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SPECTRAL ANALYSIS FOR THE CLASS OF INTEGRAL

OPERATORS ARISING FROM WELL-POSED BOUNDARY

VALUE PROBLEMS OF FINITE BEAM DEFLECTION ON

ELASTIC FOUNDATION: CHARACTERISTIC EQUATION

Sung Woo Choi

Abstract. We consider the boundary value problem for the deflection of

a finite beam on an elastic foundation subject to vertical loading. We con-

struct a one-to-one correspondence Γ from the set of equivalent well-posed
two-point boundary conditions to gl(4,C). Using Γ, we derive eigencondi-

tions for the integral operator KM for each well-posed two-point boundary

condition represented by M ∈ gl(4, 8,C). Special features of our eigen-
conditions include; (1) they isolate the effect of the boundary condition

M on SpecKM, (2) they connect SpecKM to SpecKl,α,k whose structure

has been well understood. Using our eigenconditions, we show that, for
each nonzero real λ 6∈ SpecKl,α,k, there exists a real well-posed boundary

condition M such that λ ∈ SpecKM. This in particular shows that the
integral operators KM arising from well-posed boundary conditions, may

not be positive nor contractive in general, as opposed to Kl,α,k.

1. Introduction

We consider the boundary value problem for the vertical deflection of a
linear-shaped beam of finite length 2l resting horizontally on an elastic foun-
dation, while the beam is subject to a vertical loading. Due to its wide range
of applications, this problem has been one of the main topics in mechanical
engineering for decades [1, 2, 5–11, 13–15]. By the classical Euler beam the-
ory [13], the upward vertical beam deflection u(x) satisfies the following linear
fourth-order ordinary differential equation.

(1.1) EI · u(4)(x) + k · u(x) = w(x), x ∈ [−l, l].
Here, k is the spring constant density of the elastic foundation, and w(x) is
the downward load density applied vertically on the beam. The constants E
and I are the Young’s modulus and the mass moment of inertia respectively,
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so that EI is the flexural rigidity of the beam. Denoting α = 4
√
k/EI > 0, we

transform (1.1) into the following equivalent form, which we call DE(w).

(1.2) DE(w) : u(4) + α4u =
α4

k
· w.

Throughout this paper, we will assume that l, α, k are fixed positive constants.
The homogeneous version of (1.2) is

(1.3) DE(0) : u(4) + α4u = 0.

Let gl(m,n,C) (respectively, gl(m,n,R)) be the set of m× n matrices with
complex (respectively, real) entries. When m = n, we denote gl(n,C) =
gl(n, n,C) and gl(n,R) = gl(n, n,R). Define the following linear operator
B : C3[−l, l]→ gl(8, 1,C) by

B[u] =
(
u(−l) u′(−l) u′′(−l) u(3)(−l)

u(l) u′(l) u′′(l) u(3)(l)
)T
,

(1.4)

where Cn[−l, l] is the space of n times differentiable complex-valued functions
on the interval [−l, l]. Then any two-point boundary condition can formally be
given with a 4× 8 matrix M ∈ gl(4, 8,C) and a 4× 1 matrix b ∈ gl(4, 1,C) as
follows.

(1.5) M · B[u] = b.

For example, the boundary condition u(−l) = u−, u′(−l) = u′−, u(l) = u+,
u′(l) = u′+ corresponds to the case when

M =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 , b =


u−
u′−
u+
u′+

 .

The homogeneous boundary condition associated to (1.5), which we denote by
BC(M), is

(1.6) BC(M) : M · B[u] = 0,

where 0 =
(
0 0 0 0

)T
. The boundary value problem consisting of the

nonhomogeneous equation DE(w) and the boundary condition (1.5) is well-
posed, if it has a unique solution. In fact, it is easy to see that this boundary
value problem is well-posed for any fixed w and b, if and only if the boundary
value problem consisting of the homogeneous equation DE(0) and the homo-
geneous boundary condition BC(M) is well-posed, in which case we will just
call M ∈ gl(4, 8,C) well-posed. We denote the set of all well-posed matrices in
gl(4, 8,C) by wp(4, 8,C).

It is well-known from the classical Green function theory [12] that, for each
well-posed M ∈ wp(4, 8,C), there exists a unique function GM(x, ξ) defined
on [−l, l] × [−l, l], called the Green function corresponding to M, such that
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the unique solution of the boundary value problem consisting of DE(w) and
BC(M) is given by

KM[w] =

∫ l

−l
GM(x, ξ)w(ξ) dξ

for every continuous function w on [−l, l]. The integral operator KM becomes
a compact linear operator on the Hilbert space L2[−l, l] of complex-valued
square-integrable functions on [−l, l]. Analyzing the structure of the spectrum
SpecKM, or the set of eigenvalues, of the operator KM, is of paramount im-
portance for understanding the boundary value problem represented by given
well-posed M ∈ wp(4, 8,C).

We call M,N ∈ wp(4, 8,C) equivalent, and denote M ≈ N, when KM = KN,
or equivalently, when GM = GN. For given M ∈ wp(4, 8,C), denote by [M]
the equivalence class with respect to ≈ containing M. The set of all these
equivalence classes, which is the quotient set wp(4, 8,C)/≈ of wp(4, 8,C) by
the relation ≈, is denoted simply by wp(C).

In [3,4], Choi analyzed an integral operator Kl,α,k = Kl on L2[−l, l] defined
by

(1.7) Kl,α,k[w](x) =

∫ l

−l
G(x, ξ)w(ξ) dξ,

where

(1.8) G(x, ξ) =
α

2k
exp

(
− α√

2
|x− ξ|

)
sin

(
α√
2
|x− ξ|+ π

4

)
is the Green function of the boundary value problem consisting of DE(0) and
the boundary condition limx→±∞ u(x) = 0 for an infinitely long beam. It turns
out that Kl,α,k = KQ in our terminology, where

(1.9) Q =


0 α2 −

√
2α 1 0 0 0 0√

2α3 −α2 0 1 0 0 0 0

0 0 0 0 0 α2
√

2α 1

0 0 0 0 −
√

2α3 −α2 0 1


in wp(4, 8,C). What is special about this particular operator KQ is that its
spectrum is exceptionally well-understood. In Proposition 1 below, h is an
explicitly defined strictly increasing function from [0,∞) to itself such that
h(0) = 0 and limt→∞ h(t)/t = L, where L = 2lα is the dimensionless constant
called the intrinsic length of the beam. For two nonnegative functions f , g
defined either on [0,∞) or on N, denote f(t) ∼ g(t), if there exists T > 0 such
that m ≤ f(t)/g(t) ≤M for every t > T for some constants 0 < m ≤M <∞.
Thus h−1(t) ∼ t/L with this notation.
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Proposition 1 ([4]). The spectrum SpecKQ of the operator KQ = Kl,α,k is of
the form { µn

k

∣∣∣ n = 1, 2, 3, . . .
}
∪
{ νn
k

∣∣∣ n = 1, 2, 3, . . .
}
⊂
(

0,
1

k

)
,

where µn and νn for n = 1, 2, 3, . . . depend only on the intrinsic length L of the
beam. µn ∼ νn ∼ n−4, and

1

1 +
{
h−1

(
2πn+ π

2

)}4 < νn <
1

1 + {h−1 (2πn)}4

< µn <
1

1 +
{
h−1

(
2πn− π

2

)}4 , n = 1, 2, 3, . . . ,

1

1 +
{
h−1

(
2πn− π

2

)}4 − µn ∼ νn − 1

1 +
{
h−1

(
2πn+ π

2

)}4 ∼ n−5e−2πn,
1

1 + 1
L4

(
2π(n− 1)− π

2

)4 − µn ∼ 1

1 + 1
L4

(
2π(n− 1) + π

2

)4 − νn ∼ n−6.
In fact, numerical values of µn and νn can be computed with arbitrary

precision for any given L > 0. See [4] for more details.
In this paper, we will construct the Green function GM explicitly for every

M ∈ wp(4, 8,C). As a result, we construct an explicit map wp(4, 8,C) →
gl(4,C), M 7→ GM, in such a way that GM = GN, if and only if M ≈ N. This
induces a map Γ : wp(C)→ gl(4,C), where Γ ([M]) = GM for M ∈ wp(4, 8,C).
Especially, our construction of the map Γ has the following features.

(Γ1) Γ is a one-to-one correspondence from wp(C) to gl(4,C).
(Γ2) Γ ([Q]) = O.
(Γ3) Γ is constructive, in that Γ ([M]) can be computed explicitly for any

given M ∈ wp(4, 8,C), and conversely, a representative of Γ−1 (G) in
wp(4, 8,C) can be computed explicitly for any given G ∈ gl(4,C).

By (Γ1), Γ can be regarded as a faithful representation of wp(C) by the alge-
bra gl(4,C). (Γ2) says that Γ is constructed to incorporate the special boundary
condition Q. This will enable us in Theorem 1 and Corollaries 1, 2 below to
obtain an eigencondition and characteristic equations for the operator KM,
which connect SpecKM for general M ∈ wp(4, 8,C) to the well-understood
SpecKQ in Proposition 1. (Γ3) means that our eigencondition and characteris-
tic equations for KM are constructed explicitly for each given M ∈ wp(4, 8,C).
Conversely, whenever you find a class of matrices in gl(4,C) with which you
can say something about the corresponding eigencondition in Theorem 1, you
can translate them back to the corresponding boundary conditions explicitly.
In fact, this is exactly what we do in Theorem 2 below.

Among well-posed boundary conditions in wp(4, 8,C), ones with real entries
are of particular interest. We denote by wp(4, 8,R), the set of well-posed
matrices in wp(4, 8,C) with real entries. The set of all equivalence classes [M]
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in wp(C) such that M ≈ N for some N ∈ wp(4, 8,R), is denoted by wp(R).
To characterize wp(R), we introduce an R-algebra π(4) contained in gl(4,C).
With π(4), we have a faithful representation of wp(R), which is another feature
of Γ.

(Γ4) Γ (wp(R)) = π(4).

The usefulness of π(4) is not just limited to characterizing wp(R). The R-
algebra π(4) is designed to measure an important symmetry of 4× 4 matrices,
which is utilized in proving Theorem 2.

Using our representation Γ, we prove Theorem 1 below. Here, Xλ(x) ∈
gl(4,C) and yλ(x) ∈ gl(4, 1,C) will be defined explicitly for every λ ∈ C \ {0}
and x ∈ R in Section 6.2. Note that the second statement follows immediately
from the first one and (Γ2) above.

Theorem 1. Let M ∈ wp(4, 8,C), 0 6= u ∈ L2[−l, l], and λ ∈ C. Then
KM[u] = λ · u, if and only if λ 6= 0 and there exists 0 6= c ∈ gl(4, 1,C) such
that u = yTλ c and [GM {Xλ(l)−Xλ(−l)}+ Xλ(l)] c = 0. KQ[u] = λ · u, if
and only if λ 6= 0 and there exists 0 6= c ∈ gl(4, 1,C) such that u = yTλ c and
Xλ(l) · c = 0.

Thus, if we focus on the spectrum SpecKM, we have the following charac-
teristic equation.

Corollary 1. Let M ∈ wp(4, 8,C) and λ ∈ C. Then λ ∈ SpecKM, if and only
if λ 6= 0 and det [GM {Xλ(l)−Xλ(−l)}+ Xλ(l)] = 0. λ ∈ SpecKQ, if and
only if λ 6= 0 and det Xλ(l) = 0.

Theorem 1 and Corollary 1 reveal an interesting connection between SpecKM

for general M ∈ wp(4, 8,C) and the well-analyzed SpecKQ. The forms of the
eigencondition and the characteristic equation for KM in them isolate the effect
GM of the boundary condition M ∈ wp(4, 8,C), from the rest that is expressed
essentially by the matrix Xλ which is closely related to SpecKQ.

By Corollary 1, Xλ(l) is invertible for every 0 6= λ 6∈ SpecKQ. Thus we can
define Yλ(l) = Xλ(−l)Xλ(l)−1−I ∈ gl(4,C) for every 0 6= λ 6∈ SpecKQ, where
I is the 4× 4 identity matrix.

Corollary 2. Let M ∈ wp(4, 8,C). Suppose λ ∈ C \ SpecKQ. Then λ ∈
SpecKM, if and only if λ 6= 0 and det {GMYλ(l)− I} = 0.

Let M ∈ wp(4, 8,C). We call the dimensionless quantity k · ‖KM‖2 the
intrinsic L2-norm of KM, where ‖KM‖2 is the usual L2-norm of KM, which
is equal to the spectral radius max {|λ| : λ ∈ SpecKM} of KM. For each λ ∈
SpecKM, we call the dimensionless quantity k · λ an intrinsic eigenvalue. By
Proposition 1, the operator KQ is positive in that all of its intrinsic eigenvalues
are positive, and is contractive in that its intrinsic L2-norm, which equals to
its largest intrinsic eigenvalue µ1, is less than 1. Since these properties of KQ

are important in analyzing nonlinear non-uniform problem corresponding to
DE(w) in (1.2) [5, 6], one immediate question is whether or not they are also
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shared by other general KM. Using Corollary 2, we prove the following negative
answer.

