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THE PARAMETER DISTRIBUTION SET FOR A

SELF-SIMILAR MEASURE

In-Soo Baek

Abstract. The parameter lower (upper) distribution set corresponds to
the cylindrical lower or upper local dimension set for a self-similar measure
on a self-similar set satisfying the open set condition.

1. Introduction

A self-similar set is the attractor of an iterated function system (IFS) [8].
Recently, we investigated the relation between spectral classes of a self-similar
Cantor set in a set theoretical sense [1]. In this paper, using the parameter
distribution, we find the parallel results for the self-similar set (attractor of
the IFS consisting of n(≥ 2) similitudes satisfying the OSC (open set condi-
tion)) instead of the self-similar Cantor set (attractor of the IFS consisting of 2
similitudes satisfying the SSC (strong separation condition)), which leads to a
generalization of [1]. The self-similar set is completely decomposed into a class
of the cylindrical lower (upper) local dimension sets as a coding space is com-
pletely decomposed into a class of the lower or upper distribution sets. Using
a self-similar measure on the self-similar set, we give a relationship between
the distribution sets generated by the frequencies (induced from a self-similar
measure) of the codes of the coding space and the cylindrical local dimension
sets generated by the cylindrical local dimensions of the self-similar measure.
The self-similar measure determining the frequencies gives the information of
two necessary axes whereas the axes in [1] are already fixed. In particular, we
show that each cylindrical local dimension set is exactly the natural projection
of a distribution set having full measure of another self-similar measure related
to the distribution set using the strong law of large numbers. The natural pro-
jection is a set transformation from a class of the distribution sets of the coding

Received June 2, 2011; Revised August 17, 2011.
2010 Mathematics Subject Classification. Primary 28A78; Secondary 28A80.
Key words and phrases. Hausdorff dimension, packing dimension, self-similar set, distri-

bution set, local dimension set.
This research was supported by Basic Science Research Program through the National

Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and
Technology(2009-0064869 and 2011-0005114).

c©2012 The Korean Mathematical Society

1041



1042 IN-SOO BAEK

space onto a class of the cylindrical local dimension sets of the self-similar set.
This gives essential information of its Hausdorff and packing dimensions. We
also give the relation among cylindrical local dimension sets generated by dif-
ferent self-similar measures. In fact, the spectral class by the cylindrical local
dimensions of every self-similar measure, except for a singular one, is charac-
terized by the natural projection of the spectral class of the distribution sets.
We also compare our results with the recent related ones [4, 5, 8, 10, 11]. We
give some example of the different distribution sets by the differently chosen
axes giving the same cylindrical local dimension set. Finally, we provide an
essential example to which our results can be applied.

2. Preliminaries

Let N and R be the set of positive integers and the set of real numbers
respectively. An attractor K in the d-dimensional Euclidean space R

d of the
IFS (f1, . . . , fN) of contractions where N ≥ 2 makes each point v ∈ K have an
infinite sequence ω = (m1,m2, . . .) ∈ Σ = {1, . . . , N}N where

{v} =

∞⋂

n=1

Kω|n

for Kω|n = Km1,...,mn
= fm1

◦ · · · ◦ fmn
(K)[8]. ω|n denotes the truncation of

ω to the nth place. In such case, we sometimes write π(ω) for such v using the
natural projection π : Σ → K and call Kω|n the cylinder of v. We note that
Kω|n may be different for the same v ∈ K since v may have different codes ω.
Therefore we write Kω|n for such distinction for the cylinder of v. We call such
Kω|n the cylinders of K and call K a self-similar set if the IFS (f1, . . . , fN ) are
similitudes.

Each infinite sequence ω = (m1,m2, . . .) in the coding space Σ has the
unique subset A(xn(ω)) of its accumulation points in the simplex of probability
vectors in R

N of the vector-valued sequence {xn(ω)} = {(u1, . . . , uN )n} of
the probability vectors where uk for 1 ≤ k ≤ N in the probability vector
(u1, . . . , uN)n for each n ∈ N is defined by

uk =
|{1 ≤ l ≤ n : ml = k}|

n
.

