• Title/Summary/Keyword: low-power circuits

Search Result 619, Processing Time 0.026 seconds

Improvement Plans of Railway standards for Surge Protective Devices used in Low-voltage Power circuits (저전압 전원용 서지보호장치 철도 규격의 개선방안)

  • 정용철;김언석;이재호;조봉관;김재철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.90-97
    • /
    • 2002
  • In this paper we study the performance test items and improvement plans of surge protective devices for low-voltage power circuits used in railway system. Above of all, the sources of electromagnetic interference in railway system are researched. And then we compared domestic railway standard with IEC and IEEE standards far the test items and methodologies of surge protective devices. Through the investigations, we found that the domestic standard is behind in the number of test items and methods on surge protective devices. As the countermeasures, we suggest removing component tests of surge protective devices, separating standards for power and signal standards, and using international surge waveform. In applying to domestic railway surge protective devices, surge limiting voltage measuring and surge endurance tests by international standard methods are good result.

Design and Implementation of a Low Power Chip with Robust Physical Unclonable Functions on Sensor Systems (센서 시스템에서의 고신뢰 물리적 복제방지 기능의 저전력 칩 설계 및 구현)

  • Choi, Jae-min;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.59-63
    • /
    • 2018
  • Among Internet of things (IoT) applications, the most demanding requirements for the widespread realization of many IoT visions are security and low power. In terms of security, IoT applications include tasks that are rarely addressed before such as secure computation, trusted sensing, and communication, privacy, and so on. These tasks ask for new and better techniques for the protection of data, software, and hardware. An integral part of hardware cryptographic primitives are secret keys and unique IDs. Physical Unclonable Functions(PUF) are a unique class of circuits that leverage the inherent variations in manufacturing process to create unique, unclonable IDs and secret keys. In this paper, we propose a low power Arbiter PUF circuit with low error rate and high reliability compared with conventional arbiter PUFs. The proposed PUF utilizes a power gating structure to save the power consumption in sleep mode, and uses a razor flip-flop to increase reliability. PUF has been designed and implemented using a FPGA and a ASIC chip (a 0.35 um technology). Experimental results show that our proposed PUF solves the metastability problem and reduce the power consumption of PUF compared to the conventional Arbiter PUF. It is expected that the proposed PUF can be used in systems required low power consumption and high reliability such as low power encryption processors and low power biomedical systems.

Development of Optimized State Assignment Technique for Testing and Low Power (테스팅 및 저전력을 고려한 최적화된 상태할당 기술 개발)

  • Cho Sangwook;Yi Hyunbean;Park Sungju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.1
    • /
    • pp.81-90
    • /
    • 2004
  • The state assignment for a finite state machine greatly affects the delay, area, power dissipation, and testabilities of the sequential circuits. In order to improve the testabilities and power consumption, a new state assignment technique . based on m-block partition is introduced in this paper. By the m-block partition algorithm, the dependencies among groups of state variables are minimized and switching activity is further reduced by assigning the codes of the states in the same group considering the state transition probability among the states. In the sequel the length and number of feedback cycles are reduced with minimal switching activity on state variables. It is inherently contradictory problem to optimize the testability and power consumption simultaneously, however our new state assignment technique is able to achieve high fault coverage with less number of scan nfp flops by reducing the number of feedback cycles while the power consumption is kept low upon the low switching activities among state variables. Experiment shows drastic improvement in testabilities and power dissipation for benchmark circuits.

The Characteristics of Power MOSFET (전력용 MOSFET의 특성)

  • Bae, Jin-Yong;Kim, Yong;Kwon, Soon-Do;Cho, Kyu-Man;Eom, Tae-Min
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.131-135
    • /
    • 2009
  • This paper reviews the characteristics of Power MOSFET device technology that are leading to improvements in power loss for power electronic system. The silicon bipolar power transistor has been displaced by silicon power MOSFET's in low and high voltage system. The power electronic technology requires the marriage of power device technology with MOS-gated device and bipolar analog circuits.

  • PDF

Low Power Test for SoC(System-On-Chip)

  • Jung, Jun-Mo
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.729-732
    • /
    • 2011
  • Power consumption during testing System-On-Chip (SOC) is becoming increasingly important as the IP core increases in SOC. We present a new algorithm to reduce the scan-in power using the modified scan latch reordering and clock gating. We apply scan latch reordering technique for minimizing the hamming distance in scan vectors. Also, during scan latch reordering, the don't care inputs in scan vectors are assigned for low power. Also, we apply the clock gated scan cells. Experimental results for ISCAS 89 benchmark circuits show that reduced low power scan testing can be achieved in all cases.