Theorem 2. For each 0 6= λ ∈ R \SpecKQ, there exists M ∈ wp(4, 8,R) such
that λ ∈ SpecKM.

Thus, one cannot expect KM to be positive nor contractive even for real
M ∈ wp(4, 8,R). This result, which shows the diversity of general well-posed
boundary conditions, and might have been tricky to obtain otherwise, demon-
strates the usefulness of our presentation of the eigencondition and the charac-
teristic equations for operators KM with general M ∈ wp(4, 8,C).

The rest of the paper is organized as follows. In Section 2, we present basic
mathematical terminologies we use, and introduce some specific matrices useful
to our problems. In Section 3, the Green function GM is explicitly constructed,
and an initial form of eigencondition for the operator KM is presented for each
well-posed M ∈ wp(4, 8,C). Using the results in Section 3, the two intermediate
representations Γ−, Γ+ of wp(C) are constructed and analyzed in Section 4.1.
In Section 4.2, the R-algebra π(n) is introduced, and π(4) is used to characterize
the real boundary conditions wp(R). In Section 5, explicit computations on
the boundary condition Q in (1.9) are performed, resulting in explicit forms
of Γ− ([Q]) = G−Q and Γ+ ([Q]) = G+

Q. In Section 6.1, the representation Γ

is constructed, and is shown to have the features (Γ1), (Γ2), (Γ3), and (Γ4)
above. In Section 6.2, the matrices Xλ(x) and yλ(x) are defined explicitly,
and Theorem 1 is proved. In Section 7, some of the symmetries of Xλ(x),
Yλ(x) are explored, and in particular, we show that Yλ(l) ∈ π(4) for every
0 6= λ ∈ R \ SpecKQ and l > 0. Using the results in Section 7, we prove
Theorem 2 in Section 8. Finally, brief comments on future directions are given
in Section 9.

2. Preliminaries

2.1. Terminologies

We denote i =
√
−1. When the (i, j)th entry of A ∈ gl(m,n,C) is ai,j ,

1 ≤ i ≤ m, 1 ≤ j ≤ n, we write A = (ai,j)1≤i≤m, 1≤j≤n. In case m = n,

we also write A = (ai,j)1≤i,j≤n. For A ∈ gl(m,n,C), we denote the (i, j)th

entry of A by Ai,j . The complex conjugate, the transpose, and the conjugate

transpose of A ∈ gl(m,n,C) are denoted respectively by A, AT , A∗. For
A ∈ gl(n,C), adj A is the classical adjoint of A, so that, if A is invertible, then
A−1 = adj A/ det A.

For n ∈ N, let GL(n,C) (respectively, GL(n,R)) be the set of invertible
matrices in gl(n,C) (respectively, in gl(n,R)). A ∈ GL(n,C) is orthogonal, if
A−1 = AT , and is unitary, if A−1 = A∗. For n ∈ N, let O(n) and U(n) be the
set of orthogonal matrices and the set of unitary matrices in GL(n,C) respec-
tively. Regardless of their sizes, we denote by I and O, the identity matrix and
the zero matrix respectively. In case of possible confusion with size, we denote
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I = In ∈ gl(n,C), O = Omn ∈ gl(m,n,C), O = On ∈ gl(n,C). In particular,
we denote the zero column vector by 0 = 0n = On1 ∈ gl(n, 1,C). The diagonal
matrix with entries c1, c2, . . . , cn is denoted by diag (c1, c2, . . . , cn).

2.2. Frequently used matrices

Here, we introduce some special matrices which will be used extensively in
this paper. They are useful for dealing with various symmetries in our problem,
and readers are recommended to be acquainted with their properties.

Definition 2.1. Denote ωj = ei
π
4 (2j−1) for j ∈ Z, Ω = diag (ω1, ω2, ω3, ω4),

and W0 =
(
ωi−1j

)
1≤i,j≤4.

ω1, ω2, ω3, ω4 are the primitive 4th roots of −1, and ωj+4 = ωj , j ∈ Z,
hence

ω4
j = −1, ωj = ω−1j , iωj = ωj+1, j ∈ Z,(2.1)

ω4 = ω1, ω3 = ω2,(2.2)

ω3 = −ω1, ω2 = −ω4,(2.3)

Ω4 = −I, Ω = Ω−1.(2.4)

Definition 2.2. Let ε1 = ε4 = 1, ε2 = ε3 = −1, and εj+4 = εj , j ∈ Z. Denote
E = diag (ε1, ε2, ε3, ε4) = diag(1,−1,−1, 1).

Note that

(2.5) Reωj =
εj√

2
, Imωj =

εj−1√
2
, j ∈ Z.

Definition 2.3. Denote yj(x) = eωjαx, j = 1, 2, 3, 4, and

y(x) =
(
y1(x) y2(x) y3(x) y4(x)

)T
=
(
eω1αx eω2αx eω3αx eω4αx

)T
.

Denote the Wronskian matrix corresponding to y1(x), y2(x), y3(x), y4(x) by

W(x) =


y1(x) y2(x) y3(x) y4(x)
y′1(x) y′2(x) y′3(x) y′4(x)
y′′1 (x) y′′2 (x) y′′3 (x) y′′4 (x)
y′′′1 (x) y′′′2 (x) y′′′3 (x) y′′′4 (x)

 =


y(x)T

y′(x)T

y′′(x)T

y′′′(x)T

 .

Note that

(2.6) y′(x) =
d

dx


eω1αx

eω2αx

eω3αx

eω4αx

 =


ω1α · eω1αx

ω2α · eω2αx

ω3α · eω3αx

ω4α · eω4αx

 = αΩ · y(x).

By Definitions 2.1 and 2.3,

W(x) =
(

(ωjα)
i−1

eωjαx
)
1≤i,j≤4

= diag
(
1, α, α2, α3

)
·
(
ωi−1j

)
1≤i,j≤4 · diag (eω1αx, eω2αx, eω3αx, eω4αx)(2.7)
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= diag
(
1, α, α2, α3

)
·W0e

Ωαx.

By (2.1),

(2.8) W∗
0 =

(
ωj−1i

)
1≤i,j≤4

=
(
ωi
j−1)

1≤i,j≤4 =
(
ω1−j
i

)
1≤i,j≤4

.

Lemma 2.1. W−1
0 = 1

4W∗
0.

Proof. By (2.8),

W∗
0W0 =

(
ω1−j
i

)
1≤i,j≤4

·
(
ωi−1j

)
1≤i,j≤4 =

(
4∑
r=1

ω1−r
i · ωr−1j

)
1≤i,j≤4

=

(
4∑
r=1

(
ωj
ωi

)r−1)
1≤i,j≤4

,

hence

(W∗
0W0)i,j =


4, if i = j,
1−

(
ωj
ωi

)4

1−
(
ωj
ωi

) , if i 6= j.

If i 6= j, then 1 − (ωj/ωi)
4

= 1 − ω4
j /ω

4
i = 1 − (−1)/(−1) = 0 by (2.1). Thus

W∗
0W0 = 4I, from which the result follows. �

The inverse W(x)−1 of W(x) is well-defined for every x ∈ R, and by (2.7)
and Lemma 2.1,

W(x)−1 = e−ΩαxW−1
0 · diag

(
1, α, α2, α3

)−1
=

1

4
e−ΩαxW∗

0 · diag
(
1, α, α2, α3

)−1
.(2.9)

Definition 2.4. Regardless of size, we denote

R =


0 0 0 1

0 0 . .
.

0
0 1 0 0
1 0 0 0

 ∈ O(n).

In case of possible confusion, we denote R = Rn ∈ O(n).

Note that RT = R∗ = R = R−1. When multiplied to the left (respectively,
to the right) of a matrix, R reverses the order of the rows (respectively, the
columns) of that matrix. Hence by (2.2),

(2.10) RΩ = ΩR, W0R = W0, R · y(x) = y(x), W(x)R = W(x).

Definition 2.5. Denote

L =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 ∈ O(4).
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Note that, when multiplied to the left (respectively, to the right) of a matrix,
L lifts up the rows cyclically by one row (respectively, moves the columns to
the right cyclically by one column). Thus by (2.1),

LΩL−1 =


0 ω2 0 0
0 0 ω3 0
0 0 0 ω4

ω1 0 0 0

L−1 = diag (ω2, ω3, ω4, ω1) = iΩ,(2.11)

W0L
−1 =

(
ωi−1j+1

)
1≤i,j≤4 =

(
(iωj)

i−1
)
1≤i,j≤4

= diag
(
1, i, i2, i3

)
·W0.(2.12)

In particular,

L2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ∈ O(4)

is also frequently used. Note that
(
L2
)T

=
(
L2
)∗

= L2 =
(
L2
)−1

. By (2.3),

(2.13) L2Ω = −ΩL2, L2 · y(x) = y(−x).

Definition 2.6. Define B−,B+ : C3[−l, l]→ gl(4, 1,C) by

B−[u] =
(
u(−l) u′(−l) u′′(−l) u′′′(−l)

)T
,

B+[u] =
(
u(l) u′(l) u′′(l) u′′′(l)

)T
.

Let u ∈ C3[−l, l]. Note that

(2.14) B[u] =

(
B−[u]
B+[u]

)
,

where B is defined by (1.4). Let M−,M+ ∈ gl(4,C), so that M =
(
M− M+

)
∈

gl(4, 8,C). Then by (2.14),

(2.15) M · B[u] =
(
M− M+

)(B−[u]
B+[u]

)
= M− · B−[u] + M+ · B+[u].

By (2.1), the functions y1, y2, y3, y4 in Definition 2.3 form a fundamental set
of solutions of the linear homogeneous equation DE(0): u(4) +α4u = 0 in (1.3).

Thus u ∈ L2[−l, l] is a solution of DE(0), if and only if u(x) =
∑4
j=1 cj ·yj(x) =

y(x)T c for some c =
(
c1 c2 c3 c4

)T ∈ gl(4, 1,C), in which case we have

B±[u] = B±
 4∑
j=1

cj · yj

 =

4∑
j=1

cj · B± [yj ] =

4∑
j=1


yj(±l)
y′j(±l)
y′′j (±l)
y′′′j (±l)

 · cj
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=


y(±l)T
y′(±l)T
y′′(±l)T
y′′′(±l)T

 c = W(±l)c.(2.16)

3. Green’s functions for well-posed boundary conditions

Definition 3.1. M ∈ gl(4, 8,C) is called well-posed, if the boundary value
problem consisting of DE(0): u(4) + α4u = 0 and BC(M): M · B[u] = 0 in
(1.6), has the unique trivial solution u = 0 in L2[−l, l]. The set of well-posed
matrices in gl(4, 8,C) is denoted by wp(4, 8,C).

Definition 3.2. For M ∈ gl(4, 8,C), we denote M̃− = M−W(−l), M̃+ =

M+W(l), and M̃ = M̃− + M̃+ ∈ gl(4,C), where M−,M+ ∈ gl(4,C) are the
4× 4 minors of M such that M =

(
M− M+

)
.

Lemma 3.1. Let M ∈ gl(4, 8,C). Then M ∈ wp(4, 8,C), if and only if

det M̃ 6= 0.

Proof. Let M−,M+ ∈ gl(4,C) be the 4 × 4 minors of M such that M =(
M− M+

)
. Suppose u ∈ L2[−l, l] is a solution of DE(0), so that u(x) =

y(x)T c for some c ∈ gl(4, 1,C). Then by (2.15), (2.16), and Definition 3.2, the
boundary condition BC(M) becomes

(3.1) 0 = M · B[u] = M− ·W(−l)c + M+ ·W(l)c =
(
M̃− + M̃+

)
c = M̃c.

By Definition 3.1, M ∈ wp(4, 8,C), if and only if c = 0 is the only solution in

gl(4, 1,C) satisfying (3.1), which is equivalent to det M̃ 6= 0. �

Since M̃ is invertible for every M ∈ wp(4, 8,C), the following is well-defined.

Definition 3.3. For M ∈ wp(4, 8,C), we denote G−M = M̃−1M̃−ΩL2 and

G+
M = M̃−1M̃+ΩL2.

By Definition 3.2, G−M+G+
M = M̃−1M̃−ΩL2+M̃−1M̃+ΩL2 = M̃−1M̃ΩL2,

hence we have

(3.2) G−M + G+
M = ΩL2, M ∈ wp(4, 8,C).

Definition 3.4. Let M ∈ wp(4, 8,C). Define the function GM : [−l, l] ×
[−l, l]→ C, called the Green function corresponding to M, by

GM(x, ξ) =
α

4k
·
{

y(x)T ·G+
M · y(ξ), if x ≤ ξ,

−y(x)T ·G−M · y(ξ), if ξ ≤ x.

Define the operator KM : L2[−l, l]→ L2[−l, l] by

KM[w](x) =

∫ l

−l
GM(x, ξ)w(ξ) dξ, w ∈ L2[−l, l], x ∈ [−l, l].
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Note that GM is bounded on [−l, l]× [−l, l]. It is well-known [12] that an in-

tegral operator of the form w 7→
∫ l
−l g(x, ξ)w(ξ) dx with bounded kernel g(x, ξ),

is a compact linear operator on L2[−l, l]. Thus KM is a well-defined compact
linear operator on L2[−l, l]. Note from Definitions 3.3 and 3.4 that the function
GM is defined constructively in terms of given M ∈ wp(4, 8,C). Lemma 3.2 be-
low, whose proof is in Appendix A, shows that GM is the usual Green function
for the boundary value problem consisting of DE(0) and BC(M).

