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SPECTRAL ANALYSIS FOR THE CLASS OF INTEGRAL
OPERATORS ARISING FROM WELL-POSED BOUNDARY
VALUE PROBLEMS OF FINITE BEAM DEFLECTION ON
ELASTIC FOUNDATION: CHARACTERISTIC EQUATION

Sung Woo CHol

ABSTRACT. We consider the boundary value problem for the deflection of
a finite beam on an elastic foundation subject to vertical loading. We con-
struct a one-to-one correspondence I' from the set of equivalent well-posed
two-point boundary conditions to gl(4, C). Using I', we derive eigencondi-
tions for the integral operator Knp for each well-posed two-point boundary
condition represented by M € gl(4,8,C). Special features of our eigen-
conditions include; (1) they isolate the effect of the boundary condition
M on Spec K, (2) they connect Spec K to Spec K, whose structure
has been well understood. Using our eigenconditions, we show that, for
each nonzero real A € Spec K; o 1, there exists a real well-posed boundary
condition M such that A € Spec Cng. This in particular shows that the
integral operators K arising from well-posed boundary conditions, may
not be positive nor contractive in general, as opposed to Kj o k-

1. Introduction

We consider the boundary value problem for the vertical deflection of a
linear-shaped beam of finite length 2I resting horizontally on an elastic foun-
dation, while the beam is subject to a vertical loading. Due to its wide range
of applications, this problem has been one of the main topics in mechanical
engineering for decades [1,2,5-11,13-15]. By the classical Euler beam the-
ory [13], the upward vertical beam deflection u(z) satisfies the following linear
fourth-order ordinary differential equation.

(1.1) EI-u®2)+k-u(x) =wx), zel-1I.

Here, k is the spring constant density of the elastic foundation, and w(x) is
the downward load density applied vertically on the beam. The constants F
and I are the Young’s modulus and the mass moment of inertia respectively,
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so that ET is the flexural rigidity of the beam. Denoting « = /k/EI > 0, we
transform (1.1) into the following equivalent form, which we call DE(w).

4
(1.2) DE(w) : u® + otu = % - w.

Throughout this paper, we will assume that [, «, k are fixed positive constants.
The homogeneous version of (1.2) is

(1.3) DE(0) : u® 4 a*u = 0.

Let gl(m,n,C) (respectively, gl(m,n,R)) be the set of m x n matrices with
complex (respectively, real) entries. When m = n, we denote gl(n,C) =
gl(n,n,C) and gl(n,R) = gl(n,n,R). Define the following linear operator
B:C¥[1,1] - gl(8,1,C) by

Blu] = ((u(=1) u'(=1) u'(=1) u® (=)
lu@) W) w1 W) )",

where C"[—1,1] is the space of n times differentiable complex-valued functions
on the interval [—,1]. Then any two-point boundary condition can formally be
given with a 4 x 8 matrix M € gl(4,8,C) and a 4 x 1 matrix b € gl(4,1,C) as
follows.

(1.5) M - Blu] = b.

For example, the boundary condition u(—1) = u_, v (1) = v_, u(l) = uy,
u/(I) = v/, corresponds to the case when

(1.4)

1 0 0 0j0 0 O O U_
01 0 00 0O 0O u’_
M = 000 0|1 0 00|’ b= Ut
00 0 001 00 u!y

The homogeneous boundary condition associated to (1.5), which we denote by
BC(M), is

(1.6) BC(M) : M - Blu] = 0,

where 0 = (0 0 0 O)T. The boundary value problem consisting of the
nonhomogeneous equation DE(w) and the boundary condition (1.5) is well-
posed, if it has a unique solution. In fact, it is easy to see that this boundary
value problem is well-posed for any fixed w and b, if and only if the boundary
value problem consisting of the homogeneous equation DE(0) and the homo-
geneous boundary condition BC(M) is well-posed, in which case we will just
call M € gl(4,8,C) well-posed. We denote the set of all well-posed matrices in
gl(4,8,C) by wp(4,8,C).

It is well-known from the classical Green function theory [12] that, for each
well-posed M € wp(4,8,C), there exists a unique function Gyi(x,€) defined
on [—1,1] x [=1,1], called the Green function corresponding to M, such that
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the unique solution of the boundary value problem consisting of DE(w) and
BC(M) is given by

l
Kona[w] = [ (e, EJu(e) de

for every continuous function w on [—[,!]. The integral operator Kns becomes
a compact linear operator on the Hilbert space L2[—[,l] of complex-valued
square-integrable functions on [—[,[]. Analyzing the structure of the spectrum
Spec K, or the set of eigenvalues, of the operator Kyp, is of paramount im-
portance for understanding the boundary value problem represented by given
well-posed M € wp(4, 8, C).

We call M, N € wp(4, 8, C) equivalent, and denote M &~ N, when Ky = K,
or equivalently, when Gy = Gn. For given M € wp(4,8,C), denote by [M]
the equivalence class with respect to ~ containing M. The set of all these
equivalence classes, which is the quotient set wp(4,8,C)/~ of wp(4,8,C) by
the relation ~, is denoted simply by wp(C).

In [3,4], Choi analyzed an integral operator K; o x = K; on L?*[—1,] defined
by

l
(L.7) Ko@) = / Gl €ule) de

where

(07

(1.8) G(x,f):;;cexp( ﬂlx—ﬁl) sin (\% x—f—kZ)

is the Green function of the boundary value problem consisting of DE(0) and
the boundary condition lim,_, 4+ u(z) = 0 for an infinitely long beam. It turns
out that K; o r = Kq in our terminology, where

0 a2 —V2a 1 0 0 0 0
V2a?  —a? 0 1 0 0 0 0

1. =
(1.9) Q 0 0 0 0 0 a? V2a 1
0 0 0 0] —vV2a® —a? 0 1

in wp(4,8,C). What is special about this particular operator Kq is that its
spectrum is exceptionally well-understood. In Proposition 1 below, h is an
explicitly defined strictly increasing function from [0,00) to itself such that
h(0) = 0 and lim; ,o h(t)/t = L, where L = 2l is the dimensionless constant
called the intrinsic length of the beam. For two nonnegative functions f, g
defined either on [0,00) or on N, denote f(t) ~ g(¢), if there exists T > 0 such
that m < f(t)/g(t) < M for every t > T for some constants 0 < m < M < co.
Thus h~1(t) ~ t/L with this notation.
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Proposition 1 ([4]). The spectrum Spec Kq of the operator Kq = Ki,ox s of

the form
{%& nzljjw”}C<Q;),

where w, and v, forn=1,2,3,... depend only on the intrinsic length L of the
beam. puy ~ vy ~ n~4, and

1 1

Un

n:LZ&”}U{?

L <Un < .
1+{ht(2m+3)} 1+ {h=t(2mn)}
1
< i < L n=1,2,3,...,
1+ {h—l (27rn - %)}4
1 1
— Hn ~ Vnp — ~ niseizﬂn,

1+ {h—l (27rn— %)}4 1+ {h—1 (27m—|— g)}4
1 1 6
1 s 4_/-1/71'\’ 1 s 4_VnNn
1+ 4 (2r(n—1) - %) 1+ 4 @2r(n-1)+ %)

In fact, numerical values of u, and v, can be computed with arbitrary
precision for any given L > 0. See [4] for more details.

In this paper, we will construct the Green function Gy explicitly for every
M € wp(4,8,C). As a result, we construct an explicit map wp(4,8 C) —
gl(4,C), M — Gy, in such a way that Gp = G, if and only if M ~ N. This
induces a map I' : wp(C) — gl(4,C), where I' ((M]) = G for M € wp(4,8,C).
Especially, our construction of the map I' has the following features.

(T'1) T is a one-to-one correspondence from wp(C) to gl(4,C).

(r2) T(Q)) = O.

(I'3) T is constructive, in that I ((M]) can be computed explicitly for any
given M € wp(4,8,C), and conversely, a representative of I'"! (G) in
wp(4,8,C) can be computed explicitly for any given G € gl(4, C).

By (I'1), T can be regarded as a faithful representation of wp(C) by the alge-
bra gl(4, C). (T'2) says that I is constructed to incorporate the special boundary
condition Q. This will enable us in Theorem 1 and Corollaries 1, 2 below to
obtain an eigencondition and characteristic equations for the operator Ky,
which connect Spec Knp for general M € wp(4,8,C) to the well-understood
Spec Kq in Proposition 1. (I'3) means that our eigencondition and characteris-
tic equations for Ky are constructed explicitly for each given M € wp(4, 8, C).
Conversely, whenever you find a class of matrices in gl(4, C) with which you
can say something about the corresponding eigencondition in Theorem 1, you
can translate them back to the corresponding boundary conditions explicitly.
In fact, this is exactly what we do in Theorem 2 below.

Among well-posed boundary conditions in wp(4,8, C), ones with real entries
are of particular interest. We denote by wp(4,8,R), the set of well-posed
matrices in wp(4, 8, C) with real entries. The set of all equivalence classes [M]
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in wp(C) such that M ~ N for some N € wp(4,8,R), is denoted by wp(R).
To characterize wp(R), we introduce an R-algebra 7(4) contained in gl(4, C).
With 7(4), we have a faithful representation of wp(R), which is another feature
of T

(T'4) T (wp(R)) = 7(4).

The usefulness of 7(4) is not just limited to characterizing wp(R). The R-
algebra 7(4) is designed to measure an important symmetry of 4 x 4 matrices,
which is utilized in proving Theorem 2.

Using our representation I', we prove Theorem 1 below. Here, X\ (z) €
gl(4,C) and yx(z) € gl(4,1,C) will be defined explicitly for every A € C\ {0}
and x € R in Section 6.2. Note that the second statement follows immediately
from the first one and (I'2) above.

Theorem 1. Let M € wp(4,8,C), 0 # u € L?[-1,1], and X € C. Then
Kalu] = A - w, if and only if X # 0 and there exists 0 # ¢ € gl(4,1,C) such
that u = y¥c and [Gm {XA(1) = Xa (=)} + Xa(D)]c = 0. Kqu] = X - u, if
and only if X # 0 and there exists 0 # ¢ € gl(4,1,C) such that u = yLc and
X)\(l) -c=0.

Thus, if we focus on the spectrum Spec Kpg, we have the following charac-
teristic equation.

