ︷
a, · · · , a)dt < 0 for all t ∈ [0, T ], |a| > M0,

or

(10) a

∫ T

0

f(t, a,

m︷ ︸︸ ︷
a, · · · , a)dt > 0 for all t ∈ [0, T ], |a| > M0.

Lemma 3.2. Suppose (B) holds. Then Ω2 = {(x, y) ∈Ker L : N(x, y) ∈ Im L} is
bounded.

Proof. For (a, 0) ∈ KerL, we have N(a, 0) = (0, f(t, a,

m︷ ︸︸ ︷
a, · · · , a), 0, 0). Nx ∈ ImL

implies that ∫ T

0

f(t, a,

m︷ ︸︸ ︷
a, · · · , a)dt = 0.

If |a| > M0, then (B) implies that∫ T

0

f(t, a,

m︷ ︸︸ ︷
a, · · · , a)dt 6= 0,

a contradiction. Hence |a| ≤ M0. Thus Ω2 is bounded. �

Lemma 3.3. Suppose (B) holds. Let

(11) Ω3 = {(x, y) ∈ KerL : λ ∧ (x, y)− (1− λ)QN(x, y) = 0, λ ∈ [0, 1]}

if (10) holds, and

(12) Ω3 = {(x, y) ∈ KerL : λ ∧ (x, y) + (1− λ)QN(x, y) = 0, λ ∈ [0, 1]}

if (11) holds. Then Ω3 is bounded at either case, where ∧ : KerL → Y/ImL defined
by ∧(a, 0) = (0, a, 0, 0).
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Proof. Consider the case when (9) holds. We note

Ω3 = {(x, y) ∈ KerL : λ ∧ (x, y)− (1− λ)QN(x, y) = 0, λ ∈ [0, 1]}.

We will prove that Ω3 is bounded. For (a, 0) ∈ Ω3, and λ ∈ [0, 1], we have

λ(0, a, 0, 0)− (1− λ)

(
0,

1
T

∫ T

0

f(t, a,

m︷ ︸︸ ︷
a, · · · , a)dt, 0, 0

)
= 0.

Then

λa = (1− λ)
1
T

(∫ T

0

f(t, a,

m︷ ︸︸ ︷
a, · · · , a)dt

)
.

Then we have

λa2 = (1− λ)a
1
T

(∫ T

0

f(t, a,

m︷ ︸︸ ︷
a, · · · , a)dt

)
.

If λ = 1, then a = 0. If λ ∈ [0, 1) and |a| > M0, from condition (B), we get that

0 ≤ λa2 = (1− λ)a
1
T

(∫ T

0

f(t, a,

m︷ ︸︸ ︷
a, · · · , a)dt

)
< 0,

a contradiction. Hence |a| ≤ M0. Thus Ω3 is bounded. Similarly, we can prove that
Ω3 defined in (12) is bounded when (10) holds. �

Theorem L. Suppose (A), (C) and (B) hold. Then equation (6) has at least one

T−periodic solution if r0 +
∑m

i=1 δ
θ

θ+1
i ri < β.

Proof. We know that L is a Fredholm operator of index zero and N is L−compact
on Ω. Since (x, y) is a solution of L(x, y) = N(x, y) implies that x is a solution of
equation (5). It suffices to get a solution (x, y) of L(x, y) = N(x, y). To do this, we
construct an open bounded set Ω such that (i), (ii) and (iii) of Theorem GM hold.

Set Ω be a open bounded subset of X such that Ω ⊃ ∪3
i=1Ωi. By the definition

of Ω, we have Ω ⊃ Ω1 and Ω ⊃ Ω2, thus, from Lemma 3.1 and Lemma 3.2, that
L(x, y) 6= λN(x, y) for (x, y) ∈ D(L) \ KerL) ∩ ∂Ω and λ ∈ (0, 1); N(x, y) /∈ ImL
for (x, y) ∈ KerL ∩ ∂Ω.

In fact, let H((x, y), λ) = ±λ∧(x, y)+(1−λ)QN(x, y). According the definition
of Ω, we know Ω ⊃ Ω3, thus H((x, y), λ) 6= 0 for (x, y) ∈ ∂Ω ∩ KerL, thus, from
Lemma 3.3, by homotopy property of degree,

deg(QN |KerL,Ω ∩KerL, 0) = deg(H(·, 0),Ω ∩KerL, 0)
= deg(H(·, 1),Ω ∩KerL, 0) = deg(±∧,Ω ∩KerL, 0) 6= 0.

Thus by Theorem GM, L(x, y) = N(x, y) has at least one solution in D(L) ∩ Ω,
then x is a T−solution of equation (6). The proof is completed. �
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4. An example

In this section, we present an example, which can not be solved by known
theorems in [3], [10], [11], to illustrate the main result given in Section 3.

Example 4.1. Consider the problem

(13)

{
[(1 + t2)φ(x′(t))]′ = [x(t)]5

1+2[sin x(t)]8 + q1(t)[x(t)]5 + q2(t)[x(t/3)]5 + r(t),
x′(0) = 0, x′(1) = 0,

where τ1(t) = t/3, φ(x) = |x|4x, p(t) = 1 + t2, q1, q2, r ∈ C0[0, 1]. We will use
Theorem L. Corresponding to the assumptions of Theorem L, we set

f(t, x0, x1) =
[x0]5

1 + 2[sinx0]8
+ q1(t)[x0]5 + q2(t)[x1]5 + r(t).

h(t, x0, x1)x0 =
x6

0

1 + 2[sinx0]8
≥ 1

3
|x0|6,

and
g0(t, x) = q1(t)x5, g1(t, y) = q2(t)y5

and τ1(t) = t/3, β = 1/3, p(t) = 1 + t2, θ = 5.

a

∫ T

0

f(t, a, a)dt

= a

∫ 1

0

r(t)dt + a6

∫ 1

0

(
1

1 + 2[sin a]8
+ q1(t) + q2(t)

)
dt

≥ a

∫ 1

0

r(t)dt + a6

∫ 1

0

(
1
3

+ q1(t) + q2(t)
)

dt.

It follows from Theorem L that problem (13) has at least one solution if

1
3

> ||q1||+ 3
5
6 ||q2||,

∫ 1

0

(
q1(t) + q2(t) +

1
3

)
dt > 0.
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