Lemma 3.2. Let M ∈ wp(4, 8,C) and w ∈ L2[−l, l]. Then KM[w] is the
unique solution of the boundary value problem consisting of DE(w) and BC(M).

By Lemma 3.2, we have

KM[u](4) + α4 · KM[u] =
α4

k
· u, M ∈ wp(4, 8,C), u ∈ L2[−l, l],(3.3)

M · B [KM[u]] = 0, M ∈ wp(4, 8,C), u ∈ L2[−l, l].(3.4)

Note that (3.3) in particular implies that the linear operator KM is one-to-
one, or injective, for every M ∈ wp(4, 8,C).

Definition 3.5. For 0 6= λ ∈ C, we denote by EDE(λ), the homogeneous
equation

EDE(λ) : u(4) +

(
1− 1

λk

)
α4u = 0.

Note that 1− 1/(λk) 6= 1 for any λ ∈ C. In fact, the homogeneous equation
DE(0): u(4) +α4u = 0 can be regarded as the limiting case EDE(∞). In terms
of given M ∈ wp(4, 8,C), KM has the following eigencondition.

Lemma 3.3. Let M ∈ wp(4, 8,C), 0 6= u ∈ L2[−l, l], and λ ∈ C. Then
KM[u] = λ · u, if and only if λ 6= 0 and u satisfies EDE(λ) and BC(M).

Proof. Let u 6= 0 ∈ L2[−l, l], λ ∈ C. Suppose KM[u] = λ · u. If λ = 0, then
KM[u] = 0 · u = 0, hence u = 0 by (3.3), contradicting the assumption u 6= 0.
Thus λ 6= 0. By (3.3), we have

λ · u(4) = (λ · u)(4) = KM[u](4) = −α4 · KM[u] +
α4

k
· u

= −α4 · (λ · u) +
α4

k
· u = −

(
λ− 1

k

)
α4 · u,

which shows that u satisfies EDE(λ). By (3.4), we have M · B [u] = (1/λ) ·M ·
B [λ · u] = (1/λ) ·M · B [KM[u]] = 0, hence u satisfies BC(M).

Conversely, suppose λ 6= 0 and u satisfies EDE(λ) and BC(M). Let û =
KM[u]− λ · u. Then by (3.3), we have

û(4) + α4û = (KM[u]− λ · u)
(4)

+ α4 (KM[u]− λ · u)

=
(
KM[u](4) + α4 · KM[u]

)
− λ

(
u(4) + α4u

)
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=
α4

k
· u− λ

(
u(4) + α4u

)
= −λ

{
u(4) +

(
1− 1

λk

)
α4u

}
,

hence û(4)+α4û = 0, since u satisfies EDE(λ). By (3.4), we have M·B [û] = M·
B [KM[u]− λ · u] = M·B [KM[u]]−λM·B [u] = −λM·B [u], hence M·B [û] = 0,
since u satisfies BC(M). It follows that û = KM[u]−λ ·u is the unique solution
of the boundary value problem consisting of DE(0) and BC(M), which is 0 by
Definition 3.1. Thus we have KM[u] = λ · u, and the proof is complete. �

4. Representation of well-posed boundary conditions

4.1. The representations Γ− and Γ+

Definition 4.1. M,N ∈ wp(4, 8,C) are called equivalent, and denote M ≈ N,
if KM = KN. The quotient set wp(4, 8,C)/≈ of wp(4, 8,C) with respect to the
equivalence relation ≈, is denoted by wp(C). For M ∈ wp(4, 8,C), we denote
by [M] ∈ wp(C) the equivalence class with respect to ≈ containing M.

Note from Definitions 3.4 and 4.1 that M ≈ N, if and only if GM = GN.

Lemma 4.1. For M,N ∈ wp(4, 8,C), the following (a), (b), (c), (d) are
equivalent. (a) M ≈ N. (b) G+

M = G+
N. (c) G−M = G−N. (d) N = PM for

some P ∈ GL(4,C).

Proof. The equivalence of (b) and (c) follows immediately, since G−M + G+
M =

ΩL2 = G−N + G+
N by (3.2). Since the entries y1, y2, y3, y4 of y in Definition 2.3

are linearly independent, it follows from Definition 3.4 that GM = GN, if and
only if G−M = G−N and G+

M = G+
N. Thus (a), (b), (c) are equivalent, and hence

it is sufficient to show the equivalence of (b) and (d).
Let M−,M+ ∈ gl(4,C) and N−,N+ ∈ gl(4,C) be the 4 × 4 minors of M

and N respectively such that M =
(
M− M+

)
, N =

(
N− N+

)
. Suppose

(d). Then
(
N− N+

)
= N = PM = P

(
M− M+

)
=
(
PM− PM+

)
for

some P ∈ GL(4,C). So we have N− = PM− and N+ = PM+, and hence by

Definition 3.2, Ñ± = N±W(±l) = PM±W(±l) = PM̃± and Ñ = Ñ−+Ñ+ =

PM̃− + PM̃+ = PM̃. Thus by Definition 3.3,

G+
N = Ñ−1Ñ+ΩL2 =

(
PM̃

)−1 (
PM̃+

)
ΩL2 = M̃−1P−1PM̃+ΩL2

= M̃−1M̃+ΩL2 = G+
M,

hence we have (b).
Conversely, suppose (b), so that G+

M = G+
N. Since (b) and (c) are equivalent,

we also have G−M = G−N. By Definition 3.3, we have M̃−1M̃− = Ñ−1Ñ− and

M̃−1M̃+ = Ñ−1Ñ+, since ΩL2 is invertible. So we have Ñ± = ÑM̃−1 · M̃±,

hence N±W(±l) = ÑM̃−1 ·M±W(±l) by Definition 3.2. Since W(±l) are

invertible, we have N± = ÑM̃−1 ·M±, hence

N =
(
N− N+

)
=
(
ÑM̃−1 ·M− ÑM̃−1 ·M+

)
= ÑM̃−1 ·M.
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Thus we have (d), since ÑM̃−1 ∈ GL(4,C) by Lemma 3.1, and the proof is
complete. �

Definition 4.2. Define Γ−,Γ+ : wp(C) → gl(4,C) by Γ− ([M]) = G−M and

Γ+ ([M]) = G+
M for M ∈ wp(4, 8,C).

By Lemma 4.1, Γ−, Γ+ are well-defined and one-to-one. Lemma 4.2 below
shows that Γ−, Γ+ are also onto, and hence are one-to-one correspondences
from wp(C) to gl(4,C).

Lemma 4.2. Suppose G−,G+ ∈ gl(4,C) satisfy G− + G+ = ΩL2. Then
there exists M ∈ wp(4, 8,C) such that G−M = G−, G+

M = G+. In particular,

M can be taken by M =
(
M− M+

)
, where M− = G−

(
ΩL2

)−1
W(−l)−1,

M+ = G+
(
ΩL2

)−1
W(l)−1.

Proof. Let M− = G−
(
ΩL2

)−1
W(−l)−1, M+ = G+

(
ΩL2

)−1
W(l)−1, and

let M =
(
M− M+

)
∈ gl(4, 8,C). Then by Definition 3.2, we have

(4.1) M̃± = M±W(±l) = G±
(
ΩL2

)−1
W(±l)−1 ·W(±l) = G±

(
ΩL2

)−1
,

hence

M̃ = M̃− + M̃+ = G−
(
ΩL2

)−1
+ G+

(
ΩL2

)−1
=
(
G− + G+

) (
ΩL2

)−1
= ΩL2 ·

(
ΩL2

)−1
= I.(4.2)

Thus M ∈ wp(4, 8,C) by Lemma 3.1, since M̃ = I is invertible. By Defini-

tion 3.3 and (4.1), (4.2), we have G±M = M̃−1M̃±ΩL2 = I−1 ·G±
(
ΩL2

)−1 ·
ΩL2 = G±, hence the proof is complete. �

Note from Definitions 3.2, 3.3, and 4.2 that the maps Γ− and Γ+ are con-
structive, in that Γ− ([M]) = G−M, Γ+ ([M]) = G+

M can be computed explicitly

in terms of given M ∈ wp(4, 8,C). In fact, the inverses (Γ−)
−1

, (Γ+)
−1

are
also constructive. Lemma 4.2 implies that(

Γ−
)−1

(G)

=
[(

G
(
ΩL2

)−1
W(−l)−1

(
ΩL2 −G

) (
ΩL2

)−1
W(l)−1

)]
,(4.3) (

Γ+
)−1

(G)

=
[( (

ΩL2 −G
) (

ΩL2
)−1

W(−l)−1 G
(
ΩL2

)−1
W(l)−1

)]
(4.4)

for every G ∈ gl(4,C).

4.2. Real boundary conditions and the algebra π(4)

Of particular interest among boundary conditions in wp(4, 8,C) are those
with real entries. We characterize this important class of real boundary condi-
tions in terms of the maps Γ− and Γ+ in Definition 4.2.
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Definition 4.3. Denote wp(4, 8,R) = wp(4, 8,C) ∩ gl(4, 8,R) and

wp(R) = {[M] ∈ wp(C) |M ∈ wp(4, 8,R)} ⊂ wp(C).

Let M ∈ wp(4, 8,R). By Lemma 3.2, it is clear that KM[w](x) is real-valued
for every real-valued w ∈ L2[−l, l]. Thus it follows that GM(x, ξ) is real-valued
for every M ∈ wp(4, 8,R).

Lemma 4.3. RG−MR = G−M and RG+
MR = G+

M for every M ∈ wp(4, 8,R).

Proof. Let M ∈ wp(4, 8,R). Since GM(x, ξ) is real-valued, we have GM(x, ξ) =
GM(x, ξ) for (x, ξ) ∈ [−l, l]× [−l, l]. By Definition 3.4 and (2.10), we have

GM(x, ξ) =
α

4k
·

{
y(x)

T
·G+

M · y(ξ), if x ≤ ξ,
−y(x)

T
·G−M · y(ξ), if ξ ≤ x

=
α

4k
·

{
{R · y(x)}T ·G+

M · {R · y(ξ)} , if x ≤ ξ,
−{R · y(x)}T ·G−M · {R · y(ξ)} , if ξ ≤ x

=
α

4k
·

{
y(x)T ·RG+

MR · y(ξ), if x ≤ ξ,
−y(x)T ·RG−MR · y(ξ), if ξ ≤ x,

hence

0 =
4k

α

{
GM(x, ξ)−GM(x, ξ)

}
=

 y(x)T ·
(
RG+

MR−G+
M

)
· y(ξ), if x ≤ ξ,

−y(x)T ·
(
RG−MR−G−M

)
· y(ξ), if ξ ≤ x,

which is equivalent to RG+
MR−G+

M = RG−MR−G−M = O, since the entries
y1, y2, y3, y4 of y in Definition 2.3 are linearly independent. �

Lemma 4.3 leads us to the following definition.

Definition 4.4. For n ∈ N, we denote π(n) =
{
A ∈ gl(n,C) |RAR = A

}
.

Note that π(n) is the set of matrices in gl(n,C) invariant under the transfor-
mation A 7→ RAR, which is the complex conjugation with the 180◦ rotation of
matrix entries. Lemma 4.4 below, whose proof is immediate from Definition 4.4,
shows in particular that π(n) forms an R-algebra.

Lemma 4.4. For n ∈ N, we have the following.

(a) If A,B ∈ π(n), then aA + bB ∈ π(n) for every a, b ∈ R.
(b) If A,B ∈ π(n), then AB ∈ π(n).
(c) If A ∈ π(n) is invertible, then A−1 ∈ π(n)
(d) If A ∈ π(n), then AT ∈ π(n)
(e) On, In,Rn ∈ π(n) and Ω,L2, E ∈ π(4).
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In particular, we have

π(4) =



a11 a12 a13 a14
a21 a22 a23 a24
a24 a23 a22 a21
a14 a13 a12 a11


∣∣∣∣∣∣∣∣ aij ∈ C, i = 1, 2, j = 1, 2, 3, 4

 ,

which shows that the dimension of π(4) as an R-algebra is 16. In fact, it will
be shown in Section 8 that π(2n) is isomorphic to gl(2n,R) for n ∈ N.

Lemma 4.3 shows that the images of wp(R) under Γ− and Γ+ in Defini-
tion 4.2 are subsets of π(4). Lemma 4.5 below shows that, in fact, Γ− (wp(R)) =
Γ+ (wp(R)) = π(4), by constructing representatives in wp(4, 8,R) of the in-

verses (Γ−)
−1

(G), (Γ+)
−1

(G) of G ∈ π(4). Denote

(4.5) U =
1√
2


1 0 0 1
0 1 1 0
0 i −i 0
i 0 0 −i

 =

(
I R

iR −iI

)
∈ U(4).