Corollary 1. Let M € wp(4,8,C) and A € C. Then X\ € Spec K, if and only
if A # 0 and det [Gm {XA (1) = Xn(=0)} +Xx())] = 0. X € SpecKq, if and
only if X # 0 and det Xx(I) = 0.

Theorem 1 and Corollary 1 reveal an interesting connection between Spec Ky
for general M € wp(4,8,C) and the well-analyzed Spec Kq. The forms of the
eigencondition and the characteristic equation for ICpg in them isolate the effect
G of the boundary condition M € wp(4, 8, C), from the rest that is expressed
essentially by the matrix X which is closely related to Spec Kq.

By Corollary 1, X (1) is invertible for every 0 # A ¢ Spec Kq. Thus we can
define Y (1) = X\ (=))X ()71 =1 € gl(4, C) for every 0 # X & Spec Kq, where
I is the 4 x 4 identity matrix.

Corollary 2. Let M € wp(4,8,C). Suppose A € C\ SpecKq. Then X\ €
Spec Km, if and only if A # 0 and det {GmY (1) — I} = 0.

Let M € wp(4,8,C). We call the dimensionless quantity & - |||, the
intrinsic L?-norm of Ky, where [KCnml|, is the usual L%-norm of Ky, which
is equal to the spectral radius max {|A] : A € Spec Knp} of Ky For each A €
Spec Ky, we call the dimensionless quantity k- A an intrinsic eigenvalue. By
Proposition 1, the operator Kq is positive in that all of its intrinsic eigenvalues
are positive, and is contractive in that its intrinsic L?-norm, which equals to
its largest intrinsic eigenvalue pi1, is less than 1. Since these properties of Kq
are important in analyzing nonlinear non-uniform problem corresponding to
DE(w) in (1.2) [5,6], one immediate question is whether or not they are also
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shared by other general K. Using Corollary 2, we prove the following negative
answer.

Theorem 2. For each 0 # A € R\ Spec Kq, there exists M € wp(4, 8,R) such
that A € Spec K.

Thus, one cannot expect Ky to be positive nor contractive even for real
M € wp(4,8,R). This result, which shows the diversity of general well-posed
boundary conditions, and might have been tricky to obtain otherwise, demon-
strates the usefulness of our presentation of the eigencondition and the charac-
teristic equations for operators Kng with general M € wp(4, 8, C).

The rest of the paper is organized as follows. In Section 2, we present basic
mathematical terminologies we use, and introduce some specific matrices useful
to our problems. In Section 3, the Green function Gy is explicitly constructed,
and an initial form of eigencondition for the operator Ky is presented for each
well-posed M € wp(4, 8, C). Using the results in Section 3, the two intermediate
representations I'~, T'" of wp(C) are constructed and analyzed in Section 4.1.
In Section 4.2, the R-algebra 7(n) is introduced, and 7(4) is used to characterize
the real boundary conditions wp(R). In Section 5, explicit computations on
the boundary condition Q in (1.9) are performed, resulting in explicit forms
of I ([Q]) = Gq and T ([Q]) = Ga. In Section 6.1, the representation I
is constructed, and is shown to have the features (I'l), (I'2), (I'3), and (I'4)
above. In Section 6.2, the matrices X, (z) and y,(z) are defined explicitly,
and Theorem 1 is proved. In Section 7, some of the symmetries of X, (z),
Y (z) are explored, and in particular, we show that Y (I) € 7(4) for every
0 # X € R\ SpecKq and I > 0. Using the results in Section 7, we prove
Theorem 2 in Section 8. Finally, brief comments on future directions are given
in Section 9.

2. Preliminaries
2.1. Terminologies

We denote i = /—1. When the (i, j)th entry of A € gl(m,n,C) is a;j,
1<i<m,1<j<mn, wewrite A = (ai,j)1<i<m’1<j<n. In case m = n,
we also write A = (a;;),<; j<,- For A € gl(m,n,C), we denote the (i,5)th
entry of A by A; ;. The complex conjugate, the transpose, and the conjugate
transpose of A € gl(m,n,C) are denoted respectively by A, AT A*. For
A € gl(n,C), adj A is the classical adjoint of A, so that, if A is invertible, then
Al =adjA/det A.

For n € N, let GL(n,C) (respectively, GL(n,R)) be the set of invertible
matrices in gl(n, C) (respectively, in gl(n,R)). A € GL(n,C) is orthogonal, if
A=t = AT and is unitary, if A= = A*. For n € N, let O(n) and U(n) be the
set of orthogonal matrices and the set of unitary matrices in GL(n,C) respec-
tively. Regardless of their sizes, we denote by I and O, the identity matrix and
the zero matrix respectively. In case of possible confusion with size, we denote



SPECTRAL ANALYSIS FOR WELL-POSED BEAM DEFLECTION 7

I=1, €gl(n,C), O =0y, € glim,n,C), O =0, € gl(n,C). In particular,
we denote the zero column vector by 0 = 0,, = O, € gl(n,1,C). The diagonal
matrix with entries ¢q,ca, ..., ¢, is denoted by diag (¢, ¢, ..., cn).

2.2. Frequently used matrices

Here, we introduce some special matrices which will be used extensively in
this paper. They are useful for dealing with various symmetries in our problem,
and readers are recommended to be acquainted with their properties.
Definition 2.1. Denote w; = €27~V for j € Z, Q = diag (w1, w2, ws,ws),

(il
and Wy = (wj )1§Z_7j§4.

w1, w2, w3, wy are the primitive 4th roots of —1, and w14 = wj, j € Z,
hence

(21) w;'l:_la wij:wj_la ﬁwj = Wj+1, J € Z,
(2.2) w4 = W1, w3 = W2,
(23) W3 = —Wwi, Wy = —Wwy,
(2.4) Qt=-1 Q=09
Definition 2.2. Let ¢ = €4 =1, e = €3 = —1, and €44 = €5, j € Z. Denote
&= dlag (61, €2, €3, 64) = dlag(l, 71, 71, 1)
Note that
€; €j—1 .
2.5 Rew; = ——, Imw; = -2 €.
(2.5) J V2 J J

Definition 2.3. Denote y;(z) = e“**, j =1,2,3,4, and

y(x) — (yl('»f) yg(:z:) yS(x) y4(£lf))T — (6w1am ew2ar  pwzaw ew4az)T-

Denote the Wronskian matrix corresponding to y1(z), y2(x), ys3(x), ya(x) by

yi(z)  ye(z)  ys(z)  wa(e) y(@)”
W(a) = yi(z)  ya(z)  ys(z)  wyalz) | _ Y’(m)T
yi(z) ya(x) wys(z) yi(z) Y”(l‘)T
yi'(z) o' () ws'(z) vy (x) y" (z)
Note that
ewiox Wi - ewiaL
d ewzocz wWoly - ewzoc:v
/ _ @ — 2 — .
(26) Yy (:E) - dil? ewgaw w3 - ewgaw OéQ y(d?)
ewao Wy - ewioT
By Definitions 2.1 and 2.3,
W — ( oyl wjax)
() (wje) e 1<ij<d
(27) _ diag (1,@,0&27043) . (w;}l)lgi’jéZl . diag (ewlam’ewzaw7ew3aas7ewz;aw)
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= diag (1, a, o?, ag) - Wefer,

By (2.1),

* j—1 ——j—1 1—j
(2:8) Wo = (wf )19‘4‘34 = (@ )19’0’9 - (wi j) <
Lemma 2.1. W, ! = TW5.

Proof. By (2.8),

hence

(WSWO)i,j =

If i # j, then 1 — (wj/w;)" =1 —wl/w! =1—(=1)/(—1) = 0 by (2.1). Thus
W{W = 41, from which the result follows. O

The inverse W (z)~! of W(x) is well-defined for every z € R, and by (2.7)
and Lemma 2.1,

W(z)™! = e W' . diag (1,0, 0%, 043)71

1 -
(2.9) = Ze*QO‘IWS -diag (1, o, @, %) '
Definition 2.4. Regardless of size, we denote
00 0 1
rR=|00 - 0f¢ O(n).
01 0 O
10 0 O

In case of possible confusion, we denote R = R,, € O(n).

Note that RT = R* = R = R™!. When multiplied to the left (respectively,
to the right) of a matrix, R reverses the order of the rows (respectively, the
columns) of that matrix. Hence by (2.2),

(2.10) RQ=QR, WoR=W, R y)=y(), W@R=W().
Definition 2.5. Denote

€ 0(4).

= O O O
o OO
O O = O
o = o o
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Note that, when multiplied to the left (respectively, to the right) of a matrix,
L lifts up the rows cyclically by one row (respectively, moves the columns to
the right cyclically by one column). Thus by (2.1),

0 wy 0 O
4 |10 0 w3 O 1 .
(211)  LOLT = o 0 T | LT = diag (g s wa,wn) = 9,
wi 0 0 O
-1 _ i—1 o - i—1
WoL (wj+1)1§i,j§4 - ((nwj) )19‘434
(2.12) = diag (1,1,1%,i%) - Wo.
In particular,
00 10
2 |0 0 0 1
L° = 100 0 €0(4)
01 00

is also frequently used. Note that (LQ) ( ' =L2=(L?)" ' By (2.3),
(2.13) L’Q = -QL?, y(z) =y(-z).

Definition 2.6. Define B—,B" : C3[—1,1] — gl(4,1,C) by
T

B [u] = (u(=1) w'(=1) u"(=1) w"(=1))",
Bt = (u(l) W/(1) w’(l) u’”(l))T.
Let u € C3[—1,1]. Note that
(2.14) 5t = (el

where B is defined by (1.4). Let M—,M™ € gl(4,C), so that M = (M~ M) €

gl(4,8,C). Then by (2.14),

B~ [u]

B [u]
By (2.1), the functions 1, y2, ys, y4 in Definition 2.3 form a fundamental set

of solutions of the linear homogeneous equation DE(0): u®* +a%u = 0 in (1.3).

Thus u € L?[—1,1] is a solution of DE(0), if and only if u(z) = Ejzl ¢j-yi(z) =

y(z)Tc for some ¢ = (01 co  C3 04)T € gl(4,1,C), in which case we have

(2.15) M- Blu] = (M~ M) ( ) =M B [ul+ M- Bt

4 4 ]

(£

B[] =B > ey =Y ¢ B[yl =) z{,((i
j=1 '

| )
=\ ()
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))T c=W(zxl)e.