The uk for the nth place gives the frequency of the digit k in ω|n=(m1, . . . ,mn).
Sometimes we write nk(ω|n) for such uk. It is well-known [12] that a set
A(xn(ω)) of the accumulation points of the vector-valued sequence {xn(ω)} is
a continuum in R

N .
For the self-similar measure γp on K associated with p = (p1, . . . , pN) ∈

(0, 1)N satisfying
∑N

i=1 pi = 1 ([4, 8, 12]), we write E(p)
α

∗
(E

(p)

α

∗

) for the set of
points at which the lower (upper) local dimension of γp on K is exactly α, so
that

E(p)
α

∗
= {v ∈ K : lim inf

r→0

log γp(Br(v))

log r
= α},
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E
(p)

α

∗

= {v ∈ K : lim sup
r→0

log γp(Br(v))

log r
= α}.

We call {E(p)
α

∗
(6= φ) : α ∈ R} the spectral class generated by the lower local

dimensions of a self-similar measure γp and {E
(p)

α

∗

(6= φ) : α ∈ R} the spectral
class generated by the upper local dimensions of a self-similar measure γp.

We call α satisfying E(p)
α

∗
(6= φ)(E

(p)

α

∗

(6= φ)) an associated lower (upper) local
dimension of γp. It is well-known [1, 4, 12] that if the IFS (f1, . . . , fN ) satisfies
the strong separation condition (SSC) then

E(p)
α

∗
= π{ω ∈ Σ : lim inf

n→∞

log γp(Kω|n)

log |Kω|n|
= α}(≡ E(p)

α ),

E
(p)

α

∗

= π{ω ∈ Σ : lim sup
n→∞

log γp(Kω|n)

log |Kω|n|
= α}(≡ E

(p)

α ).

|Kω|n| denotes the diameter of the cylinder Kω|n. In this paper, we assume that
the IFS satisfies the open set condition (OSC) [4, 8, 12] which is a more general
condition of the SSC. We mainly discuss the cylindrical local dimension sets

E(p)
α , E

(p)

α instead of E(p)
α

∗
, E

(p)

α

∗

for studying the self-similar set K of the IFS
satisfying the OSC since the cylindrical local dimension sets are quite closely
related to the distribution sets. In this paper, we assume that 0 log 0 = 0 for
convenience.

Now, we give this cylindrical density theorem for the family of the cylinders
of a self-similar set satisfying the OSC which gives the measure separation
condition (MSC) in the self-similar set ([7, 13]). From now on, dim(E) denotes
the Hausdorff dimension of E and Dim(E) denotes the packing dimension of
E ([8]). We note that dim(E) ≤ Dim(E) for every set E ([8]).

Proposition 2.1. Let Kω|n be the cylinders of a self-similar set K satisfying

the OSC and γ be a finite Borel measure on K satisfying γ({v ∈ K : v =
π(ω) = π(ω′), ω 6= ω′}) = 0, in particular the self-similar measure on K. Let

E≤α ⊂ π{ω ∈ Σ : lim inf
n→∞

log γ(Kω|n)

log |Kω|n|
≤ α},

E≥α ⊂ π{ω ∈ Σ : lim inf
n→∞

log γ(Kω|n)

log |Kω|n|
≥ α},

E≤α ⊂ π{ω ∈ Σ : lim sup
n→∞

log γ(Kω|n)

log |Kω|n|
≤ α},

E≥α ⊂ π{ω ∈ Σ : lim sup
n→∞

log γ(Kω|n)

log |Kω|n|
≥ α}.

Then we have

(1) dim(E≤α) ≤ α, and if γ(E≥α)>0 for a Borel set E≥α, then dim(E≥α) ≥
α,
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(2) Dim(E≤α) ≤ α, and if γ(E≥α) > 0 for a Borel set E≥α, then Dim(E≥α)
≥ α.

Further for a Borel set

E ⊂ π{ω ∈ Σ : lim inf
n→∞

log γ(Kω|n)

log |Kω|n|
= α} ≡ Eα,

and for a Borel set

E ⊂ π{ω ∈ Σ : lim sup
n→∞

log γ(Kω|n)

log |Kω|n|
= α} ≡ Eα,

we have

(3) if γ(E) > 0, then dim(E) = α = dim(Eα),
(4) if γ(E) > 0, then Dim(E) = α = Dim(Eα).