Note that

(4.6) U = UR.

Lemma 4.5. Suppose G−,G+ ∈ π(4) satisfy G− + G+ = ΩL2. Then there
exists M ∈ wp(4, 8,R) such that G−M = G−, G+

M = G+. In particular, M

can be taken by M =
(
M− M+

)
, where M− = UG−

(
ΩL2

)−1
W(−l)−1,

M+ = UG+
(
ΩL2

)−1
W(l)−1.

Proof. Let M− = UG−
(
ΩL2

)−1
W(−l)−1, M+ = UG+

(
ΩL2

)−1
W(l)−1,

and M =
(
M− M+

)
. Let

M̂ =
(

G−
(
ΩL2

)−1
W(−l)−1 G+

(
ΩL2

)−1
W(l)−1

)
.

Then M = UM̂, hence M ≈ M̂ by Lemma 4.1, since U is invertible. So by

Definition 4.2 and Lemma 4.2, we have G±M = Γ± ([M]) = Γ±
([

M̂
])

= G±
M̂

=

G±, since G−,G+ ∈ gl(4,C). Thus it is sufficient to show that M−,M+ ∈
gl(4,R). By Definition 4.4,

(4.7) G± (ΩL2)
−1

= R ·G±
(
ΩL2

)−1 ·R,
since G−

(
ΩL2

)−1
,G+

(
ΩL2

)−1 ∈ π(4) by Lemma 4.4. Since W(x) = W(x)R
by (2.10), we have

(4.8) W(±l)−1 =
{

W(±l)
}−1

= {W(±l)R}−1 = R ·W(±l)−1.

Thus by (4.6), (4.7), (4.8), we have

M± = U ·G± (ΩL2)
−1 ·W(±l)−1



86 S. W. CHOI

= UR ·
{

R ·G±
(
ΩL2

)−1 ·R} · {R ·W(±l)−1
}

= UG±
(
ΩL2

)−1
W(±l)−1 = M±.

This shows M−,M+ ∈ gl(4,R), and the proof is complete. �

5. The boundary condition Q and the operator KQ = Kl,α,k
Let

Q− =


0 α2 −

√
2α 1√

2α3 −α2 0 1
0 0 0 0
0 0 0 0

 , Q+ =


0 0 0 0
0 0 0 0

0 α2
√

2α 1

−
√

2α3 −α2 0 1

 ,

so that
(
Q− Q+

)
= Q in (1.9). In this section, we apply Definitions 3.2

and 3.3 to Q to obtain explicit forms of G−Q = Γ− ([Q]) and G+
Q = Γ+ ([Q]).

In addition to being needed to construct the map Γ in Section 6.1, this will
also serve as a concrete example of computing Γ− and Γ+. We also show
in Lemma 5.1 below that KQ = Kl,α,k, where Kl,α,k is the integral operator
defined in (1.7).

By Definition 2.1, we have

Q− · diag
(
1, α, α2, α3

)
·W0 = α3


0 1 −

√
2 1√

2 −1 0 1
0 0 0 0
0 0 0 0

(ωi−1j

)
1≤i,j≤4

= α3


a−1 a−2 a−3 a−4
b−1 b−2 b−3 b−4
0 0 0 0
0 0 0 0

 ,(5.1)

Q+ · diag
(
1, α, α2, α3

)
·W0 = α3


0 0 0 0
0 0 0 0

0 1
√

2 1

−
√

2 −1 0 1

(ωi−1j

)
1≤i,j≤4

= α3


0 0 0 0
0 0 0 0
a+1 a+2 a+3 a+4
b+1 b+2 b+3 b+4

 ,(5.2)

where we put a±j = ωj ±
√

2ω2
j + ω3

j , b±j = ∓
√

2− ωj + ω3
j , j = 1, 2, 3, 4. Note

that ω2
j =

{
ei
π
4 (2j−1)}2 = i

2j−1 = (−1)j+1
i by Definition 2.1, and ωj + ω3

j =

ωj − ωj = 2i Imωj =
√

2εj−1i, −ωj + ω3
j = −ωj − ωj = −2 Reωj = −

√
2εj by

(2.1), (2.5). Hence, for j = 1, 2, 3, 4, we have

a±j = ωj ±
√

2ω2
j + ω3

j =
√

2εj−1i±
√

2 · (−1)j+1
i
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= 2
√

2 · εj−1 ± (−1)j+1

2
i,(5.3)

b±j = ∓
√

2− ωj + ω3
j = −

√
2εj ∓

√
2 = 2

√
2 · −εj ∓ 1

2
.(5.4)

By (5.1), (5.2), (5.3), (5.4), we have

Q− · diag
(
1, α, α2, α3

)
·W0

= 2
√

2α3


1−1
2 i

1+1
2 i

−1−1
2 i

−1+1
2 i

−1+1
2

1+1
2

1+1
2

−1+1
2

0 0 0 0
0 0 0 0

 = 2
√

2α3


0 i −i 0
0 1 1 0
0 0 0 0
0 0 0 0

 ,

Q+ · diag
(
1, α, α2, α3

)
·W0

= 2
√

2α3


0 0 0 0
0 0 0 0

1+1
2 i

1−1
2 i

−1+1
2 i

−1−1
2 i

−1−1
2

1−1
2

1−1
2

−1−1
2

 = 2
√

2α3


0 0 0 0
0 0 0 0
i 0 0 −i

−1 0 0 −1

 ,

hence by Definition 3.2 and (2.7),

Q̃− = Q−W(−l) = Q− · diag
(
1, α, α2, α3

)
·W0e

−Ωαl

= 2
√

2α3


0 i −i 0
0 1 1 0
0 0 0 0
0 0 0 0

 e−Ωαl

= 2
√

2α3


0 ie−ω2αl −ie−ω3αl 0
0 e−ω2αl e−ω3αl 0
0 0 0 0
0 0 0 0

 ,(5.5)

Q̃+ = Q+W(l) = Q+ · diag
(
1, α, α2, α3

)
·W0e

Ωαl

= 2
√

2α3


0 0 0 0
0 0 0 0
i 0 0 −i

−1 0 0 −1

 eΩαl

= 2
√

2α3


0 0 0 0
0 0 0 0

ieω1αl 0 0 −ieω4αl

−eω1αl 0 0 −eω4αl

 ,(5.6)

(5.7) Q̃ = Q̃− + Q̃+ = 2
√

2α3


0 ie−ω2αl −ie−ω3αl 0
0 e−ω2αl e−ω3αl 0

ieω1αl 0 0 −ieω4αl

−eω1αl 0 0 −eω4αl

 .
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Let

Û =
1√
2


0 i −i 0
0 1 1 0
i 0 0 −i

−1 0 0 −1

 ∈ U(4).

Then by (5.7) and Definition 2.2,

Q̃ = 4α3 · 1√
2


0 i −i 0
0 1 1 0
i 0 0 −i

−1 0 0 −1

 · diag
(
eω1αl, e−ω2αl, e−ω3αl, eω4αl

)
= 4α3ÛeEΩαl,

hence we have

(5.8) Q̃−1 =
1

4α3
e−EΩαlÛ−1 =

1

4α3
e−EΩαlÛ∗,

since Û is unitary. Note that this in particular shows that Q is well-posed by
Lemma 3.1.

Let

Û− =
1√
2


0 i −i 0
0 1 1 0
0 0 0 0
0 0 0 0

 , Û+ =
1√
2


0 0 0 0
0 0 0 0
i 0 0 −i

−1 0 0 −1

 .

Then by (5.5), (5.6),

Q̃− = 4α3 · 1√
2


0 i −i 0
0 1 1 0
0 0 0 0
0 0 0 0

 · diag
(
eω1αl, e−ω2αl, e−ω3αl, eω4αl

)
= 4α3Û−eEΩαl,(5.9)

Q̃+ = 4α3 · 1√
2


0 0 0 0
0 0 0 0
i 0 0 −i

−1 0 0 −1

 · diag
(
eω1αl, e−ω2αl, e−ω3αl, eω4αl

)
= 4α3Û+eEΩαl.(5.10)

By (5.8), (5.9), (5.10), we have

(5.11) Q̃−1Q̃± =
1

4α3
e−EΩαlÛ∗ · 4α3Û±eEΩαl = e−EΩαlÛ∗Û±eEΩαl.
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Note that

Û∗Û− =
1√
2


0 0 −i −1
−i 1 0 0
i 1 0 0
0 0 i −1

 · 1√
2


0 i −i 0
0 1 1 0
0 0 0 0
0 0 0 0

 = diag(0, 1, 1, 0),

Û∗Û+ =
1√
2


0 0 −i −1
−i 1 0 0
i 1 0 0
0 0 i −1

 · 1√
2


0 0 0 0
0 0 0 0
i 0 0 −i

−1 0 0 −1

 = diag(1, 0, 0, 1),

hence by (5.11),

Q̃−1Q̃− = e−EΩαl · diag(0, 1, 1, 0) · eEΩαl = diag(0, 1, 1, 0),(5.12)

Q̃−1Q̃+ = e−EΩαl · diag(1, 0, 0, 1) · eEΩαl = diag(1, 0, 0, 1).(5.13)

Thus by Definition 3.3, we finally have

G−Q = Q̃−1Q̃−ΩL2

= diag(0, 1, 1, 0) ·


0 0 ω1 0
0 0 0 ω2

ω3 0 0 0
0 ω4 0 0

 =


0 0 0 0
0 0 0 ω2

ω3 0 0 0
0 0 0 0

 ,(5.14)

G+
Q = Q̃−1Q̃+ΩL2

= diag(1, 0, 0, 1) ·


0 0 ω1 0
0 0 0 ω2

ω3 0 0 0
0 ω4 0 0

 =


0 0 ω1 0
0 0 0 0
0 0 0 0
0 ω4 0 0

 .(5.15)

Note that Q ∈ wp(4, 8,R) and G−Q,G
+
Q ∈ π(4), satisfying Lemma 4.3.

Lemma 5.1. KQ = Kl,α,k.

Proof. By (1.7) and Definition 3.4, it is sufficient to show that GQ = G, where
G is defined by (1.8). By Definition 2.3, and (2.3), (5.14), (5.15), we have

y(x)T ·G−Q · y(ξ) = ω3e
ω3αxeω1αξ + ω2e

ω2αxeω4αξ

= −ω1e
−ω1α(x−ξ) − ω4e

−ω4α(x−ξ),

y(x)T ·G+
Q · y(ξ) = ω1e

ω1αxeω3αξ + ω4e
ω4αxeω2αξ

= ω1e
−ω1α(ξ−x) + ω4e

−ω4α(ξ−x),

hence by Definitions 2.1, 3.4, and (2.2),

GQ(x, ξ) =
α

4k
·
{
ω1e
−ω1α(ξ−x) + ω4e

−ω4α(ξ−x), x ≤ ξ
ω1e
−ω1α(x−ξ) + ω4e

−ω4α(x−ξ), ξ ≤ x

=
α

4k

(
ω1e
−ω1α|x−ξ| + ω4e

−ω4α|x−ξ|
)
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=
α

4k
· 2 Re

(
ω1e
−ω1α|x−ξ|

)
=

α

2k
Re

(
ei
π
4 e
−
(

1√
2
+i

1√
2

)
α|x−ξ|

)
=

α

2k
Re e

− α√
2
|x−ξ|+i

(
π
4−

α√
2
|x−ξ|

)

=
α

2k
e
− α√

2
|x−ξ|

cos

(
π

4
− α√

2
|x− ξ|

)
=

α

2k
e
− α√

2
|x−ξ|

sin

(
α√
2
|x− ξ|+ π

4

)
,

which is identical to G(x, ξ) in (1.8). Thus we have the proof. �

6. The representation Γ and proof of Theorem 1

6.1. The representation Γ

Definition 6.1. For M ∈ wp(4, 8,C), denote GM =
(
G+

M −G+
Q

) (
ΩL2

)−1 E .

Define Γ : wp(C)→ gl(4,C) by Γ ([M]) = GM for M ∈ wp(4, 8,C).

Readers should be cautious to distinguish the 4 × 4 matrix GM in Defini-
tion 6.1 from the Green function GM in Definition 3.4. Note that the map Γ
is well-defined, since

(6.1) Γ ([M]) =
(
G+

M −G+
Q

) (
ΩL2

)−1 E =
{

Γ+ ([M])−G+
Q

}(
ΩL2

)−1 E
by Definition 4.2. By (3.2),

GM =
{(

ΩL2 −G−M
)
−
(
ΩL2 −G−Q

)} (
ΩL2

)−1 E
= −

(
G−M −G−Q

) (
ΩL2

)−1 E ,
which could have been used for an alternative definition of GM. Note also that

(6.2) GQ = O.

Lemma 6.1. Γ : wp(C) → gl(4,C) is a one-to-one correspondence, and
Γ (wp(R)) = π(4).