3. Green’s functions for well-posed boundary conditions

Definition 3.1. M € gl(4,8,C) is called well-posed, if the boundary value
problem consisting of DE(0): u® + a*u = 0 and BC(M): M - Bu] = 0 in
(1.6), has the unique trivial solution u = 0 in L?[—[,1]. The set of well-posed
matrices in gl(4,8,C) is denoted by wp(4, 8, C).

Definition 3.2. For M € gl(4,8,C), we denote M~ = M~W(—I), M+ =
M*TW(l), and M = M~ + M* € gl(4,C), where M~ ,M™* € gl(4,C) are the
4 x 4 minors of M such that M = (M’ M+).

Lemma 3.1. Let M € gl(4,8,C). Then M € wp(4,8,C), if and only if
det M # 0.

Proof. Let M—,M* € gl(4,C) be the 4 x 4 minors of M such that M =
(M~ M), Suppose u € L?*[—1,1] is a solution of DE(0), so that u(z) =
y(z)Tc for some ¢ € gl(4,1,C). Then by (2.15), (2.16), and Definition 3.2, the
boundary condition BC(M) becomes

(31) 0=M.Blu] =M - W(—l)c + M" - W(l)c = (M- + M+) c = Me.

By Definition 3.1, M € wp(4, 8, C), if and only if ¢ = 0 is the only solution in

gl(4, 1, C) satisfying (3.1), which is equivalent to det M # 0. O
Since M is invertible for every M € wp(4, 8,C), the following is well-defined.

Definition 3.3. For M € wp(4,8,C), we denote Gy = M-'M-QL? and
Gi; =M M*+QL2.

By Definition 3.2, Gy +G{; = MM~ QL24+M~'MTQL? = M~ 'MQL?,
hence we have
(3.2) Gy + Gi; = QL?, M € wp(4,8,C).

Definition 3.4. Let M € wp(4,8,C). Define the function Gy @ [—1,1] %
[-1,1] = C, called the Green function corresponding to M, by

_a [ y@" -Gy, ifz<g,
Gm(@,8) = 7 { —y(x)"- IC\;ARA y(€), ifE<a

Define the operator K : L2[—1,1] — L?[—1,1] by

l
Kon[w](z) = /_l Gz, w(€)de,  we L2-11], = ¢ [, 1.
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Note that Gy is bounded on [—1,1] x [—{,1]. Tt is well-known [12] that an in-
tegral operator of the form w — fil g(x,&)w(€) dz with bounded kernel g(z, &),
is a compact linear operator on L?[—[,[]. Thus Ky is a well-defined compact
linear operator on L?[—,1]. Note from Definitions 3.3 and 3.4 that the function
G is defined constructively in terms of given M € wp(4, 8, C). Lemma 3.2 be-
low, whose proof is in Appendix A, shows that Gy is the usual Green function
for the boundary value problem consisting of DE(0) and BC(M).

Lemma 3.2. Let M € wp(4,8,C) and w € L%*[—1,1]. Then Km[w] is the
unique solution of the boundary value problem consisting of DE(w) and BC(M).

By Lemma 3.2, we have
4

(3.3)  Km[u]® + ot - Knlu] = % u, Mewp(4,8,C), ue L2[-1,1],
(3.4) M - B [Kmlu]] = 0, M € wp(4,8,C), u € L*[-1,1].

Note that (3.3) in particular implies that the linear operator Kyg is one-to-
one, or injective, for every M € wp(4, 8, C).

Definition 3.5. For 0 # A € C, we denote by EDE(\), the homogeneous
equation

1
EDE()) : u® + (1 - Ak) otu=0.
Note that 1 —1/(Ak) # 1 for any A € C. In fact, the homogeneous equation
DE(0): u® +a*u = 0 can be regarded as the limiting case EDE(c0). In terms
of given M € wp(4,8,C), KM has the following eigencondition.

Lemma 3.3. Let M € wp(4,8,C), 0 # u € L?[-1,1], and A\ € C. Then
Kalu] = A -, if and only if X # 0 and u satisfies EDE(X) and BC(M).

Proof. Let u # 0 € L?[—1,1], A € C. Suppose Kn[u] = A - u. If A = 0, then
Kmlu] = 0w =0, hence u = 0 by (3.3), contradicting the assumption u # 0.
Thus A # 0. By (3.3), we have

4
Aou® = - 0)@ = K@ = —at - Knfu] + % u
4
S WO AL B G DY
7a()\u)+ku ()\ k)a u,

which shows that u satisfies EDE(A). By (3.4), we have M- B [u] = (1/\)-M -
B\ u]l=(1/X) - M- B[Knm[u]] = 0, hence u satisfies BC(M).

Conversely, suppose A # 0 and u satisfies EDE(A) and BC(M). Let @ =
Ka[u] — A+ u. Then by (3.3), we have

i+ a*t = (KKmfu] = A - w)™ + o (KKnfu] = A - w)
= (ICM [wW]® + ot Ky [u]) - (u(4) + a4u>
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4
= o (u® 4t = -2 du® LI
2 u )\(u —l—au) Asu + (1 & a“u g,

hence @) +a0 = 0, since u satisfies EDE()). By (3.4), we have M- B [4] = M-
B[Kmlu] = A u] = M-B[Kmu]] —AM:-B [u] = =AM B [u], hence M-B[d4] = 0,
since u satisfies BC(M). It follows that @& = Ky[u] — A« u is the unique solution
of the boundary value problem consisting of DE(0) and BC(M), which is 0 by
Definition 3.1. Thus we have Kyg[u] = A - u, and the proof is complete. O

4. Representation of well-posed boundary conditions
4.1. The representations I'” and 't

Definition 4.1. M, N € wp(4, 8,C) are called equivalent, and denote M ~ N
if Knp = K. The quotient set wp(4, 8, C) /= of wp(4, 8, C) with respect to the
equivalence relation =, is denoted by wp(C). For M € wp(4,8,C), we denote
by [M] € wp(C) the equivalence class with respect to & containing M.

Note from Definitions 3.4 and 4.1 that M ~ N, if and only if Gn = G-

Lemma 4.1. For M|N € wp(4,8,C), the following (a), (b), (c), (d) are
equivalent. (a) M ~ N. (b) Gi; = Gf. (¢) Gy = G- (d) N = PM for
some P € GL(4,C).

Proof. The equivalence of (b) and (c) follows immediately, since Gy + Gy =
QL2 = Gy + Gi; by (3.2). Since the entries y1,y2, Y3, ¥4 of y in Definition 2.3
are linearly independent, it follows from Definition 3.4 that Gy = G, if and
only if Gy; = G and Gy = G5 Thus (a), (b), (c) are equivalent, and hence
it is sufficient to show the equivalence of (b) and (d).

Let M—,M* € gl(4,C) and N—,N7T € gl(4,C) be the 4 x 4 minors of M
and N respectively such that M = (M~ MT*), N = (N~ N¥). Suppose
(d). Then (N~ N*) =N =PM =P (M~ M) = (PM~ PM~) for
some P € GL(4,C). So we have N~ = PM~ and Nt = PM™, and hence by
Definition 3.2, N* = N¥*W(+£l) = PM*W(+l) = PM* and N = N~ + N+ =
PM~ + PM* = PM. Thus by Definition 3.3,

Gf = N"'NtQL? = (PM) ' (PM*') QL = M 'P~'PM* QL
= M 'M*QL? = G,
hence we have (b).

Conversely, suppose (b), so that G{; = G{;. Since (b) and (c) are equivalent,
we also have Gy; = Gy. By Definition 3.3, we have MM~ = N-IN- and
M-IM+* = N-IN+*, since QL2 is invertible. So we have N* = NM~! . M+,
hence N*TW (+]) = NM-! - M*W (4l) by Definition 3.2. Since W (%) are
invertible, we have N* = NM~! - M, hence

N= (N~ N*)=(NM'-M~ NM' M')=NM" M
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Thus we have (d), since NM! ¢ GL(4,C) by Lemma 3.1, and the proof is
complete. 0

Definition 4.2. Define I'",T'" : wp(C) — gl(4,C) by I'" ([M]) = Gy, and
I't ([M]) = G{; for M € wp(4,8,C).

By Lemma 4.1, I'", I't are well-defined and one-to-one. Lemma 4.2 below
shows that I'", 't are also onto, and hence are one-to-one correspondences

from wp(C) to gl(4,C).

Lemma 4.2. Suppose G—,Gt € ¢l(4,C) satisfy G- + G = QL2. Then

there exists M € wp(4,8,C) such that Gy = G—, Gi; = G*. [n1 particular,

M can be taken by M = (M_ M+), where M~ = G~ (QLQ) W(-1)7t,
M, = G (QL2) W)L
Proof. Let M~ = G~ (QL?) ™ W(=I)~1, My = G* (QL?)" ' W()~!, and

1 1

let M = ( ) gl(4,8,C). Then by Definition 3.2, we have
(x W (L)™' W(Ll) = GE (QL?)

(4.1) M* = M*W(+l) = G* (QL?)~

hence

~ o~ = 1

M=M_+M, =G (QL?) ' +G' (QL?)"
(42) =QL?.(QL%) ' =1

— (G™+GT) (L)

Thus M € wp(4,8,C) by Lemma 3.1, since M = I is invertible. By Defini-
tion 3.3 and (4.1), (4.2), we have Gi; = M~!M*QL? = I-1 . G* (QL2) "
QL? = G¥, hence the proof is complete. O

Note from Definitions 3.2, 3.3, and 4.2 that the maps I'" and I'" are con-
structive, in that T~ ([M]) = Gy, I'" ([M]) = G{; can be computed explicitly
in terms of given M € wp(4,8,C). In fact, the inverses (I")A7 (I‘*)i1 are
also constructive. Lemma 4.2 implies that

()@
(143 = [(a@r) wn | (@ -q) (L) wo )],
() @)
(49 = [( (@2 -q) QL) Wt G QL) wo )]
for every G- € gl(4,C).

4.2. Real boundary conditions and the algebra 7(4)

Of particular interest among boundary conditions in wp(4,8,C) are those
with real entries. We characterize this important class of real boundary condi-
tions in terms of the maps I'™ and I'" in Definition 4.2.
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Definition 4.3. Denote wp(4,8,R) = wp(4,8,C) Ngl(4,8,R) and
wp(R) = {[M] € wp(C) |[M € wp(4,8,R)} C wp(C).

