• Title/Summary/Keyword: local Hausdorff dimension

Search Result 14, Processing Time 0.024 seconds

ON SIMULTANEOUS LOCAL DIMENSION FUNCTIONS OF SUBSETS OF ℝd

  • OLSEN, LARS
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1489-1493
    • /
    • 2015
  • For a subset $E{\subseteq}\mathbb{R}^d$ and $x{\in}\mathbb{R}^d$, the local Hausdorff dimension function of E at x and the local packing dimension function of E at x are defined by $$dim_{H,loc}(x,E)=\lim_{r{\searrow}0}dim_H(E{\cap}B(x,r))$$, $$dim_{P,loc}(x,E)=\lim_{r{\searrow}0}dim_P(E{\cap}B(x,r))$$, where $dim_H$ and $dim_P$ denote the Hausdorff dimension and the packing dimension, respectively. In this note we give a short and simple proof showing that for any pair of continuous functions $f,g:\mathbb{R}^d{\rightarrow}[0,d]$ with $f{\leq}g$, it is possible to choose a set E that simultaneously has f as its local Hausdorff dimension function and g as its local packing dimension function.

HAUSDORFF DIMENSION OF DERANGED CANTOR SET WITHOUT SOME BOUNDEDNESS CONDITION

  • Baek, In-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.113-117
    • /
    • 2004
  • A deranged Cantor set (without the uniform bounded-ness condition away from zero of contraction ratios) whose weak local dimensions for all points coincide has its Hausdorff dimension of the same value of weak local dimension. We will show it using an energy theory instead of Frostman's density lemma which was used for the case of the deranged Cantor set with the uniform boundedness condition of contraction ratios. In the end, we will give an example of such a deranged Cantor set.

CANTOR DIMENSION AND ITS APPLICATION

  • Baek, In-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.13-18
    • /
    • 2004
  • We defined Cantor dimensions of a perturbed Cantor set, and investigated a relation between these dimensions and Hausdorff and packing dimensions of a perturbed Cantor set. In this paper, we introduce another expressions of the Cantor dimensions. Using these, we study some informations which can be derived from power equations induced from contraction ratios of a perturbed Cantor set to give its Hausdorff or packing dimension. This application to a deranged Cantor set gives us an estimation of its Hausdorff and packing dimensions, which is a generalization of the Cantor dimension theorem.

MULTIFRACTAL BY SELF-SIMILAR MEASURES

  • Baek, In-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.497-503
    • /
    • 2007
  • We consider a non-empty subset having same local dimension of a self-similar measure on a most generalized Cantor set. We study trans-formed lower(upper) local dimensions of an element of the subset which are local dimensions of all the self-similar measures on the most generalized Cantor set. They give better information of Hausdorff(packing) dimension of the afore-mentioned subset than those only from local dimension of a given self-similar measure.

perturbed Cantor set and quasi-self-similar measure

  • 백인수
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.12.2-12
    • /
    • 2003
  • 미분 가능한 함수가 독립변수의 각 점에서 미분계수를 가지듯이 가장 일반화된 Cantor집합의 각 점에서 weak local dimension 을 갖는다. 이러한 weak local dimension 은 두 가지가 있는데 weak lower local dimension 과 weak upper local dimension 이 있다 weak lower local dimension 은 국소적인 의미로 perturbed Cantor 집합의 lower Cantor dimension 이고 Hausdorff dimension 과 관련이 있다. weak upper local dimension 은 국소적인 의미로 perturbed Cantor 집합의 upper Cantor dimension 이고 packing dimension 과 관련이 있다. 이때 각 점에 대응하는 유관한 측도는 quasi-self-similar measure 이며 그 점의 weak lower local dimension 이 s 이면 그 점의 s-차원 quasi-self-similar measure 의 lower local dimension 이 s 가 된다. 마찬가지로 그 점의 weak upper local dimension 이 s 이면 그 점의 s-차원 quasi-self-similar measure 의 upper local dimension 이 s 가 된다. 따라서 이와 같은 사실을 이용하면 가장 일반화된 Cantor집합의 각 점에서의 weak local dimension 을 이용하여 그 집합의 Hausdorff 또는 packing 차원의 정보를 얻을 수 있을 뿐 더러 weak local dimension 을 이용한 spectrum 을 또한 구할 수 있다. 한편 weak local dimension 과 유관한 quasi-self-similar measure 는 집합의 spectrum을 생성하며 이 spectrum 을 이루는 각 부분집합의 차원에 대하여 보다 좋은 정보를 주는 transformed dimension 과 또 다른 관련을 갖게 된다.

  • PDF

SIMPLE APPROACH TO MULTIFRACTAL SPECTRUM OF A SELF-SIMILAR CANTOR SET

  • BAEK, IN-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.695-702
    • /
    • 2005
  • We study the transformed measures with respect to the real parameters of a self-similar measure on a self-similar Can­tor set to give a simple proof for some result of its multifractal spectrum. A transformed measure with respect to a real parameter of a self-similar measure on a self-similar Cantor set is also a self­similar measure on the self-similar Cantor set and it gives a better information for multifractals than the original self-similar measure. A transformed measure with respect to an optimal parameter deter­mines Hausdorff and packing dimensions of a set of the points which has same local dimension for a self-similar measure. We compute the values of the transformed measures with respect to the real parameters for a set of the points which has same local dimension for a self-similar measure. Finally we investigate the magnitude of the local dimensions of a self-similar measure and give some correlation between the local dimensions.

ON A QUASI-SELF-SIMILAR MEASURE ON A SELF-SIMILAR SET ON THE WAY TO A PERTURBED CANTOR SET

  • Baek, In-Soo
    • The Pure and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.51-61
    • /
    • 2004
  • We find an easier formula to compute Hausdorff and packing dimensions of a subset composing a spectral class by local dimension of a self-similar measure on a self-similar Cantor set than that of Olsen. While we cannot apply this formula to computing the dimensions of a subset composing a spectral class by local dimension of a quasi-self-similar measure on a self-similar set on the way to a perturbed Cantor set, we have a set theoretical relationship between some distribution sets. Finally we compare the behaviour of a quasi-self-similar measure on a self-similar Cantor set with that on a self-similar set on the way to a perturbed Cantor set.

  • PDF

SPECTRAL CLASSES AND THE PARAMETER DISTRIBUTION SET

  • BAEK, IN-SOO
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.221-226
    • /
    • 2015
  • The natural projection of a parameter lower (upper) distribution set for a self-similar measure on a self-similar set satisfying the open set condition is the cylindrical lower or upper local dimension set for the Legendre self-similarmeasure which is derived from the self-similar measure and the self-similar set.