Proof. Since Γ+ is a one-to-one correspondence and
(
ΩL2

)−1 E is invertible, it
follows from (6.1) that Γ also is a one-to-one correspondence. Since

Γ+(wp(4, R)) = π(4) and G+
Q,
(
ΩL2

)−1 E ∈ π(4), we have Γ (wp(4,R)) = π(4)

by (6.1) and Lemma 4.4. �

Thus we finally have our representation M 7→ GM , from the set of well-
posed boundary conditions wp(4, 8,C) to the algebra gl(4,C), and from the set
of well-posed real boundary conditions wp(4, 8,R) to the R-algebra π(4). Note
that this representation is constructive in both directions, in that GM ∈ gl(4,C)
is expressed explicitly in terms of given M ∈ wp(4, 8,C), and conversely, M ∈
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wp(4, 8,C) such that GM = G can be chosen explicitly in terms of given
G ∈ gl(4,C). Especially, given M =

(
M− M+

)
∈ wp(4, 8,C), M−,M+ ∈

gl(4,C), we have

GM =
(
G+

M −G+
Q

) (
ΩL2

)−1 E
=
(
M̃−1M̃+ΩL2 − Q̃−1Q̃+ΩL2

) (
ΩL2

)−1 E
=
(
M̃−1M̃+ − Q̃−1Q̃+

)
E

=
{
M−W(−l) + M+W(l)

}−1
M+W(l)E − diag(1, 0, 0, 1)(6.3)

by combining Definitions 3.2, 3.3, 6.1, and (5.13). Conversely, suppose G ∈
gl(4,C) is given. By (6.1), we have Γ−1(G) = (Γ+)

−1
(
GEΩL2 + G+

Q

)
, hence

by (4.4), (5.13), and Definition 3.3, M =
(
M− M+

)
∈ wp(4, 8,C) is a repre-

sentative of Γ−1(G) ∈ wp(C), where

M− =
{

ΩL2 −
(
GEΩL2 + G+

Q

)} (
ΩL2

)−1
W(−l)−1

=
(
ΩL2 −GEΩL2 − Q̃−1Q̃+ΩL2

) (
ΩL2

)−1
W(−l)−1

= {diag(0, 1, 1, 0)−GE}W(−l)−1,

M+ =
(
GEΩL2 + G+

Q

) (
ΩL2

)−1
W(l)−1

=
(
GEΩL2 + Q̃−1Q̃+ΩL2

) (
ΩL2

)−1
W(l)−1

= {diag(1, 0, 0, 1) + GE}W(l)−1.

Thus, given G ∈ gl(4,C), we have

Γ−1(G) =
[(
{diag(0, 1, 1, 0)−GE}W(−l)−1∣∣{diag(1, 0, 0, 1) + GE}W(l)−1

)](6.4)

in wp(C). When G ∈ π(4), a representative of Γ−1 (G) in wp(4, 8,R) is

U ·
(
{diag(0, 1, 1, 0)−GE}W(−l)−1 {diag(1, 0, 0, 1) + GE}W(l)−1

)
by Lemma 4.5, where U is defined by (4.5).

The boundary condition BC(M) in Lemma 3.3 is transformed into the fol-
lowing equivalent condition which is expressed now in terms of GM.

Lemma 6.2. For M ∈ wp(4, 8,C), the boundary condition BC(M): M·B[u] =
0 is equivalent to

0 = GME
{
W(l)−1B+[u]−W(−l)−1B−[u]

}
+ diag(0, 1, 1, 0) ·W(−l)−1B−[u] + diag(1, 0, 0, 1) ·W(l)−1B+[u].
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Proof. By (6.4),
[
M̂
]

= Γ−1 (GM) ∈ wp(C), where

M̂ =
(
{diag(0, 1, 1, 0)−GME}W(−l)−1∣∣{diag(1, 0, 0, 1) + GME}W(l)−1

)
.

(6.5)

So by Definition 6.1, [M] = Γ−1 (GM) =
[
M̂
]
, hence by Lemma 4.1, there

exists P ∈ GL(4,C) such that M = PM̂. Thus the condition BC(M): M ·
B[u] = 0 is equivalent to M̂ · B[u] = 0, since P is invertible. By (2.14), (6.5),

M̂ · B[u] = M̂ ·
(
B−[u]
B+[u]

)
= {diag(0, 1, 1, 0)−GME}W(−l)−1 · B−[u]

+ {diag(1, 0, 0, 1) + GME}W(l)−1 · B+[u]

= GME
{
W(l)−1B+[u]−W(−l)−1B−[u]

}
+ diag(0, 1, 1, 0) ·W(−l)−1B−[u] + diag(1, 0, 0, 1) ·W(l)−1B+[u],

hence the lemma follows. �

6.2. Proof of Theorem 1

Note that the solution space of the linear homogeneous equation EDE(λ) in
Definition 3.5 depends on the value λ 6= 0. In particular, depending on whether
1−1/(λk) = 0 or not, or equivalently, whether λ = 1/k or not, EDE(λ) becomes
as follows.

(I) When λ = 1/k: EDE(λ) becomes u(4) = 0.

(II) When λ 6= 1/k: EDE(λ) becomes u(4)+(κα)
4
u = 0, where κ = χ(λ) 6=

0 is defined in Definition 6.2 below.

Definition 6.2. For λ ∈ C \ {0, 1/k}, define χ(λ) to be the unique complex
number satisfying χ(λ)4 = 1− 1/(λk) and 0 ≤ Argχ(λ) < π/2.

Note that χ(λ) 6= 0 and χ(λ)4 6= 1 for λ ∈ C\{0, 1/k}. In fact, χ is a one-to-
one correspondence from C \ {0, 1/k} to

{
κ ∈ C | 0 ≤ Arg κ < π

2

}
\ {0, 1}, and

its inverse is given by χ−1(κ) = 1/
{
k
(
1− κ4

)}
.

Definition 6.3. For 0 6= λ ∈ C, denote

yλ,j(x) =

{
xj−1

(j−1)! , if λ = 1
k ,

eωjκαx, if λ 6= 1
k ,

j = 1, 2, 3, 4,

where κ = χ(λ). Denote yλ(x) =
(
yλ,1(x) yλ,2(x) yλ,3(x) yλ,4(x)

)T
and

Wλ(x) =
(
y
(i−1)
λ,j (x)

)
1≤i,j≤4

=


yλ(x)T

y′λ(x)T

y′′λ(x)T

y′′′λ (x)T

 .
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Note that the functions yλ,1, yλ,2, yλ,3, yλ,4 form a fundamental set of solu-
tions of EDE(λ) for every 0 6= λ ∈ C, and

(6.6) Wλ(x) =


(
H(j − i) xj−i

(j−i)!

)
1≤i,j≤4

=


1 x x2

2
x3

6

0 1 x x2

2
0 0 1 x
0 0 0 1

 , λ = 1
k ,

(
(ωjκα)

i−1
eωjκαx

)
1≤i,j≤4

, λ 6= 1
k ,

where κ = χ(λ) and H(t) =

{
1, if t ≥ 0,
0, if t < 0.

Let M ∈ wp(4, 8,C). By Lemma 3.3, λ ∈ C is an eigenvalue of KM

and u 6= 0 is a corresponding eigenfunction, if and only if λ 6= 0 and u is
a nontrivial solution of EDE(λ) satisfying the boundary condition BC(M).
Note that u is a nontrivial solution of EDE(λ), if and only if there exists

0 6= c =
(
c1 c2 c3 c4

)T ∈ gl(4, 1,C) such that u =
∑4
j=1 cjyλ,j = yTλ c. If

u =
∑4
j=1 cjyλ,j , then by Definitions 2.6 and 6.3,

B±[u] =

4∑
j=1

cj · B± [yλ,j ] =

4∑
j=1


yλ,j(±l)
y′λ,j(±l)
y′′λ,j(±l)
y′′′λ,j(±l)

 · cj =


yλ(±l)T
y′λ((±l)T
y′′λ((±l)T
y′′′λ ((±l)T

 c = Wλ(±l)c.

It follows from Lemma 6.2 that the condition BC(M) is equivalent to

0 = GME
{
W(l)−1Wλ(l)c−W(−l)−1Wλ(−l)c

}
+diag(0, 1, 1, 0) ·W(−l)−1Wλ(−l)c+diag(1, 0, 0, 1) ·W(l)−1Wλ(l)c

=
[
GME

{
W(l)−1Wλ(l)−W(−l)−1Wλ(−l)

}
+ diag(0, 1, 1, 0) ·W(−l)−1Wλ(−l)
+ diag(1, 0, 0, 1) ·W(l)−1Wλ(l)

]
c.

(6.7)

Thus Lemma 3.3 can be rephrased as the following.

Lemma 6.3. Let M ∈ wp(4, 8,C), 0 6= u ∈ L2[−l, l], and λ ∈ C. Then
KM[u] = λ · u, if and only if λ 6= 0 and u = yTλ c for some 0 6= c ∈ gl(4, 1,C)
which satisfies (6.7).

The following matrix Xλ(x) will have a key role in our discussions.

Definition 6.4. For 0 6= λ ∈ C and x ∈ R, we denote

Xλ(x) = diag(0, 1, 1, 0) ·W(−x)−1Wλ(−x) + diag(1, 0, 0, 1) ·W(x)−1Wλ(x).

Note from Definitions 2.3 and 6.3 that, for each 0 6= λ ∈ C and x ∈ R, Xλ(x)
is a concrete 4× 4 matrix which does not depend on M. By Definition 6.4,

Xλ(x)−Xλ(−x)
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=
{

diag(0, 1, 1, 0) ·W(−x)−1Wλ(−x)

+ diag(1, 0, 0, 1) ·W(x)−1Wλ(x)
}

−
{

diag(0, 1, 1, 0) ·W(x)−1Wλ(x)

+ diag(1, 0, 0, 1) ·W(−x)−1Wλ(−x)
}

= E
{
W(x)−1Wλ(x)−W(−x)−1Wλ(−x)

}
, 0 6= λ ∈ C, x ∈ R.(6.8)

Now we are ready to prove Theorem 1.

Proof of Theorem 1. By Definition 6.4 and (6.8), the condition (6.7) is equiva-
lent to [GM {Xλ(l)−Xλ(−l)}+ Xλ(l)] c = 0. Thus the first assertion follows
from Lemma 6.3. The second assertion follows from the first one, since GQ = O
by (6.2). �

7. Symmetries of Xλ and Yλ

As a consequence of Theorem 1 and Corollary 1, the matrix Xλ(l) is in-
vertible for every 0 6= λ ∈ C which is not in SpecKQ. In fact, this is true for
arbitrary l > 0 by Proposition 1.

Definition 7.1. Denote Yλ(x) = Xλ(−x)Xλ(x)−1 − I for 0 6= λ ∈ C and
x > 0 such that det Xλ(x) 6= 0.

In view of Theorem 1 and Corollaries 1, 2, it is now apparent that analysis
on the 4 × 4 matrices Xλ(x) and Yλ(x) are important. It turns out that
they have various symmetries, and some of them are explored in this section.
In particular, we will obtain the following result, which is crucial in proving
Theorem 2.

Lemma 7.1. Yλ(x) ∈ π(4) for every 0 6= λ ∈ R and x > 0 such that
det Xλ(x) 6= 0.

The proof of Lemma 7.1 will be given at the end of Section 7.2. To facilitate
our analysis, we introduce the following change of variables

(7.1) z = αx,

which will be used extensively for the rest of the paper. By (2.7), (2.9), and
(7.1),

W(x) = diag
(
1, α, α2, α3

)
·W0e

Ωz,(7.2)

W(x)−1 =
1

4
e−ΩzW∗

0 · diag
(
1, α, α2, α3

)−1
.(7.3)

The following form of Xλ(x) will be useful.

Lemma 7.2. For 0 6= λ ∈ C and x ∈ R,

Xλ(x) =
1

4
e−EΩz

{
diag(0, 1, 1, 0) ·W∗

0 · diag
(
1, α, α2, α3

)−1
Wλ(−x)

+ diag(1, 0, 0, 1) ·W∗
0 · diag

(
1, α, α2, α3

)−1
Wλ(x)

}
.
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Proof. By Definition 6.4 and (7.1), (7.3), we have

Xλ(x) =
1

4

{
diag(0, 1, 1, 0) · eΩzW∗

0 · diag
(
1, α, α2, α3

)−1
Wλ(−x)

+ diag(1, 0, 0, 1) · e−ΩzW∗
0 · diag

(
1, α, α2, α3

)−1
Wλ(x)

}
.(7.4)

Note that

diag(0, 1, 1, 0) · eΩz = diag (0, eω2z, eω3z, 0)

= diag
(
e−ω1z, eω2z, eω3z, e−ω4z

)
· diag(0, 1, 1, 0)

= e−EΩz · diag(0, 1, 1, 0),(7.5)

diag(1, 0, 0, 1) · e−Ωz = diag
(
e−ω1z, 0, 0, e−ω4z

)
= diag

(
e−ω1z, eω2z, eω3z, e−ω4z

)
· diag(1, 0, 0, 1)

= e−EΩz · diag(1, 0, 0, 1).(7.6)

Now the lemma follows from (7.4), (7.5), (7.6). �

7.1. The case λ 6= 1/k

In this section, we assume λ is a complex number such that λ 6= 0, λ 6= 1/k.
Let κ = χ(λ) as in Definition 6.2. By Definition 2.1, and (6.6), (7.1), we have

Wλ(x) =
(

(ωjκα)
i−1

eωjκαx
)
1≤i,j≤4

=
(
αi−1κi−1ωi−1j eωjκz

)
1≤i,j≤4

= diag
(
1, α, α2, α3

)
· diag

(
1, κ, κ2, κ3

)
·W0e

Ωκz,(7.7)

hence diag
(
1, α, α2, α3

)−1
Wλ(x) = diag

(
1, κ, κ2, κ3

)
·W0e

Ωκz. Thus by (7.1)
and Lemma 7.2, we have

Xλ(x) =
1

4
e−EΩz

{
diag(0, 1, 1, 0) ·W∗

0 · diag
(
1, κ, κ2, κ3

)
·W0e

−Ωκz

+ diag(1, 0, 0, 1) ·W∗
0 · diag

(
1, κ, κ2, κ3

)
·W0e

Ωκz
}
,(7.8)

where κ = χ(λ). Note that (7.8) is well-defined for every z, κ ∈ C, though we
originally restricted the domains of z, κ.