Let M € wp(4, 8, R). By Lemma 3.2, it is clear that Knp[w](
for every real-valued w € L?[—[,1]. Thus it follows that G (,
for every M € wp(4, 8, R).

x) is real-valued
€) is real-valued

Lemma 4.3. RGyR = Gy; and RG{;R = G{; for every M € wp(4,8,R).

Proof. Let M € wp(4,8,R). Since Gm(z, £) is real-valued, we have Gz (z, &) =
Gm(z, &) for (x,€) € [—1,1] x [-1,1]. By Definition 3.4 and (2.10), we have

-7 —
S _ ) y(x) -Gy oy(§), ifz<g,
Gz = 2. ]yl b
M) k {—Y(x)T'GM'y(ﬁ)» if&<x

. { R-y@)}" Gy {R-y(©), ifz<g
—{R-y(@)} Gy {R y(©)}, ifE<a

. { y(@)" -RGLR -y(6), ifz<e,

~y(@)T - RGyR - y(¢), if¢<u,

hence
0= Cu(0.6) - Gmale, )}

y(@)" - (RGLR - Gyp) -¥(6).  ifa<g,
~y(@)7 - (RGyR - Gy ) -¥(6), i<,

which is equivalent to RGK/IR — Gf{,[ = RGyR — Gy, = O, since the entries
Y1,Y2, Y3, ys of y in Definition 2.3 are linearly independent. (]

Lemma 4.3 leads us to the following definition.
Definition 4.4. For n € N, we denote 7(n) = {A € gl(n,C) | RAR = A}.

Note that 7(n) is the set of matrices in gl(n, C) invariant under the transfor-
mation A — RAR, which is the complex conjugation with the 180° rotation of
matrix entries. Lemma 4.4 below, whose proof is immediate from Definition 4.4,
shows in particular that 7(n) forms an R-algebra.

Lemma 4.4. For n € N, we have the following.
(a) If A,B € T(n), then aA + B € w(n) for every a,b € R.
) If A,B € T(n), then AB € T(n).
) If A € T(n) is invertible, then A=t € 7(n)
) If A € ®(n), then AT € 7(n)
e) 0,,I,,R, € ®(n) and Q,L% € € T(4).

(b
(c
(d
(
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In particular, we have
a11 aiz2 Ga13 ai4

— a1 Ag22 Q23 (24 . .
7(4) = e e T 2 e €Cli=1,2,=1,2,3.4
(4) G241 Q23 G2 Q21 ” ’ i T

a14 a3 a12 ail

)

which shows that the dimension of 7(4) as an R-algebra is 16. In fact, it will
be shown in Section 8 that 7(2n) is isomorphic to gl(2n,R) for n € N.

Lemma 4.3 shows that the images of wp(R) under I'” and I't in Defini-
tion 4.2 are subsets of (4). Lemma 4.5 below shows that, in fact, I'~ (wp(R)) =
't (wp(R)) = 7(4), by constructing representatives in wp(4,8,R) of the in-
verses (1) (G), (1) " (G) of G € 7(4). Denote

10 0 1
1101 1 o I R
(4.5) U=%1o i -1 o _<1'1R —ﬁI)EU(4)'
i 0 0 —i
Note that
(4.6) U = UR.

Lemma 4.5. Suppose G=,GT € 7(4) satisfy G~ + GT = QL?. Then there

evists M € wp(4,8,R) such that Gy; = G—, Gi; = G*. In particular, M
1

can be taken by M = (M~ M), where M~ = UG~ (QL?) " W(-1)~*,
M, = UGH (QL?) " W()~L.
Proof. Let M~ = UG~ (QL2) ' W(=)~!, M, = UG+ (QL2) " W)},

and M = (M~ M+). Let

M= (G- (L) W)t [ G (L) wi ).

Then M = UM, hence M ~ M by Lemma 4.1, since U is invertible. So by
Definition 4.2 and Lemma 4.2, we have Gl%/[ =T+ (M]) =T% ([I\A/I}) = Gf/{ =
G*, since G~,G* € gl(4,C). Thus it is sufficient to show that M—, M+ €
gl(4,R). By Definition 4.4,

(4.7) G+ (QL2) ' =R.G* (QL?) ' R,

since G~ (QL2) ™, G+ (QL2) ™' € 7(4) by Lemma 4.4. Since W (z) = W(z)R
by (2.10), we have

(48) W(E)I= {W(ﬁ:l)}_l — (W()R} ' =R-W(+) L.
Thus by (4.6), (4.7), (4.8), we have
M* =U-G* QL) - W(xl) T
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~UR-{R-G* (Q1?) "R} {R-W(x)) "'}
— UG* (QL?) " W()~ ! = M™.

This shows M~ ,M™ € gl(4,R), and the proof is complete. O

5. The boundary condition Q and the operator Kq = K; o,k

Let
0 a2 —V2a 1 0 0 0 0
_ | V20 —a? 0 1 L 0 0 0 O
Q = 0 0 0 0 Q7 = 0 a2 Voo 1|7
0 0 0 0 V2 —a®2 0 1

so that (Q~ QT) = Q in (1.9). In this section, we apply Definitions 3.2
and 3.3 to Q to obtain explicit forms of Gg = I'" ([Q]) and Ga =T (Q)).
In addition to being needed to construct the map I' in Section 6.1, this will
also serve as a concrete example of computing I'” and I'". We also show
in Lemma 5.1 below that Kq = K o %, where K; o is the integral operator
defined in (1.7).

By Definition 2.1, we have

0 1 —v2 1
— . 2 3 3 \/5 —1 0 1 i—1
Q -diag (Lasa®,a”) - Wo=a” | 15 -8 0 o (@)
0 0 0 0
ay Gy A3 Gy
by b5, by b
_ .3 1 2 3 4
(5-1) 1o 0o o o]
0 0 0 0
0 0 0 0
. 0 0 0 0 -
Q*-dlag(l,a,aaag)-wo:a?’ 0 1 V31 (w; )19”54
-2 -1 0 1
0 0 0 0
0 0 0 0
_ 3
) T el o) af af ]
+

bf b3 o b

where we put aji =w; ﬂwf +w§’, b]j-[ =TV2 - wj +w§’, 7 =1,2,3,4. Note
that w? = {eﬁﬂ?j—l)}2 = i7" = (=1)/*'i by Definition 2.1, and w; + w? =
wj —w; =2iImw; = \/ﬁej,liu —wj +w§? = —w; —w; = —2Rew; = —\/§6j by
(2.1), (2.5). Hence, for j = 1,2,3,4, we have

a;t =w; £ \/iwf +wl = V2 i £ V2 (-1)7H
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4 (—=1)0H1
(5.3) :2@.%11)
(5.4) b;E:q:\[—Wj+W?=—\[2€jq:\/§:2\/§-%.

By (5.1), (5.2), (5.3), (5.4), we have

L1y Iy =l =ity 0 1 —i 0
3 —%-‘rl 141 141 —%-’rl f 3 0 1 1 O
= 2 2 2 2 —
2V2a* | 3 0 0 0 2V22T10 0 0 0
0 0 0 0 00 0 O
Q" d1ag(1,a,a2,a3) Wy
0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O
= 2\/5063 141 1—1: —1+1: —1-1 = 2\/50[3 .
%11 51 1 2 i 0 0 1
7271 %1 1571 7271 -1 0 0 -1
hence by Definition 3.2 and (2.7),
Q =Q W(=I)=Q -diag (1, a, a2 a%) - Wye 2
Q =Q Q g (L, a,a”,
01 —1 O
01 1 0
_ 3 —Qal
=227 0 g
00 0 O
0 ne—wgal I'le—o.)gal 0
B 3 0 efwzozl efwgal 0
(5.5) =2V2a o o 0 ol
0 0 0 0
Q" =Q"W(l) = Q" - diag (1,a,a2,a3) - Wet!
0 0 0 O
0 0 0 O
_ 3 Qal
=22t g g e
-1 0 0 -1
0 0 0 0
0 0 0 0
_ 3
(56) - 2\/§Oé ﬁewlal 0 0 7]‘16w4o¢l )
_ewlal 0 0 _€w4al
0 ﬁefwgozl _]'lefw3al 0
B ~ 0 e—wgal e—wgal 0
(5 7) Q=Q + Q+ = 2\/50(3 wyal 0 0 _jewacl

—ewWl al 0 0 _ew4al

87
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Let
0O 1 —-1 O
. 1 0 1 1 o0
Ufﬁ i 0 0 —i cU4).
-1 0 0 -1
Then by (5.7) and Definition 2.2,
0 1 -1 O
~ 1 0 1 1 0 . 1 - 1 - 1 1
Q=40 — | . ~d1ag(e“’1°‘,e @2 e ‘“3'1,6‘*’4”‘)
Vol i 0 0 —i
-1 0 0 -1
— 4a3ﬂefﬂo¢l
hence we have
~—1 _ —EQaly1—1 __ —EQalyT*
(58) Q = @8 U = me U 5

since U is unitary. Note that this in particular shows that Q is well-posed by
Lemma 3.1.

Let
01 -1 0 0 0 0 O
go_Lfo1r 1o cr_ 1|0 00 0
2l oo o o Gli 00 -
00 0 O -1 0 0 -1
Then by (5.5), (5.6)
01 -1 0
&t L [0 810 g et ot g
00 0 O
(5.9) = 403U~ 5l
0 0 0 O
Q+=4a3'% g 8 8 i)ﬁ - diag (e“1!, em w2l emwsal gwaal)
-1 0 0 -1
(5.10) = 4a’UTef2

By (5.8), (5.9), (5.10), we have

1 . . B o
36 gﬂalU* . 40[3U:|:€$Qal —e EQOLZU*U:I:EEQDJ'

N-10t — _~
(511)  Q'Q*=
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Note that
0 0 —i —1 0 i —i 0
e 1= 1 0 of 1fo1 1 o
0 i -1 00 0 0
0 —1 -1 0 0 0 O
JNIDN 1 -1 1 0 0 1 0 0 0 O
* + - p— = di
U*U =Gl 1 0 o0 Ali 00 = diag(1,0,0,1),
0 0 1 -1 -1 0 0 -1
hence by (5.11),
(5.12) Q'Q = e %% . diag(0,1,1,0) - £ = diag(0,1,1,0),
(5.13) Q'Qt = e . diag(1,0,0,1) - €2 = diag(1,0,0,1).
Thus by Definition 3.3, we finally have
Gq=Q'Q ar?
0 0 wi O 0 0 0 O
e 00 0 0 w| [0 00 w
(5.14) = diag(0,1,1,0) o 0 ol=lw 00 ol
0 wgy 0 O 0 0 0 O
G4 =Q'Qtar?
0 0 wi O 0 0 wi O
T 0 0 0 w2 O 0O 0 O
(5.15) = diag(1,0,0,1) - ws 000 o|=lo 0o o ol
0 wgy 0 O 0 wgy 0 O
Note that Q € wp(4,8,R) and Gg, Ga € 7(4), satisfying Lemma 4.3.