Proof. We note that ∪n∈N∪{0} ∪σ∈{1,...,N}n ∪i6=jKσi ∩ Kσj = {v ∈ K : v =
π(ω) = π(ω′), ω 6= ω′} and this gives γ(∪i6=jKσi ∩ Kσj) = 0 for all σ ∈
{1, . . . , N}n where n ∈ N ∪ {0}. σi denotes the concatenation of the finite
sequence σ and i. Therefore we can define γ̂ to be the Borel measure on the
coding space Σ equipped with the usual ultra-metric topology ([6, 9]) satisfying

γ̂(C(ω|n))) = γ(Kω|n),

where the cylinder C(ω|n) = {τ ∈ Σ : τ |n = ω|n} for each ω ∈ Σ and each
n ∈ N since γ(Z) = 0 where Z = {v ∈ K : v = π(ω) = π(ω′), ω 6= ω′}.
Moreover for the Borel set E ⊂ K, we note that γ̂(π−1(E)) = γ(E) since
γ(Z) = 0. For E ⊂ π(G) where G ⊂ Σ, we easily see that if γ(E) > 0, then
there exists F ⊂ π−1(E) ∩ G such that γ̂(F ) > 0 since γ(Z) = 0. Hence it
follows from [9, Proposition 1.2].

In particular, the self-similar measure γp on the self-similar set satisfies the
MSC that is γp(∪i6=jKi ∩ Kj) = 0 ([7, 13]). Noting γp(∪i6=jKki ∩ Kkj) =
pkγp(∪i6=jKi ∩Kj) = 0 for all 1 ≤ k ≤ N and continuing these processes, we
have γp(Z) = 0. �

3. Relation between frequency and density

From now on, we assume that the similarity ratios of the similarities (f1, . . .,
fN ) are a1, . . . , aN and K is the self-similar set for the IFS (f1, . . . , fN ) sat-
isfying the OSC and γp on K is the self-similar measure associated with

p = (p1, . . . , pN ) ∈ (0, 1)N satisfying
∑N

k=1 pk = 1. To avoid the degeneration

case, we also assume that p = (p1, . . . , pN) 6= (as1, . . . , a
s
N ) with

∑N
k=1 a

s
k = 1

and log pk

log ak
is not the same for all k = 1, . . . , N . We call the set of the elements

y = (p1, . . . , pN ) satisfying y ∈ [0, 1]N and
∑N

k=1 yk = 1 the simplex in this
paper.

Lemma 3.1. Let p = (p1, . . . , pN ) ∈ (0, 1)N with
∑N

k=1 pk = 1 and consider a

self-similar measure γp on K and let r = (r1, . . . , rN ) ∈ [0, 1]N with
∑N

k=1 rk =
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1 and

g(r,p) =

∑N
k=1 rk log pk∑N
k=1 rk log ak

.

Then

αmin ≡ min
1≤k≤N

log pk
log ak

≤ g(r,p) ≤ max
1≤k≤N

log pk
log ak

≡ αmax.

Proof. It follows from [8]. �

We define g(y, r) for y and r as the same manner in the above lemma. The
following Lemma 3.2(2) is the key idea to explain our multifractal results.

Lemma 3.2. Let p = (p1, . . . , pN ) ∈ (0, 1)N with
∑N

k=1 pk = 1 and consider a

function β(q) satisfying
∑N

k=1 p
q
ka

β(q)
k = 1. Given αmin ≤ α ≤ αmax,

(1) when α ∈ (αmin, αmax), there exists q0 ∈ R such that g(r,p) = α for

r = (r1, . . . , rN ) where rk = pq0k a
β(q0)
k such that β′(q0) = −α, and when α ∈

{αmin, αmax}, there exists a real sequence {qn} such that g(r,p) = α for r =

(r1, . . . , rN ) where rk = limn→∞ pqnk a
β(qn)
k and limn→∞ β′(qn) = −α,

(2) when α ∈ (αmin, αmax), if g(y,p) = α with y in the simplex, then

g(y, r) = g(r, r), conversely if g(y, r) = g(r, r) with q0 6= 0, then g(y,p) =
α, and when α ∈ {αmin, αmax}, if g(y,p) = α with y in the simplex and

{ log pk

log ak
}Nk=1 are all different, then g(y, r) = 0.

Proof. When α ∈ (αmin, αmax), (1) follows from (11.35) of [8]. When α = αmax,

if we put qn = −n, then it easily follows. In this case, rk = limn→∞ pqnk a
β(qn)
k

for each k since −αmin and −αmax are the slopes of the asymptotes of the
function β ([8]). Similarly, when α = αmin, if we put qn = n, then it follows.
For (2), assume that g(y,p) = α with y in the simplex.