Definition 7.2. For z, κ ∈ C, define

X(z, κ) =
1

4
e−EΩz

{
diag(0, 1, 1, 0) ·W∗

0 · diag
(
1, κ, κ2, κ3

)
·W0e

−Ωκz

+ diag(1, 0, 0, 1) ·W∗
0 · diag

(
1, κ, κ2, κ3

)
·W0e

Ωκz
}
.

By (7.1), (7.8), we have

(7.9) Xλ(x) = X (αx, χ(λ)) , x ∈ R, λ ∈ C \ {0, 1/k} .

Lemma 7.3. (a) X(z, iκ) = X(z, κ) · L−1 for every z, κ ∈ C.

(b) RX(z, κ)R = X (z, κ) for every z ∈ R and κ ∈ C.
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Proof. By (2.11), (2.12), we have

diag
(

1, iκ, (iκ)
2
, (iκ)

3
)
·W0e

±Ω(iκ)z

= diag
(
1, κ, κ2, κ3

)
· diag

(
1, i, i2, i3

)
·W0e

±(iΩ)κz

= diag
(
1, κ, κ2, κ3

)
·W0L

−1 · e±LΩL−1κz

= diag
(
1, κ, κ2, κ3

)
·W0L

−1 · Le±ΩκzL−1

= diag
(
1, κ, κ2, κ3

)
·W0e

±Ωκz · L−1,

which implies (a) by Definition 7.2. Suppose z ∈ R, and let

X̂(z, κ) = diag(0, 1, 1, 0) ·W∗
0 · diag

(
1, κ, κ2, κ3

)
·W0e

−Ωκz

+ diag(1, 0, 0, 1) ·W∗
0 · diag

(
1, κ, κ2, κ3

)
·W0e

Ωκz
(7.10)

so that by Definition 7.2,

(7.11) X(z, κ) =
1

4
e−EΩzX̂(z, κ).

Note that diag(0, 1, 1, 0),diag(0, 1, 1, 0) ∈ π(4). Since z ∈ R, e−EΩz ∈ π(4),

and Re±ΩκzR = Re±ΩκzR = Re±RΩRκzR = R ·Re±ΩκzR ·R = e±Ωκz by
(2.10). Hence by (7.10), we have

RX̂(z, κ)R = R{diag(0, 1, 1, 0) ·W∗
0 · diag (1, κ, κ2, κ3) ·W0 · e−Ωκz}R

+ R{diag(1, 0, 0, 1) ·W∗
0 · diag (1, κ, κ2, κ3) ·W0 · eΩκz}R

= Rdiag(0, 1, 1, 0)R ·RWT
0 · diag (1, κ, κ2, κ3) ·W0R ·Re−ΩκzR

+ Rdiag(1, 0, 0, 1)R ·RWT
0 · diag (1, κ, κ2, κ3) ·W0R ·ReΩκzR

= diag(0, 1, 1, 0) · (W0R)
T · diag

(
1, κ, κ2, κ3

)
·W0R · e−Ωκz

+ diag(1, 0, 0, 1) · (W0R)
T · diag

(
1, κ, κ2, κ3

)
·W0R · eΩκz

= X̂ (z, κ) ,

since (W0R)
T

= W0
T

= W∗
0 and W0R = W0 = W0 by (2.10). Thus by

(7.11),

RX(z, κ)R = R

{
1

4
e−EΩzX̂(z, κ)

}
R =

1

4
Re−EΩzR ·RX̂(z, κ)R

=
1

4
e−EΩzX̂ (z, κ) = X (z, κ) ,

since e−EΩz ∈ π(4). This shows (b), and the proof is complete. �

Interpreting Lemma 7.3 in terms of Xλ(x) and Yλ(x), we have the following.
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Lemma 7.4. (a) For λ ∈ C \ {0, 1/k} and x ∈ R,

RXλ(x)R =

{
Xλ(x), if λ ∈ (−∞, 0) ∪

(
1
k ,∞

)
,

Xλ(x) · L, otherwise.

In particular, Xλ(x) ∈ π(4) for every λ ∈ (−∞, 0) ∪ (1/k,∞) and
x ∈ R.

(b) RYλ(x)R = Yλ(x) for every λ ∈ C \ {0, 1/k} and x > 0 such that
det Xλ(x) 6= 0. In particular, Yλ(x) ∈ π(4) for every λ ∈ R \ {0, 1/k}
and x > 0 such that det Xλ(x) 6= 0.

Proof. Suppose λ ∈ C \ {0, 1/k} and x ∈ R. Let reiθ = 1 − 1/(λk), r > 0,

0 ≤ θ < 2π. Then by Definition 6.2, χ(λ) = 4
√
rei

θ
4 . Suppose θ = 0, which

is equivalent to λ ∈ (−∞, 0) ∪ (1/k,∞). Then χ(λ) = 4
√
r = χ(λ), hence

by (7.9) and Lemma 7.3(b), RXλ(x)R = RX (αx, χ(λ))R = X
(
αx, χ(λ)

)
=

X (αx, χ(λ)) = Xλ(x). Suppose 0 < θ < 2π. Then by Definition 6.2, χ
(
λ
)

=

χ
(
re−iθ

)
= 4
√
rei(

π
2−

θ
4 ) = i · 4

√
re−i

θ
4 = i ·χ(λ), since 0 < Arg

(
4
√
rei(

π
2−

θ
4 )
)

=

π/2− θ/4 < π/2. Thus by (7.9) and Lemma 7.3(a), Xλ(x) = X
(
αx, χ

(
λ
))

=

X
(
αx, i · χ(λ)

)
= X

(
αx, χ(λ)

)
· L−1, and hence by (7.9) and Lemma 7.3(b),

RXλ(x)R = RX (αx, χ(λ))R = X
(
αx, χ(λ)

)
= Xλ(x) · L. This shows (a).

Suppose λ ∈ C \ {0, 1/k}, x > 0, and det Xλ(x) 6= 0. Suppose first that
λ ∈ (−∞, 0) ∪ (1/k,∞). Then by (a), Xλ(x),Xλ(−x) ∈ π(4). Thus by
Lemma 4.4 and Definition 7.1, Yλ(x) = Xλ(−x)Xλ(x)−1−I ∈ π(4), and hence

RYλ(x)R = Yλ(x) = Yλ(x), since λ is real. Suppose λ 6∈ (−∞, 0)∪ (1/k,∞).
Then by Definition 7.1 and (a),

RYλ(x)R = R{Xλ(−x)Xλ(x)−1 − I}R = RXλ(−x)R ·RXλ(x)−1R− I

=
{
Xλ(−x)L

}{
Xλ(x)L

}−1 − I = Xλ(−x)Xλ(x)−1 − I = Yλ(x).

Thus we showed (b), and the proof is complete. �

7.2. The case λ = 1/k

By (6.6), (7.1), we have{
diag

(
1, α, α2, α3

)−1 ·W 1
k

(x) · diag
(
1, α, α2, α3

)}
i,j

= α1−i ·
{

W 1
k

(x)
}
i,j
· αj−1 = αj−i ·H(j − i) xj−i

(j − i)!
= H(j − i) (αx)j−i

(j − i)!

= H(j − i) zj−i

(j − i)!
=
{

W 1
k

(z)
}
i,j
, 1 ≤ i, j ≤ 4,
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hence diag
(
1, α, α2, α3

)−1 ·W 1
k

(x) = W 1
k

(z) · diag
(
1, α, α2, α3

)−1
. Thus by

Lemma 7.2,

X 1
k

(x) =
1

4
e−EΩz

{
diag(0, 1, 1, 0) ·W∗

0W 1
k

(−z) · diag
(
1, α, α2, α3

)−1
+ diag(1, 0, 0, 1) ·W∗

0W 1
k

(z) · diag
(
1, α, α2, α3

)−1}
=

1

4
e−EΩz

{
diag(0, 1, 1, 0) ·W∗

0W 1
k

(−z) + diag(1, 0, 0, 1) ·W∗
0W 1

k
(z)
}

· diag
(
1, α, α2, α3

)−1
.

For z ∈ R, denote

(7.12) P(z) = diag(0, 1, 1, 0) ·W∗
0W 1

k
(−z) + diag(1, 0, 0, 1) ·W∗

0W 1
k

(z),

so that

(7.13) X 1
k

(x) =
1

4
e−EΩzP(z) · diag

(
1, α, α2, α3

)−1
.

See Appendix B for the proof of Lemma 7.5.

Lemma 7.5. Y 1
k

(x) ∈ π(4) for every x > 0.

Proof of Lemma 7.1. The statement follows from Lemmas 7.4(b) and 7.5 re-
spectively for the case λ 6= 1/k and for the case λ = 1/k. �

8. Proof of Theorem 2

Let

(8.1) U2n =
1√
2

(
In Rn

iRn −iIn

)
∈ gl(2n,C), n ∈ N.

U2n is unitary, since

U∗2nU2n =
1√
2

(
In −iRn

Rn iIn

)
· 1√

2

(
In Rn

iRn −iIn

)
=

(
In On

On In

)
= I.

Note also that

(8.2) U2nR =
1√
2

(
In Rn

iRn −iIn

)(
On Rn

Rn On

)
=

1√
2

(
In Rn

−iRn iIn

)
= U2n.

Lemma 8.1. For n ∈ N, The map A 7→ U2nAUT
2n is an R-algebra isomor-

phism from π(2n) to gl(2n,R).

Proof. Since U2n is unitary, and hence U2n
−1

= UT
2n, it is clear that the map

A 7→ U2nAUT
2n is a C-algebra isomorphism from gl(2n,C) to gl(2n,C). So

it is sufficient to show that A ∈ π(2n) if and only if U2nAUT
2n ∈ gl(2n,R).

Let B = U2nAUT
2n. Suppose A ∈ π(2n). Then by Definition 4.4, A =

RAR = RAR, hence B = U2nAUT
2n = U2nAU∗2n = U2n · RAR · U∗2n =

(U2nR) A (U2nR)
∗

= U2nAUT
2n = B by (8.2). Thus B ∈ gl(2n,R). Con-

versely, suppose B ∈ gl(2n,R). Since A =
{
U2n

}−1
B
{
UT

2n

}−1
= UT

2nBU2n,
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we have RAR = R
(
UT

2nBU2n

)
R = (U2nR)

∗
B (U2nR) = UT

2nBU2n = A by
(8.2). Thus A ∈ π(2n) by Definition 4.4, and the proof is complete. �

Note that U4 = U, where U is defined by (4.5).

Lemma 8.2. For any O 6= G0 ∈ π(4), there exists G ∈ π(4) such that
det (GG0 − I) = 0.

Proof. Let Ĝ0 = UG0U
T , which is not O, since G0 6= O. By Lemma 8.1,

Ĝ0 ∈ gl(4,R). So there exists 0 6= r ∈ gl(4, 1,R) such that Ĝ0r 6= 0. It is clear

that there exists Ĝ ∈ gl(4,R) such that Ĝ · Ĝ0r = r, since Ĝ0r 6= 0. Take

G = UT ĜU. Then by Lemma 8.1, G ∈ π(4), and GG0 · UT r = UT ĜU ·
UT Ĝ0U ·UT r = UT · ĜĜ0r = UT r. Since UT r 6= 0, it follows that 1 is an
eigenvalue of GG0, which is equivalent to det (GG0 − I) = 0. �

Lemma 8.3 below, which is the last ingredient for the proof of Theorem 2,
shows that Yλ(x), when defined, never becomes the zero matrix for x > 0. See
Appendix C for its proof.

Lemma 8.3. Yλ(x) 6= O for every 0 6= λ ∈ C and x > 0 such that det Xλ(x) 6=
0.