Lemma 5.1. Kq =Ko -

Proof. By (1.7) and Definition 3.4, it is sufficient to show that Gq = G, where

G is defined by (1.8). By Definition 2.3, and (2.3), (5.14), (5.15), we have
y(Z)T . GE} . }’(5) _ wgewgaa:ewlaﬁ + w2ew2aw€w4a£

—wia(z—§) _ —w4oz(f':—£)7

= —wi€
y(ﬂl‘)T . Ga . y(g) — wlewlarew;soci + w4BW4azew2a§

— yem@ial€=a) 4y omwia(é—a).

wye€

hence by Definitions 2.1, 3.4, and (2.2),
_a wie—wralé—a) 4 ) e—wia(f—z)
GQ(xag) T 4k { wlefwla(xfﬁ) +w4efw4a(m7§)
a

T 4k

NS
, §<w

(wlewla\z*a n w467w4a|xfs|>
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ak
— % Re <en4e (\}§+n\}§)a|w—f|)
_ O o Sleei (5 gleg)
2k
:%e Valt=¢l cog <Z\%|xf|>
= 55¢ vl 5'51n<j§x—£+4>,

which is identical to G(z,€) in (1.8). Thus we have the proof. O

6. The representation I' and proof of Theorem 1
6.1. The representation I
Definition 6.1. For M € wp(4, 8,C), denote G = (GK,[ — Ga) (QLQ)_1 E.
Define I' : wp(C) — gl(4,C) by I' ([M]) = Gm for M € wp(4,8,C).

Readers should be cautious to distinguish the 4 x 4 matriz Gy in Defini-
tion 6.1 from the Green function Gy in Definition 3.4. Note that the map T’
is well-defined, since

6.1) T(M]) = (GK/I - Gg) QL) '€ = {F+ (IM]) — Gg} QL) ~'e
by Definition 4.2. By (3.2),
Gu = {(L? - Gyy) - (L2 - Gg ) | (L) "¢
_ (G;A - Gé) (QL2)'¢,
which could have been used for an alternative definition of Gys. Note also that
(6.2) Gq =0.

Lemma 6.1. T : wp(C) — gl(4,C) is a one-to-one correspondence, and
I'(wp(R)) =7(4).

Proof. Since I'" is a one-to-one correspondence and (QLQ) leis invertible, it

follows from (6.1) that I' also is a one-to-one correspondence.  Since
— -1 — —

' (wp(4, R)) = 7(4) and Ga, (QL?) " € € ™(4), we have I' (wp(4,R)) = 7(4)

by (6.1) and Lemma 4.4. O

Thus we finally have our representation M — Gy , from the set of well-
posed boundary conditions wp(4, 8, C) to the algebra gl(4, C), and from the set
of well-posed real boundary conditions wp(4, 8, R) to the R-algebra 7(4). Note
that this representation is constructive in both directions, in that G € gl(4, C)
is expressed explicitly in terms of given M € wp(4, 8, C), and conversely, M €
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wp(4,8,C) such that Gy = G can be chosen explicitly in terms of given
G € gl(4,C). Especially, given M = (M~ MT") € wp(4,8,C), M~,M* €
gl(4,C), we have
Gum = (Gi; - Gg) (A1?) '€

= (MM - gUlQrer?) (ar?) e

_ <M—1M+ _ Q_1Q+) £
(6.3) = {(M-W(=I) + M*W(1)} ' M*W ()€ — diag(1,0,0,1)
by combining Definitions 3.2, 3.3, 6.1, and (5.13). Conversely, suppose G €
gl(4,C) is given. By (6.1), we have I "}(G) = (F+)_1 (GSQL2 + G+>, hence

by (4.4), (5.13), and Definition 3.3, M = (M~ M) € wp(4,8,C) is a repre-
sentative of I "1(G) € wp(C), where

1

M- = {12 - (Gear? + 6§) } (a1?) T (=)

RGO

- (QL2 —GEQL? — Q_1Q+QL2) (QL?)
= {diag(0,1,1,0) — GEY W (1)1,
M* = (GEQL? + G (AL2) T W(1) !
- (G5QL2 + Q‘1Q+QL2) (@) W)
= {diag(1,0,0,1) + GE} W ()~ L.
Thus, given G € gl(4,C), we have
6.4 I'Y(G) = [({diag(0,1,1,0) — GE} W(—I)~!
|{diag(1,0,0,1) + GE} W(I)™1)]
in wp(C). When G € 7(4), a representative of I~ (G) in wp(4, 8, R) is
U ( {diag(0,1,1,0) - GE} W (1)~ | {diag(1,0,0,1) + GE} W(I)™* )

by Lemma 4.5, where U is defined by (4.5).
The boundary condition BC(M) in Lemma 3.3 is transformed into the fol-
lowing equivalent condition which is expressed now in terms of G.

Lemma 6.2. For M € wp(4,8,C), the boundary condition BC(M): M-B[u] =
0 s equivalent to

0=GmE{W() "B u] — W(=1)"'B [u]}
+ diag(0,1,1,0) - W(=1)"*B~[u] + diag(1,0,0,1) - W(I) "B [u].
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Proof. By (6.4), {I\A/I} =171 (Gm) € wp(C), where

M = ({diag(0,1,1,0) — GmE} W ()"

(6.5) _
|{diag(1,0,0,1) + GmE} W(I)71).

So by Definition 6.1, [M] = I'"* (Gum) = [I\A/I}, hence by Lemma 4.1, there
exists P € GL(4,C) such that M = PM. Thus the condition BC(M): M -
Blu] = 0 is equivalent to M - B[u] = 0, since P is invertible. By (2.14), (6.5),
)
= {diag(0,1,1,0) — GpmEYW(=1)"! - B~ [u]
+ {diag(1,0,0,1) + GME} W(I) ™1 - B[]
=GME{W() BT [u] - W(=1)"'B [u]}
+ diag(0,1,1,0) - W(=1)"*B~[u] + diag(1,0,0,1) - W(I) "' B*[u],
hence the lemma follows. O

6.2. Proof of Theorem 1

Note that the solution space of the linear homogeneous equation EDE(\) in
Definition 3.5 depends on the value A # 0. In particular, depending on whether
1—1/(Ak) = 0 or not, or equivalently, whether A = 1/k or not, EDE()) becomes
as follows.

(I) When A = 1/k: EDE()) becomes u(*) = 0.
(II) When A # 1/k: EDE()A) becomes u® + (ka)* u = 0, where = x(\) #
0 is defined in Definition 6.2 below.

Definition 6.2. For A € C\ {0,1/k}, define x(\) to be the unique complex
number satisfying x(A\)* =1 —1/(Ak) and 0 < Arg x(\) < 7/2.

Note that x(A) # 0 and x(\)* # 1 for A € C\{0,1/k}. In fact, y is a one-to-
one correspondence from C \ {0,1/k} to {x € C|0 < Argr < 2} \{0,1}, and
its inverse is given by x'(r) =1/ {k (1 — x*)}.

Definition 6.3. For 0 # A € C, denote

j—1
2 i =1 ,
(z)={ G- ! k> =1,2,3,4,
y)n](z) { ewj/-caw7 if A 7é %7 ! .
Where o — X(A) Denote y)\(x) — (y)\,l(x) y)\_rg(x) y)\,B(x) y)\,4(x))T and
}’A(f);
ey _ | ¥i(@)
W (z) = (yk,j (x))1§m§4 B Yi\l(f)T
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Note that the functions yx 1,¥x,2,¥x,3,Yr4 form a fundamental set of solu-
tions of EDE(A) for every 0 # A € C, and

(6.6) Wi(z) = (H(j 5= >1<w<4 B § é z gic A= E
((wjna)i—l ew.jﬁax)1§i7j§4 ’ At l
e { 1 150

Let M € wp(4,8,C). By Lemma 3.3, A € C is an eigenvalue of Ky
and u # 0 is a corresponding eigenfunction, if and only if A # 0 and u is
a nontrivial solution of EDE(\) satisfying the boundary condition BC(M).
Note that u is a nontrivial solution of EDE(\), if and only if there exists
0#c= (a1 c2 c3 04)T € gl(4,1,C) such that u = Ejzl cjyry = yic. If
u= ijl ¢;Yx ;, then by Definitions 2.6 and 6.3,

4 y)‘ngig YA(IH)I;
A (E L (L
ch yA] Zl Zi\/’j(il) “Cj = i?{ggil;T CcC = W)\(j:l)c
T\ () yy ()T

It follows from Lemma 6.2 that the condition BC(M ) is equivalent to
0= GmE {W() "W (l)ec = W(=1) W, (=I)c}
+diag(0,1,1,0) - W(=1)"*W(—=l)c+diag(1,0,0,1) - W) 'W,(I)c
= [GME{W()TTWL(1) = W(=1) "W (=)}
(6.7) +diag(0,1,1,0) - W(=1)"'"W(-1)
+diag(1,0,0,1) - W) 'W, ()] ¢
Thus Lemma 3.3 can be rephrased as the following.

Lemma 6.3. Let M € wp(4,8,C), 0 # u € L?[—1,1], and A\ € C. Then
Kmlu] = X - u, if and only if X # 0 and u = yic for some 0 # c € gl(4,1,C)
which satisfies (6.7).

The following matrix X (z) will have a key role in our discussions.
Definition 6.4. For 0 # A € C and = € R, we denote
X (2) = diag(0,1,1,0) - W(—2) "Wy (—z) + diag(1,0,0,1) - W (z) "W ().