Efficient Test Data Compression and Low Power Scan Testing in SoCs

  • Jung, Jun-Mo;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.321-327
    • /
    • 2003
  • Testing time and power consumption during the testing of SoCs are becoming increasingly important with an increasing volume of test data in intellectual property cores in SoCs. This paper presents a new algorithm to reduce the scan-in power and test data volume using a modified scan latch reordering algorithm. We apply a scan latch reordering technique to minimize the column hamming distance in scan vectors. During scan latch reordering, the don't-care inputs in the scan vectors are assigned for low power and high compression. Experimental results for ISCAS 89 benchmark circuits show that reduced test data and low power scan testing can be achieved in all cases.

  • PDF

Low Power Test for SoC(System-On-Chip)

  • Jung, Jun-Mo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.892-895
    • /
    • 2011
  • Power consumption during testing System-On-Chip (SOC) are becoming increasingly important as the IP core increases in SOC. We present a new algorithm to reduce the scan-in power using the modified scan latch reordering and clock gating. We apply scan latch reordering technique for minimizing the hamming distance in scan vectors. Also, during scan latch reordering, the don't care inputs in scan vectors are assigned for low power. Also, we apply the clock gated scan cells. Experimental results for ISCAS 89 benchmark circuits show that reduced low power scan testing can be achieved in all cases.

  • PDF

An OTA with Positive Feedback Bias Control for Power Adaptation Proportional to Analog Workloads

  • Kim, Byungsub;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.326-333
    • /
    • 2015
  • This paper reports an adaptive positive feedback bias control technique for operational transconductance amplifiers to adjust the bias current based on the output current monitored by a current replica circuit. This technique enables operational transconductance amplifiers to quickly adapt their power consumption to various analog workloads when they are configured with negative feedback. To prove the concept, a test voltage follower is fabricated in $0.5-{\mu}m$ CMOS technology. Measurement result shows that the power consumption of the test voltage follower is approximately linearly proportional to the load capacitance, the signal frequency, and the signal amplitude for sinusoidal inputs as well as square pulses.

A low-power multiplying D/A converter design for 10-bit CMOS algorithmic A/D converters (10비트 CMOS algorithmic A/D 변환기를 위한 저전력 MDAC 회로설계)

  • 이제엽;이승훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.12
    • /
    • pp.20-27
    • /
    • 1997
  • In this paper, a multiplying digital-to-analog converter (MDAC) circuit for low-power high-resolution CMOS algorithmic A/D converters (ADC's) is proposed. The proposed MDAC is designed to operte properly at a supply at a supply voltge between 3 V and 5 V and employs an analog0domain power reduction technique based on a bias switching circuit so that the total power consumption can be optimized. As metal-to-metal capacitors are implemented as frequency compensation capacitors, opamps' performance can be varied by imperfect process control. The MDAC minimizes the effects by the circuit performance variations with on-chip tuning circuits. The proposed low-power MDAC is implementd as a sub-block of a 10-bit 200kHz algorithmic ADC using a 0.6 um single-poly double-metal n-well CMOS technology. With the power-reduction technique enabled, the power consumption of the experimental ADC is reduced from 11mW to 7mW at a 3.3V supply voltage and the power reduction ratio of 36% is achieved.

  • PDF

Design of a Low-Power Parallel Multiplier Using Low-Swing Technique (저 전압 스윙 기술을 이용한 저 전력 병렬 곱셈기 설계)

  • Kim, Jeong-Beom
    • The KIPS Transactions:PartA
    • /
    • v.14A no.3 s.107
    • /
    • pp.147-150
    • /
    • 2007
  • This paper describes a new low-swing inverter for low power consumption. To reduce a power consumption, an output voltage swing is in the range from 0 to VDD-2VTH. This can be done by the inverter structure that allow a full swing or a swing on its input terminal without leakage current. Using this low-swing voltage technology, we proposed a low-power 16$\times$16 bit parallel multiplier. The proposed circuits are designed with Samsung 0.35$\mu$m standard CMOS process at a 3.3V supply voltage. The validity and effectiveness are verified through the HSPICE simulation.. Compared to the previous works, this circuit can reduce the power consumption rate of 17.3% and the power-delay product of 16.5%.