Proof of Theorem 2. Suppose 0 6= λ ∈ R \ SpecKQ. Then O 6= Yλ(l) ∈
π(4) by Lemmas 7.1 and 8.3. So by Lemma 8.2. there exists G ∈ π(4) such
that det {G ·Yλ(l)− I} = 0. By Definitions 4.3, 6.1, and Lemma 6.1, there
exists M ∈ wp(4, 8,R) such that GM = G, since G ∈ π(4). Thus we have
det {GM ·Yλ(l)− I} = 0, which implies that λ ∈ SpecKM by Corollary 2. �

9. Discussion

The 4× 4 matrices Xλ(x) and Yλ(x) turn out to be rich in symmetries. In
fact, only part of their symmetries are exploited to prove our results in this
paper. We have also tried to refrain, as possible as we can, from resorting
to more explicit forms of Xλ(x) and Yλ(x), despite of their explicit nature.
In view of what can be done more in these respects, it is expected that we
will have a clearer picture of general well-posed boundary value problems for
finite beam deflection, if we pursue closer investigations on Xλ(x) and Yλ(x).
Especially, detailed results such as Proposition 1, which is for only one specific
boundary condition Q, are expected to be obtained for the class of all well-
posed boundary conditions.

Appendix A. Proof of Lemma 3.2

By Definition 3.4, we have

KM[w](x) = − α

4k

∫ x

−l
y(x)T ·G−M · y(ξ)w(ξ) dξ
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+
α

4k

∫ l

x

y(x)T ·G+
M · y(ξ)w(ξ) dξ

=
α

4k
· y(x)T

{
−G−M

∫ x

−l
y(ξ)w(ξ) dξ + G+

M

∫ l

x

y(ξ)w(ξ) dξ

}
,(A.1)

and by (3.2),

d

dx

{
−G−M

∫ x

−l
y(ξ)w(ξ) dξ + G+

M

∫ l

x

y(ξ)w(ξ) dξ

}

= −G−M ·
d

dx

∫ x

−l
y(ξ)w(ξ) dξ + G+

M ·
d

dx

∫ l

x

y(ξ)w(ξ) dξ

= −G−M · y(x)w(x)−G+
M · y(x)w(x) = −ΩL2 · y(x)w(x).(A.2)

Let

(A.3) f(x) = −G−M

∫ x

−l
y(ξ)w(ξ) dξ + G+

M

∫ l

x

y(ξ)w(ξ) dξ,

so that

(A.4) KM[w](x) =
α

4k
· y(x)T · f(x),

and f ′(x) = −ΩL2 · y(x)w(x) by (A.1), (A.2). By (2.13),

y(x)T ·Ωn · f ′(x) = −y(x)T ·Ωn ·ΩL2 · y(x)w(x)

= −w(x)
{
y(x)T ·Ωn+1 · y(−x)

}
= −w(x)

(
eω1αx eω2αx eω3αx eω4αx

)
· diag

(
ωn+1
1 , ωn+1

2 , ωn+1
3 , ωn+1

4

)
·


e−ω1αx

e−ω2αx

e−ω3αx

e−ω4αx


= −w(x)

4∑
j=1

eωjαxωn+1
j e−ωjαx

= −w(x)

4∑
j=1

ωn+1
j , n = 0, 1, 2, . . . .(A.5)

By (2.1),
∑4
j=1 ω

4
j =

∑4
j=1(−1) = −4, and

∑4
j=1 ω

2
j =

∑4
j=1

(
i
j−1ω1

)2
=

ω2
1

∑4
j=1(−1)j−1 = 0. By (2.3),

∑4
j=1 ωj = 0, hence by (2.1),

∑4
j=1 ω

3
j =∑4

j=1 (−ωj) = −
∑4
j=1 ωj = 0. So by (A.5), we have

(A.6) y(x)T ·Ωn · f ′(x) = 0, n = 0, 1, 2, y(x)T ·Ω3 · f ′(x) = 4 · w(x).
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By (2.6), y′(x)T = {αΩ · y(x)}T = α · y(x)T ·Ω. So by (A.4), (A.6), we have

KM[w]′(x) =
α

4k

{
y′(x)T · f(x) + y(x)T · f ′(x)

}
=
α2

4k
· y(x)T ·Ω · f(x),(A.7)

KM[w]′′(x) =
α2

4k

{
y′(x)T ·Ω · f(x) + y(x)T ·Ω · f ′(x)

}
=
α3

4k
· y(x)T ·Ω2 · f(x),(A.8)

KM[w]′′′(x) =
α3

4k

{
y′(x)T ·Ω2 · f(x) + y(x)T ·Ω2 · f ′(x)

}
=
α4

4k
· y(x)T ·Ω3 · f(x),(A.9)

hence by (2.4), (2.6), (A.4), (A.6),

KM[w](4)(x) =
α4

4k

{
y′(x)T ·Ω3 · f(x) + y(x)T ·Ω3 · f ′(x)

}
=
α4

4k

{
α · y(x)T ·Ω4 · f(x) + 4 · w(x)

}
=
α4

4k

{
−α · y(x)T · f(x) + 4 · w(x)

}
=
α4

4k

{
−α · 4k

α
KM[w](x) + 4 · w(x)

}
= −α4 · KM[w](x) +

α4

k
· w(x).

This shows that KM[w](x) satisfies DE(w).
By (A.4), (A.7), (A.8), (A.9), and (2.6), we have

KM[w](n)(x) =
αn+1

4k
· y(x)T ·Ωn · f(x) =

α

4k
{αnΩn · y(x)}T · f(x)

=
α

4k
· y(n)(x)T · f(x), n = 0, 1, 2, 3.(A.10)

By (A.3), f(±l) = ∓G∓M
∫ l
−l y(ξ)w(ξ) dξ, hence by (A.10),

KM[w](n)(±l) = ∓ α

4k
· y(n)(±l)T ·G∓M

∫ l

−l
y(ξ)w(ξ) dξ, n = 0, 1, 2, 3.

So by Definitions 2.3 and 2.6,

(A.11) B± [KM[w]] = ∓ α

4k
·W(±l) ·G∓M

∫ l

−l
y(ξ)w(ξ) dξ.
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Let M−,M+ ∈ gl(4,C) be the 4× 4 minors of M such that M =
(
M− M+

)
.

By Definitions 3.2, 3.3, and (A.11),

M± · B± [KM[w]] = ∓ α

4k
·M±W(±l) ·G∓M

∫ l

−l
y(ξ)w(ξ) dξ

= ∓ α

4k
· M̃± · M̃−1M̃∓ΩL2

∫ l

−l
y(ξ)w(ξ) dξ,

hence by (2.15),

M · B [KM[w]] = M− · B− [KM[w]] + M+ · B+ [KM[w]]

=
α

4k
M̃−M̃−1M̃+ΩL2

∫ l

−l
y(ξ)w(ξ) dξ

− α

4k
M̃+M̃−1M̃−ΩL2

∫ l

−l
y(ξ)w(ξ) dξ

=
α

4k

(
M̃−M̃−1M̃+ − M̃+M̃−1M̃−

)
ΩL2

∫ l

−l
y(ξ)w(ξ) dξ.

Thus we have M · B [KM[w]] = 0, since M̃ = M̃− + M̃+ by Definition 3.2 and
hence

M̃−M̃−1M̃+ − M̃+M̃−1M̃−

=
(
M̃− M̃+

)
M̃−1M̃+ − M̃+M̃−1

(
M̃− M̃+

)
= M̃+ − M̃+M̃−1M̃+ − M̃+ + M̃+M̃−1M̃+ = O.

This shows that KM[w] satisfies BC(M), and the proof is complete.

Appendix B. Proof of Lemma 7.5

Denote

(B.1) pn,i(z) =

n∑
r=0

ωn−ri

r!
zr, n = 0, 1, 2, 3, i ∈ Z,

where it is understood that 00 = 1. In particular, denote

(B.2) pn(z) = pn,1(z), n = 0, 1, 2, 3.

By Definitions 2.1, 2.4, and (2.10),

W∗
0 = W0

T
= (W0R)

T
= RWT

0 = R ·
(
ωj−1i

)
1≤i,j≤4

=
(
ωj−15−i

)
1≤i,j≤4

,

hence by (6.6), (B.1), we have

diag(0, 1, 1, 0) ·W∗
0W 1

k
(−z)
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=


0 0 0 0
1 ω3 ω2

3 ω3
3

1 ω2 ω2
2 ω3

2

0 0 0 0




(−z)0 (−z)1 1
2 (−z)2 1

6 (−z)3
0 (−z)0 (−z)1 1

2 (−z)2
0 0 (−z)0 (−z)1
0 0 0 (−z)0



=


0 0 0 0

p0,3(−z) p1,3(−z) p2,3(−z) p3,3(−z)
p0,2(−z) p1,2(−z) p2,2(−z) p3,2(−z)

0 0 0 0

 ,

diag(1, 0, 0, 1) ·W∗
0W 1

k
(z) =


1 ω4 ω2

4 ω3
4

0 0 0 0
0 0 0 0
1 ω1 ω2

1 ω3
1



z0 z1 1

2z
2 1

6z
3

0 z0 z1 1
2z

2

0 0 z0 z1

0 0 0 z0



=


p0,4(z) p1,4(z) p2,4(z) p3,4(z)

0 0 0 0
0 0 0 0

p0,1(z) p1,1(z) p2,1(z) p3,1(z)

 .

Thus by (7.12), we have

(B.3) P(z) =


p0,4(z) p1,4(z) p2,4(z) p3,4(z)
p0,3(−z) p1,3(−z) p2,3(−z) p3,3(−z)
p0,2(−z) p1,2(−z) p2,2(−z) p3,2(−z)
p0,1(z) p1,1(z) p2,1(z) p3,1(z)

 .

Note from (2.2), (2.3), (B.1), (B.2) that, for n = 0, 1, 2, 3,

pn,4(z) =

n∑
r=0

ωn−r4

r!
zr =

n∑
r=0

ω1
n−r

r!
zr =

(
n∑
r=0

ωn−r1

r!
zr

)
= pn,1(z) = pn(z),

pn,3(−z) =

n∑
r=0

ωn−r3

r!
(−z)r =

n∑
r=0

(−ω1)
n−r

r!
(−z)r = (−1)n

n∑
r=0

ωn−r1

r!
zr

= (−1)npn,1(z) = (−1)npn(z),

pn,2(−z) =

n∑
r=0

ωn−r2

r!
(−z)r =

n∑
r=0

ω3
n−r

r!
(−z)r =

{
n∑
r=0

ωn−r3

r!
(−z)r

}
= pn,3(−z) = (−1)npn(z) = (−1)npn(z).

Thus by (B.3), we have

(B.4) P(z) =


p0(z) p1(z) p2(z) p3(z)
p0(z) −p1(z) p2(z) −p3(z)

p0(z) −p1(z) p2(z) −p3(z)
p0(z) p1(z) p2(z) p3(z)

 .
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Denote

(B.5) P+(z) =

(
p0(z) p2(z)
p0(z) p2(z)

)
, P−(z) =

(
−p1(z) −p3(z)
p1(z) p3(z)

)
,

(B.6) V =
1√
2

(
I I
−I I

)
=

1√
2


1 0 1 0
0 1 0 1
−1 0 1 0
0 −1 0 1

 , V̂ =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Note that V, V̂ ∈ O(4) and

(B.7) det V = 1, det V̂ = −1.

Lemma B1. V ·P(z) · V̂ =
√

2

(
P+(z) O

O P−(z)

)
.

Proof. By (B.4), (B.6),

V ·P(z) =
1√
2


1 0 1 0
0 1 0 1
−1 0 1 0
0 −1 0 1



p0(z) p1(z) p2(z) p3(z)
p0(z) −p1(z) p2(z) −p3(z)

p0(z) −p1(z) p2(z) −p3(z)
p0(z) p1(z) p2(z) p3(z)



=
√

2


p0(z) 0 p2(z) 0
p0(z) 0 p2(z) 0

0 −p1(z) 0 −p3(z)
0 p1(z) 0 p3(z)

 ,

hence the lemma follows, since multiplying V̂ on the right amounts to inter-
changing the second and the third columns. �

By Lemma B1, we have

(B.8)

P(z) = V−1 ·
√

2

(
P+(z) O

O P−(z)

)
· V̂−1

=
√

2 ·VT

(
P+(z) O

O P−(z)

)
V̂T ,

since V, V̂ are orthogonal. So by (B.7)

det P(z) =
√

2
4
· det V · det

(
P+(z) O

O P−(z)

)
· det V̂

= −4 · det

(
P+(z) O

O P−(z)

)
= −4 · det P+(z) · det P−(z),

hence by (7.13),

det X 1
k

(x) =

(
1

4

)4

· det e−EΩz · det P(z) · det diag
(
1, α, α2, α3

)−1
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= −e
−2
√
2z

43α6
· det P+(z) · det P−(z),(B.9)

since det diag
(
1, α, α2, α3

)−1
= 1·α−1·α−2·α−3 = α−6, and det e−EΩz = e−ω1z ·

eω2z ·eω3z ·e−ω4z = e−{(ω1−ω3)+(ω4−ω2)}z = e−2(ω1+ω4)z = e−2·2Reω1·z = e−2
√
2z

by (2.2), (2.3), (2.5). Since det X 1
k

(x) 6= 0 for every x > 0 by Proposition 1,

Corollary 1, and Lemma 5.1, it follows from (7.1), (B.9) that det P+(z) 6= 0
and det P−(z) 6= 0 for every z > 0. From (B.5), we have

det P+(z) = p0(z)p2(z)− p0(z)p2(z) = 2i Im
{
p0(z)p2(z)

}
,(B.10)

det P−(z) = p1(z)p3(z)− p1(z)p3(z) = 2i Im
{
p1(z)p3(z)

}
.(B.11)

Note from Definition 4.4 that

(
a11 a12
a21 a22

)
∈ π(2), if and only if a11 = a22

and a12 = a21.