Note from Definitions 2.3 and 6.3 that, for each 0 # A € C and = € R, X (z)
is a concrete 4 x 4 matrix which does not depend on M. By Definition 6.4,

Xa(z) = X (=)
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= {diag((), 1,1,0) - W(—z) "W (—2)

+ dlag(L 07 Oa 1) : W(x)ilw)\(x)}
— {diag(0,1,1,0) - W(z) "W ()
+ diag(1,0,0,1) - W(—z) "W (—2)}

(6.8) =E{W(z) 'Wy(z) - W(—2)"'W,(-z)}, 0#£AeC, z€R.
Now we are ready to prove Theorem 1.

Proof of Theorem 1. By Definition 6.4 and (6.8), the condition (6.7) is equiva-
lent to [Ga {Xa (1) = Xa(=0)} + X (!)] ¢ = 0. Thus the first assertion follows
from Lemma 6.3. The second assertion follows from the first one, since Gq = O
by (6.2). O

7. Symmetries of X, and Y

As a consequence of Theorem 1 and Corollary 1, the matrix X (I) is in-
vertible for every 0 # A € C which is not in Spec Kq. In fact, this is true for
arbitrary [ > 0 by Proposition 1.

Definition 7.1. Denote Y)(z) = X (—2)X (z)™' =T for 0 # A € C and
x > 0 such that det X (z) # 0.

In view of Theorem 1 and Corollaries 1, 2, it is now apparent that analysis
on the 4 x 4 matrices X(z) and Y,(z) are important. It turns out that
they have various symmetries, and some of them are explored in this section.
In particular, we will obtain the following result, which is crucial in proving
Theorem 2.

Lemma 7.1. Y,(z) € 7(4) for every 0 # A € R and = > 0 such that
det X (x) # 0.

The proof of Lemma 7.1 will be given at the end of Section 7.2. To facilitate
our analysis, we introduce the following change of variables

(7.1) z = ax,

which will be used extensively for the rest of the paper. By (2.7), (2.9), and
(7.1),

. r)=diag (l,a,a”,a”) - Woe ™,
7.2 W diag (1 2 o) - Wyett?

1 _
(7.3) W(z) ! = Ze*QZWS - diag (1, a,a?, ag) '

The following form of X (z) will be useful.
Lemma 7.2. For0# A € C and x € R,

1 _
Xa(z) = Ze*SQZ {diag(O, 1,1,0) - W§ - diag (1, o, @®, 0?) ! Wi (—z)

+diag(1,0,0,1) - W - diag (1, o, o, a3)71 W,\(CL‘)} .
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Proof. By Definition 6.4 and (7.1), (7.3), we have
Xy\(z) = i {diag(o, 1,1,0) - €W - diag (1, 0, 0%, 0°) " W (—2)
(7.4) +diag(1,0,0,1) - e" W5 - diag (1, a, a2, a3)_1 WA(JZ)} .
Note that
diag(0,1,1,0) - 2* = diag (0, e*2%, *%, 0)
= diag (e“"lz, eV e¥3z, e_‘"‘*z) - diag(0,1,1,0)
(7.5) = e % . diag(0,1,1,0),
diag(1,0,0,1) - e~** = diag (e~“'#,0,0, e~ “**)
= diag (e_““z, ev2* eWs®, e_““‘z) - diag(1,0,0,1)
(7.6) = e %% . diag(1,0,0,1).
Now the lemma follows from (7.4), (7.5), (7.6). O
7.1. The case XA # 1/k

In this section, we assume X is a complex number such that A # 0, A # 1/k.
Let k = x()) as in Definition 6.2. By Definition 2.1, and (6.6), (7.1), we have

W, (2) = ( Wik i—1 ewﬂiaa:) — (a1 i Lewikz
A( ) ( J ) 1<i,j<4 ( W )

(7.7) = diag (1, a,a?, ozg) - diag (1, K, K2, IQS) - Woet,

1<4,j<4

hence diag (1, a, o?, a3)_1 W (x) = diag (1, K, K2, f<a3) “Wef**%. Thus by (7.1)
and Lemma 7.2, we have

1
X(z) = Ze_‘gﬂz {diag(O, 1,1,0) - Wg - diag (1, K, K2, /{3) - Woe™ 2
(7.8) +diag(1,0,0,1) - W - diag (1, &, K2, /<;3) oWOeQ“Z} ,

where k = x(XA). Note that (7.8) is well-defined for every z,x € C, though we
originally restricted the domains of z, k.

Definition 7.2. For z,k € C, define

X(z,k) = ie*‘snz {diag(O, 1,1,0) - W{, - diag (1, K, K2, /<;3) - Woe $nz
+diag(1,0,0,1) - W - diag (1, &, 5%, k%) - Woe?#} .
By (7.1), (7.8), we have
(7.9) Xa(z) =X (az,x(A), xze€R, AeC\{0,1/k}.

Lemma 7.3. (a) X(z,ik) = X(z,k) - L™ for every z,x € C.
(b) RX(z,k)R =X (2,R) for every z € R and k € C.
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Proof. By (2.11), (2.12), we have
diag (1, ik, (1'1/1)2 , (1'1,{)3) W et in)=
= diag (1, s, k% £%) - diag (1,1,1%,1°) - Wt (i9)s2
= diag (1, k, k% £%) - WL ™" - GALOL iz
R
diag (1, k, k2, &%) - Woe= = . L1,

3

= diag (1, k, k", Kk

which implies (a) by Definition 7.2. Suppose z € R, and let

X(z, k) = diag(0,1,1,0) - W} - diag (1, &, k%, k%) - Woe =

7.10
(7.10) + diag(1,0,0,1) - W - diag (1, P /<;3) - Weft?

so that by Definition 7.2,

(7.11) X(z, k) = ie*mZX(z,m).

Note that diag(0,1,1,0),diag(0,1,1,0) € 7(4). Since z € R, e~ %% € 7(4),

and RexQrzR = ReiﬂﬁzR — ReiRﬂRﬁzR =R- ReiQEzR R = eiQEz by
(2.10). Hence by (7.10), we have

RX(z,x)R = R{diag(0,1,1,0) - W} - diag (1, k, k2, k%) - W - e~} R,
+ R{diag(1,0,0,1) - W¢ - diag (1, K, k2, k%) - Wq - e9252}R
= Rdiag(0,1,1,0)R - RW{ - diag (1, s, K2, k3) - WoR - Re~2%*R,
+ Rdiag(1,0,0,1)R - RW! - diag (1, &, k2, k3) - WoR - Re©<*R.
= diag(0,1,1,0) - (WoR)" - diag (1,7, 7%, &) - WoR - ¢~
+ diag(1,0,0,1) - (WoR)" - diag (1,7, 72, 7%) - WoR - 7
=X (2,7),

since (WoR)? = W, = W and WoR = W, = W, by (2.10). Thus by
(7.11),

- 1 R 1. — -
RX(z, k)R = R{4e—592X(z, K)}R = ZRe—gﬂzR -RX(z, k)R

1 N
= Ee_gﬂzX (2,%) = X (2,R),
since e=¢*** ¢ 7(4). This shows (b), and the proof is complete. O

Interpreting Lemma 7.3 in terms of X (z) and Y x(x), we have the following.
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Lemma 7.4. (a) For Ae C\ {0,1/k} and x € R,

| Xa(z), if A€ (—00,0) U (,00),
RX\(z)R = { Xx(z) - L, otherwise.
In particular, X(x) € T(4) for every A € (—o00,0) U (1/k,00) and
z € R.
(b) RY (z)R = Yy(x) for every A € C\ {0,1/k} and x > 0 such that
det Xx(z) # 0. In particular, Y (z) € T(4) for every A € R\ {0,1/k}
and x > 0 such that det X\ (z) # 0.

Proof. Suppose A € C\ {0,1/k} and z € R. Let rei® = 1 — 1/(\k), » > 0,
0 < 6 < 2. Then by Definition 6.2, x(\) = {*/Fei%. Suppose # = 0, which
is equivalent to A € (—00,0) U (1/k,00). Then x(A) = ¥r = x(\), hence

by (7.9) and Lemma 7.3(b), RXx ()R = RX (az, x(\))R = X (ax, (A)) -
X (az, x(\)) = Xx(z). Suppose 0 < § < 2. Then by Definition 6.2, x (A) =
X (re ) = \‘L/Fei(%ig) =1-yre 't =1 x()), since 0 < Arg (%eﬁ(%*%)) =
7/2—6/4 < /2. Thus by (7.9) and Lemma 7.3(a), X5x(z) = X (az,x (1))
X (a:v,ﬁ W) =X (a:mW) -L~!, and hence by (7.9) and Lemma 7.3(b),
RX, ()R = RX (az, \(\)R = X (axW) = Xy(2) - L. This shows (a).
Suppose A € C\ {0,1/k}, x > 0, and det Xx(z) # 0. Suppose first that
A € (—00,0) U (1/k,00). Then by (a), Xx(z),Xr(—z) € 7(4). Thus by
Lemma 4.4 and Definition 7.1, Y (z) = X (—2)X(z) ! -1 € 7(4), and hence

RY)(z)R = Y(z) = Yx(x), since X is real. Suppose A ¢ (—00,0) U (1/k, 00).
Then by Definition 7.1 and (a),

RY,(2)R = R{X(—2)Xy(z)" ' —I}R = RX,(—z)R - RX,(z) 'R — I
= {Xx(=a)L} {Xx(@)L} " =1 =Xx(-2)X5(x) " = I= Yx(x).

Thus we showed (b), and the proof is complete. O

7.2. The case A = 1/k
By (6.6), (7.1), we have

{diag (1,0, 0, a3)71 -W

=0 W)} el = G-

N .
:H(]—z)(j_i)!:{w%(z)}ij, 1<i,5<4,
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hence diag (1, v, o2, a?’)fl -W
Lemma 7.2,

1 f
X, () = e~ {diag((), 1,1,0)- We W (—2) - diag (1,0, 0%, 0?)

(z) = Wi(z) - diag (1,a7a2,a3)71. Thus by

1
k

-1

+diag(1,0,0,1) - WgW 1 (2) - diag (1,0, 0, a?’)_l}
1
= e {diag(o, 1,1,0) - WyW (—z) + diag(1,0,0,1) -WSW%(z)}

-diag (1, a, 0%, 043)71 )
For z € R, denote
(7.12)  P(2) = diag(0,1,1,0) - Wy W s (—2) + diag(1,0,0,1) - W W, (2),

so that

1 _
(7.13) Xi(z) = Ze_EQZP(z) -diag (1, a, 0®, &%) '

See Appendix B for the proof of Lemma 7.5.
Lemma 7.5. Y%(a:) € w(4) for every x > 0.

Proof of Lemma 7.1. The statement follows from Lemmas 7.4(b) and 7.5 re-
spectively for the case A # 1/k and for the case A = 1/k. O

8. Proof of Theorem 2

Let
1 I, R,
(8.1) Uy, = 7 <ﬁRn —ﬁIn) € gl(2n,C), n e N.
Usy, is unitary, since

\ _ 1 (1, —iR,\ 1 (I, R,\_ (L 0,\_
UQHU%_\@(R” il, )'ﬁ(ﬁRn —ﬁIn>_<On In>_I'

Note also that
1 (I, R, O, R, 1 I. Rn\_w—
(82) UzR = V2 (ﬁRn —ﬁIn> <Rn on) NG (—ﬁRn ﬁIn) = Unn.

Lemma 8.1. For n € N, The map A — Uy, AUL is an R-algebra isomor-
phism from 7(2n) to gl(2n,R).

Proof. Since Ugy,, is unitary, and hence Uign_l = Ul , it is clear that the map
A — U,,AU7 is a C-algebra isomorphism from gl(2n,C) to gl(2n,C). So
it is sufficient to show that A € 7(2n) if and only if Uy, AUZL € gl(2n,R).
Let B = Uy, AUZ . Suppose A € 7(2n). Then by Definition 4.4, A =
RAR = RAR, hence B = Uy, AUl = U,,AU;, = Uy, - RAR-Uj}, =
(Uz,R) A (Uy,R)" = Uy, AU = B by (8.2). Thus B € gl(2n,R). Con-
versely, suppose B € gl(2n,R). Since A = {m}_l B{UZ, = Ul BU,,,
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we have RAR = R(UZ BU,, )R = (Uy,R)" B (U, R) = U BU,,, = A by
(8.2). Thus A € W(2n) by Definition 4.4, and the proof is complete. O

Note that Uy = U, where U is defined by (4.5).

Lemma 8.2. For any O # Gy € 7(4), there exists G € T(4) such that
det (GG —I) = 0.

Proof. Let Go = UG(U7, which is not O, since Gy # 0. By Lemma 8.1,
Gy € gl(4,R). So there exists 0 # r € gl(4,1,R) such that Gor # 0. It is clear
that there exists G € gl(4,R) such that G - Gor = r, since Gor # 0. Take
G = UTGU. Then by Lemma 8.1, G € 7(4), and GG - UTr = UTGU -
UTGyU - UTr = UT - GGor = UTr. Since UTr # 0, it follows that 1 is an
eigenvalue of GGy, which is equivalent to det (GGg —I) = 0. O

Lemma 8.3 below, which is the last ingredient for the proof of Theorem 2,
shows that Y (z), when defined, never becomes the zero matrix for > 0. See
Appendix C for its proof.

Lemma 8.3. Y (z) # O for every 0 # X € C and x > 0 such that det X (z) #
0.

Proof of Theorem 2. Suppose 0 # XA € R\ SpecKq. Then O # Y,(I) €
7(4) by Lemmas 7.1 and 8.3. So by Lemma 8.2. there exists G € 7(4) such
that det {G - Yx(l) —I} = 0. By Definitions 4.3, 6.1, and Lemma 6.1, there
exists M € wp(4, 8,R) such that Gm = G, since G € 7(4). Thus we have
det {Gn - Yr(I) — I} = 0, which implies that A € Spec Ky by Corollary 2. O

9. Discussion

The 4 x 4 matrices X (z) and Y (z) turn out to be rich in symmetries. In
fact, only part of their symmetries are exploited to prove our results in this
paper. We have also tried to refrain, as possible as we can, from resorting
to more explicit forms of X (z) and Y(z), despite of their explicit nature.
In view of what can be done more in these respects, it is expected that we
will have a clearer picture of general well-posed boundary value problems for
finite beam deflection, if we pursue closer investigations on X (z) and Y (z).
Especially, detailed results such as Proposition 1, which is for only one specific
boundary condition Q, are expected to be obtained for the class of all well-
posed boundary conditions.

Appendix A. Proof of Lemma 3.2
By Definition 3.4, we have

&) Gy y(©w(©) de

Knalul(r) = ~ 7 |
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g ) Y@ Gl y(©u)
x l
An  = T {—GM v de+ 65 [ y©u© de},
and by (3.2),
T l
" {—GM [y e+ [ v d&}
T l
— G [ OO ds+ Gl 5 [ youie de
(A.2) = — Gy y(@)w(@) - Gy - y(@)w(z) = —QL? - y(z)w(z).
Let
(A.3) f(z) = -Gy ) d¢ + G, /
so that
(A4) Knalw)(@) = £ - ¥(@)" - £(2),
and f'(z) = —QL? - y(2)w(x) by (A.1), (A.2). By (2.13),
y(@)" - Q" f(z) = —y(2)" - Q" QL? - y(x)w(z)
w(z) {y(2)" Q" y(-a)}
(E) ( WiaT  pWwaQl  oW3Ql ewuxx)
dlag( ntl wé’“,w?“,wf“) . (e:zzz)
_ (:E)Zewjazw;}+lefwjaz
(A.5) = —w(x) Zw}”‘l, n=0,1,2,....
By (2.1), Z; 1‘”;1 = Z? 1(=1) = —4, and Z; 1 g E (a7~ 1w1)2 =

=1
wP3;1(=1)771 = 0. By (2.3), 3j_ w; = 0, hence by (2.1), 3j_; w?
Z?:1 (—w;) = Z? Lw; = 0. So by (A.5), we have

(A6) y)T-Q"-f(z)=0, n=01,2 y)' Q f(z)=4 w(x).
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By (2.6), y'(2)T = {aQ - y(z)}" = a-y(z)T - Q. So by (A.4), (A.6), we have

Sy (@) - f@) +y(@)" - (2)}

T 4k

Oé2

_2y
Kmlw]"(z) = {3/ @) Q- £(2) + y(2)7 - Q- £'(2)}

a3

" a3
Km[w]” (z) = ik
_ ot
T4k

hence by (2.4), (2.6), (A.4), (A.6),

Ko [w]' ()

(A.7) ()" - Q- f(z),

(A.8) y(@)" - Q- f(x),

y' ()T Q2 f(z) +y()? - Q% f'(z)}

(A.9) y(@)" - @ f(x),

Oé4
Kna[w] V(@) = - {y'(2)"- Q@ £(2) +y(2)" - Q- £(2)}
4

- %k {a-y@)T Q@ f(z) +4- w(z)}

044
= Ik {—a-y@)" f(2) +4-w(x)}
4

This shows that Kyp[w](z) satisfies DE(w).
By (A.4), (A.7), (A.8), (A.9), and (2.6), we have

antl Q
Knalu] (@) = Sy (@) Q1) = S far @ y(@) 1)
(A.10) = % y™ (@) f(z), n=0123

By (A.3), f(+l) = FG; [, y(©)w(€) de, hence by (A.10),

l
«
el () = F 0y EDT G [ yu©ds n=0.1.23
So by Definitions 2.3 and 2.6,

o l
W) -G, [ () de

(A1) B [omle] = F o
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Let M~,M™ € gl(4,C) be the 4 x 4 minors of M such that M = (M~ MT).
By Definitions 3.2, 3.3, and (A.11),

l
M B nul] = 4 MEW(ED) - Gy [ y(©u(e)de

- 1

=0 NN [ ygu©
-1

hence by (2.15),

M - B[Kpm[w]] =M™ - B~ [Km[w]] + M™ - Bt [Ka[w]]

o N l
— NN oL [ y©u(e)de

o N l
_ %Nm\/rllvrﬂL2 [ly(é)w(f) 3

(%

o (W - W) an [ (e
1

Thus we have M - B [Kn[w]] = 0, since M = M~ + M* by Definition 3.2 and
hence

M M 'M* - M*M~'M~
= (1\71 — M+) MM - M*M ™! (1\7[ - l\N/I+)
=M"-M*M"'M* - M* + M*M~'M* = 0.

This shows that Kyp[w] satisfies BC(M), and the proof is complete.

Appendix B. Proof of Lemma 7.5

Denote
(B.1) pm(z):zwir' 2 n=0,1,2,3, i€,

where it is understood that 0° = 1. In particular, denote
(B.2) Pn(2) = pp1(2), n=20,1,2,3.
By Definitions 2.1, 2.4, and (2.10),

Wi =W, =(WoR)" =RW! =R (w,f.'*l) - (ng) ,
1<i,j<4 1<i,j<4
hence by (6.6), (B.1), we have

diag(0,1,1,0) - WiW. (—2)



SPECTRAL ANALYSIS FOR WELL-POSED BEAM DEFLECTION 103

000 0 0\ (=) (=9! =P -’
_ |1 ws wi ol 0 (=2)° (=2) 35(=2)°
Tl owe Wi oWl 0 0 (=2)°  (=2)!
00 0 0 0 0 0 (—2)°
0 0 0 0
_ po3(—=2) p13(=2) p23(—2) p33(—2)
po2(—2) p12(=2) p22(—2) psa2(—2) [’
0 0 0 0
1wy w? Wi 20 21 %22 %23
. " 0O 0 0 O 0 20 2! 52'2
diag(1,0,0,1) - WeW 1 (2) = 00 0 0 0 0 20 St
1w W Wl 0 0 O 20

P0,4(2) pra(2) p2a(z) p3a(z)
0 0 0 0
0
1

- 0 0 0
po,1(2) p1,1(2) P2,1(2) Ps, (Z)

Thus by (7.12), we have

poa(z)  pra(z)  poal(z)  psa(?)
P(z) = po3(—2) pr3(—2) p23(—2) p33(—2)
po2(—2) p12(=2) p22(=2) p32(—2)
po1(z)  p1a(z)  p2a(z)  p3a(z)

Note from (2.2), (2.3), (B.1), (B.2) that, for n =0,1,2,3,

(B.3)

pralz) =Y G =PI (Z “’Z,_Tzr> = 5r () = 22,
. 3(_2) _ Z OJ%IA'_T (_Z)T _ Z (_wil) a (_Z)r _ (_1)n Z wz'_" T
r=0 ' r=0 r=0
= (=1)"pn1(2) = (=1)"pu(),
par(-2) =3 Ay =Y E = {Z L z)T}
r=0 ’ r=0 ’ r=0
= Pna(=2) = 0Pl = (-1)"5a?)
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Denote

(B.5) Pt(z) = <P0(Z§ P2(Z)> 7 P (2) = <p1(Z) p3(2)> 7

po(z) p2(2) p1(2) p3(2)
1 0 10 1000
R I A RS R
0 -1 0 1 0 0 01
Note that V,V € O(4) and
(B.7) detV=1, detV=-1.