Lemma B2. P+(−z)P+(z)−1,P−(−z)P−(z)−1 ∈ π(2) for every z > 0.

Proof. From (B.5), we have

iP+(−z) · adj P+(z)

= i

(
p0(−z) p2(−z)
p0(−z) p2(−z)

)(
p2(z) −p2(z)

−p0(z) p0(z)

)

=

i

{
p0(−z)p2(z)− p2(−z)p0(z)

}
i

{
−p0(−z)p2(z) + p2(−z)p0(z)

}
i {p0(−z)p2(z)− p2(−z)p0(z)} i

{
−p0(−z)p2(z) + p2(−z)p0(z)

}
=

i

{
−p0(−z)p2(z) + p2(−z)p0(z)

}
i {p0(−z)p2(z)− p2(−z)p0(z)}

i {p0(−z)p2(z)− p2(−z)p0(z)} i

{
−p0(−z)p2(z) + p2(−z)p0(z)

}
 ,

iP−(−z) · adj P−(z)

= i

(
−p1(−z) −p3(−z)
p1(−z) p3(−z)

)(
p3(z) p3(z)

−p1(z) −p1(z)

)

=

i

{
−p1(−z)p3(z) + p3(−z)p1(z)

}
i

{
−p1(−z)p3(z) + p3(−z)p1(z)

}
i {p1(−z)p3(z)− p3(−z)p1(z)} i

{
p1(−z)p3(z)− p3(−z)p1(z)

} 
=

i

{
p1(−z)p3(z)− p3(−z)p1(z)

}
i {p1(−z)p3(z)− p3(−z)p1(z)}

i {p1(−z)p3(z)− p3(−z)p1(z)} i

{
p1(−z)p3(z)− p3(−z)p1(z)

}
 ,



106 S. W. CHOI

hence we have iP+(−z) · adj P+(z), iP−(−z) · adj P−(z) ∈ π(2) by Defini-
tion 4.4. Thus by (B.10), (B.11),

P+(−z)P+(z)−1 = P+(−z) · adj P+(z)

det P+(z)
= − iP+(−z) · adj P+(z)

2 Im
{
p0(z)p2(z)

} ,

P−(−z)P−(z)−1 = P−(−z) · adj P−(z)

det P−(z)
= − iP−(−z) · adj P−(z)

2 Im
{
p1(z)p3(z)

} ,

both of which are in π(2) by Lemma 4.4. �

Note from (B.8) that

P(−z)P(z)−1

=

{√
2 ·VT

(
P+(−z) O

O P−(−z)

)
V̂−1

}
·
{√

2 ·VT

(
P+(z) O

O P−(z)

)
V̂−1

}−1
=
√

2 ·VT

(
P+(−z) O

O P−(−z)

)
V̂−1 · 1√

2
· V̂
(

P+(z) O
O P−(z)

)−1
V

= VT

(
P+(−z) O

O P−(−z)

)(
P+(z)−1 O

O P−(z)−1

)
V

= VT

(
P+(−z)P+(z)−1 O

O P−(−z)P−(z)−1

)
V, z > 0.(B.12)

Proof of Lemma 7.5. By Definition 7.1 and Lemma 4.4, it is sufficient to show
that X 1

k
(−x)X 1

k
(x)−1 ∈ π(4) for x > 0. By (7.1), (7.13),

X 1
k

(−x)X 1
k

(x)−1

=

{
1

4
e−EΩ(−z)P(−z) · diag

(
1, α, α2, α3

)−1}
·
{

1

4
e−EΩzP(z) · diag

(
1, α, α2, α3

)−1}−1
=

1

4
eEΩzP(−z) · diag

(
1, α, α2, α3

)−1 · 4 diag
(
1, α, α2, α3

)
·P(z)−1eEΩz

= eEΩzP(−z)P(z)−1eEΩz,

hence it is sufficient to show that P(−z)P(z)−1 ∈ π(4) for z > 0, since eEΩz ∈
π(4) for z ∈ R. By (B.6), (B.12),

R{P(−z)P(z)−1}R

= R

{
VT

(
P+(−z)P+(z)−1 O

O P−(−z)P−(z)−1

)
V

}
R
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= RVTR ·R
(

P+(−z)P+(z)−1 O
O P−(−z)P−(z)−1

)
R ·RVR.(B.13)

By Lemma B2,

R

(
P+(−z)P+(z)−1 O

O P−(−z)P−(z)−1

)
R

=

(
O R
R O

)(
P+(−z)P+(z)−1 O

O P−(−z)P−(z)−1

)(
O R
R O

)
=

(
O RP−(−z)P−(z)−1

RP+(−z)P+(z)−1 O

)(
O R
R O

)
=

(
RP−(−z)P−(z)−1R O

O RP+(−z)P+(z)−1R

)
=

(
P−(−z)P−(z)−1 O

O P+(−z)P+(z)−1

)
, z > 0.(B.14)

By (B.6),

RVR =

(
O R
R O

)
1√
2

(
I I
−I I

)(
O R
R O

)
=

1√
2

(
−R R
R R

)(
O R
R O

)
=

1√
2

(
I −I
I I

)
= VT ,(B.15)

V2 =
1√
2

(
I I
−I I

)
1√
2

(
I I
−I I

)
=

(
O I
−I O

)
.(B.16)

So by (B.12), (B.13), (B.14), (B.15), (B.16), we have

R{P(−z)P(z)−1}R

= (RVR)
T ·
(

P−(−z)P−(z)−1 O
O P+(−z)P+(z)−1

)
·RVR

= V

(
P−(−z)P−(z)−1 O

O P+(−z)P+(z)−1

)
VT

= VTV2

(
P−(−z)P−(z)−1 O

O P+(−z)P+(z)−1

)(
V2
)T

V

= VT

(
O I
−I O

)(
P−(−z)P−(z)−1 O

O P+(−z)P+(z)−1

)(
O −I
I O

)
V

= VT

(
O P+(−z)P+(z)−1

−P−(−z)P−(z)−1 O

)(
O −I
I O

)
V

= VT

(
P+(−z)P+(z)−1 O

O P−(−z)P−(z)−1

)
V = P(−z)P(z)−1, z > 0.

Thus P(−z)P(z)−1 ∈ π(4) for z > 0, and the proof is complete. �
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Appendix C. Proof of Lemma 8.3

Lemma C1. Suppose t0 ∈ R satisfies
∑4
r=1 ω

n
r e
ωrt0 = 0 for n = 1, 2, 3. Then

t0 = 0.

Proof. Let a =
∑4
r=1 e

ωrt0 . Then the condition for t0 is equivalent to
a
0
0
0

 =
(
ωi−1j

)
1≤i,j≤4 ·


eω1t0

eω2t0

eω3t0

eω4t0

 = W0


eω1t0

eω2t0

eω3t0

eω4t0

 ,

which, by Lemma 2.1 and (2.8), is equivalent again to
eω1t0

eω2t0

eω3t0

eω4t0

 =
1

4
W∗

0


a
0
0
0

 =
a

4

(
ω1−j
i

)
1≤i,j≤4

·


1
0
0
0

 =
a

4


1
1
1
1

 .

It follows that eωit0 = eωjt0 for every i, j ∈ Z. In particular, eω1t0 = eω2t0 ,

hence 1 = eω1t0/eω2t0 = e(ω1−ω2)t0 = e
√
2t0 by Definition 2.1, which implies

that t0 = 0. �

Proof of Lemma 8.3. Suppose on the contrary that Yλ0 (x0) = O for some
0 6= λ0 ∈ C and x0 > 0 such that det Xλ0

(x0) 6= 0. Then by Definition 7.1, we

have Xλ0
(−x0) ·Xλ0

(x0)
−1− I = O, hence Xλ0

(−x0)−Xλ0
(x0) = O. So by

(6.8), we have W (x0)
−1

Wλ0
(x0) = W (−x0)

−1
Wλ0

(−x0), hence

(C.1) Wλ0
(−x0) Wλ0

(x0)
−1

= W (−x0) W (x0)
−1
.

Let z0 = αx0 > 0. By (7.2), (7.3),

W (−x0) W (x0)
−1

=
{

diag
(
1, α, α2, α3

)
·W0e

Ω(−z0)
}

·
{

1

4
e−Ωz0W∗

0 · diag
(
1, α, α2, α3

)−1}
=

1

4
diag

(
1, α, α2, α3

)
·W0e

−2Ωz0W∗
0 · diag

(
1, α, α2, α3

)−1
.(C.2)

By (2.8),

W0e
−2Ωz0W∗

0

=
(
ωi−1j

)
1≤i,j≤4 · diag

(
e−2ω1z0 , e−2ω2z0 , e−2ω3z0 , e−2ω4z0

)
·
(
ω1−j
i

)
1≤i,j≤4

=
(
ωi−1j e−2ωjz0

)
1≤i,j≤4 ·

(
ω1−j
i

)
1≤i,j≤4

=

(
4∑
r=1

ωi−1r e−2ωrz0ω1−j
r

)
1≤i,j≤4
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=

(
4∑
r=1

ωi−jr e−2ωrz0

)
1≤i,j≤4

,(C.3)

hence by (C.2),{
W (−x0) W (x0)

−1
}
i,j

=
αi−1 · α1−j

4
·
(
W0e

−2Ωz0W∗
0

)
i,j

=
αi−j

4
·

4∑
r=1

ωi−jr e−2ωrz0 , 1 ≤ i, j ≤ 4.(C.4)

Suppose λ0 = 1/k. Note from (6.6) that W 1
k

(x) is upper diagonal. So

W 1
k

(−x)W 1
k

(x)−1 is upper diagonal as well. Hence by (C.1), (C.4), we have∑4
r=1 ω

n
r e
−2ωrz0 =

∑4
r=1 ω

n
r e
ωr(−2αx0) = 0 for n = 1, 2, 3. This implies that

x0 = 0 by Lemma C1, which contradicts the assumption that x0 > 0. Thus we
conclude that λ0 6= 1/k. Let κ0 = χ (λ0), where χ is as in Definition 6.2. Note
that κ40 6= 1. κ0 6= 0, since λ0 6= 1/k. By (7.7) and Lemma 2.1,

Wλ0
(−x0) Wλ0

(x0)
−1

=
{

diag
(
1, α, α2, α3

)
· diag

(
1, κ0, κ

2
0, κ

3
0

)
W0e

Ωκ0(−z0)
}

·
{

1

4
e−Ωκ0z0W∗

0 · diag
(
1, κ0, κ

2
0, κ

3
0

)−1 · diag
(
1, α, α2, α3

)−1}
=

1

4
diag

(
1, α, α2, α3

)
· diag

(
1, κ0, κ

2
0, κ

3
0

)
·W0e

−2Ωκ0z0W∗
0

· diag
(
1, κ0, κ

2
0, κ

3
0

)−1 · diag
(
1, α, α2, α3

)−1
,

hence by (C.1), (C.2), we have

W0e
−2Ωz0W∗

0

= diag
(
1, κ0, κ

2
0, κ

3
0

)
·W0e

−2Ωκ0z0W∗
0 · diag

(
1, κ0, κ

2
0, κ

3
0

)−1
.(C.5)

Similarly to (C.3), we have

W0e
−2Ωκ0z0W∗

0 =

(
4∑
r=1

ωi−jr e−2ωrκ0z0

)
1≤i,j≤4

,

hence by (C.3), (C.5), κi−j0

∑4
r=1 ω

i−j
r e−2ωrκ0z0 =

∑4
r=1 ω

i−j
r e−2ωrz0 for 1 ≤

i, j ≤ 4, or equivalently, κn0
∑4
r=1 ω

n
r e
−2ωrκ0z0 =

∑4
r=1 ω

n
r e
−2ωrz0 for −3 ≤ n ≤

3. So by (2.1), we have

4∑
r=1

ωnr e
−2ωrz0 = κn0

4∑
r=1

ωnr e
−2ωrκ0z0 = κn0

4∑
r=1

(
−ωn−4r

)
e−2ωrκ0z0

= −κ40 · κn−40

4∑
r=1

ωn−4r e−2ωrκ0z0 = −κ40 ·
4∑
r=1

ωn−4r e−2ωrz0
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= −κ40 ·
4∑
r=1

(−ωnr ) e−2ωrz0 = κ40 ·
4∑
r=1

ωnr e
−2ωrz0 , n = 1, 2, 3.

Since κ40 6= 1, it follows that
∑4
r=1 ω

n
r e
−2ωrz0 =

∑4
r=1 ω

n
r e
ωr(−2αx0) = 0 for

n = 1, 2, 3, which implies x0 = 0 by Lemma C1. This again contradicts the
assumption that x0 > 0. Thus we conclude Yλ(x) 6= O for every 0 6= λ ∈ C
and x > 0 such that det Xλ(x) 6= 0. �
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