Lemma Bl. V.-P(z) -V =2 <sz) PE)(Z)>

Proof. By (B.4), (B.6),

1 1 0 1 0 pogzg pl(?)) ngz; ps(/(z))
P(s) = 0 1 0 1 po(z) —pi(z) p2(z) —p3(z
VPO=Z11 0 1 0] {ne) m) mG w0
0 =1 0 1/ \po(2) pi(2) pa(2) p3(z)
Po(2) 0 p2(2) 0
_ | Pz) 0 pe(x) O
0 —pi(z) 0  —ps(2)
0 p1(2) 0 p3(2)

hence the lemma follows, since multiplying V on the right amounts to inter-
changing the second and the third columns. (I

By Lemma B1, we have

e vz (P ) v

(B8) +O P~ (z)
—vavr (P09 L9 ) v
since V, V are orthogonal. So by (B.7)
det P(z) = v2' - det V - det <P+O(Z) P_O(Z)) - det V7
(0]

= —4-det (PJ;)(Z) P (z)) = —4-det P*(2) - det P~ (2),
hence by (7.13),

0’ _
det Xy (z) = (4> -det e %% . det P(z) - det diag (1, @, &, a®) !
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672\/5;;

. . -1 _ _ _ _ _ _
since det diag (1,,0?,0®) =1l.a ha"2a73 = a7 %, and det e & = ¢~*17.
EW2Z  pW3Z o~ WaZ — e—{(wl—w3)+(w4—w2)}z _ e—2(w1+w4)z _ 6—2-2Rew1~z _ e—2\/§z

by (2.2), (2.3), (2.5). Since det X1 (x) # 0 for every x > 0 by Proposition 1,

Corollary 1, and Lemma 5.1, it follows from (7.1), (B.9) that det P*(z) # 0
and det P~ (z) # 0 for every z > 0. From (B.5), we have

(B.10) det P*(2) = po(2)p2(2) —

(B11)  detP~(z) = p1(=)pa(2) — p

~—

O(Z)m

bS]

=2iIm {po(z)pz(Z)} ;
(2) = 20 Im {

S
=
—
I\
~—
3
w
—
I\
~—
—

—
—
N
~—
]
w

Note from Definition 4.4 that <Z“ Z”) € 7(2), if and only if ay; = a3
21 22

and a1 = G971.
Lemma B2. PT(—2)P*(2)"1,P~(—2)P~(2)~! € 7(2) for every z > 0.

Proof. From (B.5), we have

_ (H{po2mE + pa(-2e ()| EHpo(—2Ipa(z) — pa(—2)po ()
i{po(—2)p2(2) = po(=2po(2)} i {=po(=2)pa(2) + P22 ()} )
(

_ (—pl(—Z) —p3(—2)> (ps(Z) ps() )

pi(=2)  p3(—2) —p1(2)  —p1(2)
(P TIme +mEn e i {-nCaE) +pan G |
H{pi(—2ps(2) —ps(—2)pi ()} i {pi(=2ps(2) — ps(—2)pi () }

_ ﬁ{pl(—Z)p:a(Z) - ps(—Z)pl(Z)} i{p1(—2)ps(2) — p3(—2)p1(2)}
H{pi(—2ps(2) —pa(—2m ()} i {pi(=2)ps() — a2 (2} )
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hence we have iPT(—z) - adjP™(z),iP~(—2) - adjP~(z) € 7(2) by Defini-
tion 4.4. Thus by (B.10), (B.11),

adi + 2 iPt a +(
Pt (—2)P*(z)"" :P“‘Z)'dfiiﬁzi _ 1;( {) djP (}
P (—2)P~(2)" = P~ (—2). ddilljgg _ _ﬂ;( {) adJP <}z>

both of which are in 7(2) by Lemma 4.4. 0

Note from (B.8) that
P(—z)P(z)7"

S
{av (P87 2%) v}
:\/i.vT( o Z>>v1 12 v<P+O(Z) PP(Z))lv
T )

)~

(B.12) = VT <P+(_ AP (2)™ o

o P(Z)P(z)1> V.o z>0

Proof of Lemma 7.5. By Definition 7.1 and Lemma 4.4, it is sufficient to show
that X%(—x)X%(x)_l e 7(4) for x > 0. By (7.1), (7.13),

—z) - diag (1,a,a2, a3)_1 -4 diag (17 a, a27a3) . P(z)_legnz
_ efﬂzp(iz)P(Z)fleEsz

hence it is sufficient to show that P(—z)P(z)~! € @(4) for z > 0, since ¥ €
7(4) for z € R. By (B.6), (B.12),

R{P(—2)P(z)-1JR

v (MO ) Vim
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(B.13) =RVTR-R(P+(_Z)§+(Z)1 P(Z)%(Z)l)R-RVR.
By Lemma B2,
(TS e )R
- (19& 3) e P—<—>Cl)° <z>-1> (1?& g)
- (RP+<Z(>)P+<> e ><g f)‘)
- (RP(Z)CI;() . RP+<—z>(1)°+<> R)
w = (TG ) e

(B.15) :\}iG II) &
o vi- (3 DL (9 )
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Appendix C. Proof of Lemma 8.3

Lemma C1. Suppose ty € R satisfies Ele whewrto =0 forn=1,2,3. Then
to = 0.

Proof. Let a = 24 , €“%0. Then the condition for ¢, is equivalent to

r=

a ewl to ewt to

0 1 e(.UQto ewzt()

ol = (w; )1§i,j§4 T ewsto | T Wo ewsto |

0 €w4t0 €w4t0

which, by Lemma 2.1 and (2.8), is equivalent again to

ewito a 1 1
erto 1 0 a 1—4 0 a 1
ewsto 4 010 4 w; 1<i,j<d4 0 411
ewato 0 0 1

It follows that e¥ifo = e¥ito for every i,5 € Z. In particular, e“1?0 = ew2to
hence 1 = e¥1to /ew2to — elwi—w2)to — V2t Ly Definition 2.1, which implies
that to = 0. O

Proof of Lemma 8.3. Suppose on the contrary that Yy, (zg) = O for some
0 # A € C and xg > 0 such that det X, (z9) # 0. Then by Definition 7.1, we
have X, (—z0) - X, (z0) "' —=I = O, hence Xy, (—2¢) — X», (o) = O. So by
(6.8), we have W ()" Wy, (z0) = W (—x0) "' W, (—z0), hence

(C.1) W, (—20) W, (20) "' = W (—a0) W (z0) .

Let zp = axg > 0. By (7.2), (7.3),
W (—20) W (z9) ' = {diag (L, a,0%,0%) - Woeﬂ(*zo)}
: {ie—“%wg -diag (1, @, 0, 043)1}
(C.2) = idiag(La’az’as) Woe 220 W -diag(l,a,a2,a3)_1,
By (2.8),

—2Qz *
Woe 220 W

—2wi1z0 ,—2w2z0
, €

)

6_2‘*)32076_2‘4742(]) . (wilij

= (w;}l)lgi’j§4 ’ diag (6 )1§i7j§4

— (W§_1672wj20) 1—]

o w
1<i,j<4 (’ >1§¢,j§4

_ 1—1 _—2wyrzo, ,1—7
= (E w, e T Pw, )
r=1 1<4,j<4



SPECTRAL ANALYSIS FOR WELL-POSED BEAM DEFLECTION 109

4
_ E i—J —2w,z
e w'r e r<0 ,
r=1 1<i,j<4

hence by (C.2),

(W (—zo)W (xo)_l}” = (Wee W)

i=j o
(C.4) =Y wTe™ e, 1< <4

Suppose A\g = 1/k. Note from (6.6) that W%(x) is upper diagonal. So
Wi (-2)Wi(z )~1 is upper diagonal as well. Hence by (C.1), (C.4), we have
Zﬁ lw"e_Q‘*’TZO = 3% wrewr(=2a%0) — 0 for n = 1,2,3. This implies that
zo = 0 by Lemma C1, which contradicts the assumption that x¢ > 0. Thus we
conclude that Ag # 1/k. Let ko = x (Ao), where x is as in Definition 6.2. Note
that k4 # 1. ko # 0, since \g # 1/k. By (7.7) and Lemma 2.1,

W, (—z0) W, (20) "

{diag (1, a, 042’ a3) - diag (1, Ko, K/g, Kg) Woeﬂﬁo(fzo)}
. {ieﬂnozowg . diag (1, KQ, H%, Iig)_l . diag (1,0&,012,043)_1}

- idiag (1’a’a & ) dlag (1 HO)”O)”O) W0€72QH020W*

- diag (1, ko, K, KO) - diag (1, a, 0, a3)71 ,

hence by (C.1), (C.2), we have
Woe oWy
(C.5) = diag (1, ko, kg, K - Woe 28020 We . diag (1, ko, kg, k) !

Similarly to (C.3), we have

Woe—QQngzowg _ <§ w —QUJT-H()ZO> ,
1<4,5<4

hence by (C.3), (C.5), k57 Zi:l wimie=2wrrozo — Zi:l wizle=2wrzo for 1 <
i,7 <4, or equivalently, < Z;‘le whe™2wrkozo — Zi=1 whe=2@r0 for —3 <n <

3. So by (2.1), we have

4
§ wn —2wrzo __ HO E wn —2w,r K020 _ K:g E (7&)?74) 672@',./&020

r=1

4 4
_ 4 n—4 n—4 72wrnoz0 n—4 72w,zo
= —Kg " Ky E W, e E

r=1 r=1
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4 4
= —Kg - E (—wh) em20r#0 = k3 . E whe™2@r?0  p =1,2.3.

r=1 r=1

Since k3 # 1, it follows that Zle whe2wrz0 = Zle whewr(=2az0) — () for
n = 1,2,3, which implies xg = 0 by Lemma C1. This again contradicts the
assumption that xg > 0. Thus we conclude Y (z) # O for every 0 # A € C
and x > 0 such that det X (z) # 0. O
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