When α ∈ (αmin, αmax),

g(y, r) = g(y, (pq01 a
β(q0)
1 , . . . , pq0N a

β(q0)
N ))

=

∑N
k=1 yk log p

q0
k a

β(q0)
k∑N

k=1 yk log ak

= q0g(y,p) + β(q0)

= αq0 + β(q0).

Further from (1),

g(r,p) =

∑N
k=1 p

q0
k a

β(q0)
k log pk

∑N
k=1 p

q0
k a

β(q0)
k log ak

= α.

This gives

g(r, r) = g((pq01 a
β(q0)
1 , . . . , pq0N a

β(q0)
N ), (pq01 a

β(q0)
1 , . . . , pq0N a

β(q0)
N ))
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=

∑N
k=1 p

q0
k a

β(q0)
k log pq0k a

β(q0)
k∑N

k=1 p
q0
k a

β(q0)
k log ak

= αq0 + β(q0).

For the converse, assume that g(y, r) = g(r, r). Since g(r, r) = αq0 + β(q0)
with q0 6= 0,

g(y, r) = αq0 + β(q0) = q0g(y,p) + β(q0)

gives g(y,p) = α.
When α ∈ {αmin, αmax}, since limn→∞ αn = α where αn = −β′(qn)

g(y, r) =

∑N
k=1 yk log limn→∞[pqnk a

β(qn)
k ]

∑N
k=1 yk log ak

= lim
n→∞

[qng(y,p) + β(qn)]

= lim
n→∞

[αqn + β(qn)]

= lim
n→∞

[αnqn + β(qn)]

= 0. �

From now on, without specific mention, we fix distinct i, j respectively sat-
isfying

log pi
log ai

= min
1≤k≤N

log pk
log ak

< max
1≤k≤N

log pk
log ak

=
log pj
log aj

.

It is obvious that there is a unique z ∈ [0, 1]N for y in the simplex such that
g(y,p) = g(z,p) where z = (z1, . . . , zN ) with zj = 1− zi and zk = 0 if k 6= i, j.
We put zy = zi from now on. More precisely, zy is the projection of y in the
simplex into the unit interval [0, 1] satisfying zy = zi where g(y,p) = g(z,p).

Lemma 3.3. For log pi/ log ai ≤ α ≤ log pj/ log aj, we have

{ω : max
y∈A(xn(ω))

g(y,p) = α} = F (t),

where

F (t) ≡ {ω : min
y∈A(xn(ω))

zy = t}

and
t log pi + (1− t) log pj
t log ai + (1− t) log aj

= α.

Proof. Assume that ω satisfies maxy∈A(xn(ω)) g(y,p) = α. Assume that g(y,p)

= α for some y ∈ A(xn(ω)). Then there is z ∈ [0, 1]N such that α = g(y,p) =

g(z,p) =
t log pi+(1−t) log pj

t log ai+(1−t) log aj
where z = (z1, . . . , zN) with zj = 1 − zi and

zk = 0 if k 6= i, j satisfying zi = zy = t. On the other hand, for every
y ∈ A(xn(ω)), g(y,p) ≤ α. Clearly, there is z ∈ [0, 1]N such that g(y,p) =

g(z,p) =
t′ log pi+(1−t′) log pj

t′ log ai+(1−t′) log aj
where z = (z1, . . . , zN ) with zj = 1−zi and zk = 0

if k 6= i, j satisfying zi = zy = t′. Since g(y,p) ≤ α and log pi

log ai
<

log pj

log aj
,
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we have zy = t′ ≥ t. This gives {ω : maxy∈A(xn(ω)) g(y,p) = α} ⊂ F (t).
F (t) ⊂ {ω : maxy∈A(xn(ω)) g(y,p) = α} holds from the similar arguments. �

The following two theorems generalize Theorem 2 of [1]. Its main idea is
that the frequency of a code determines the density of a point for a self-similar
measure on a self-similar set and vice versa.

Theorem 3.4. For log pi/ log ai ≤ α ≤ log pj/ log aj, we have

E
(p)

α = π(F (t)),

where

F (t) = {ω : min
y∈A(xn(ω))

zy = t},

and
t log pi + (1− t) log pj
t log ai + (1− t) log aj

= α.

Proof. From the above lemma, we only need to show that

E
(p)

α = π({ω :g(y,p) ≤ α for all y ∈ A(xn(ω)),

g(y,p) = α for some y ∈ A(xn(ω))}).

Assume that ω satisfies g(y,p) ≤ α for all y ∈ A(xn(ω)) and g(y,p) = α
for some y ∈ A(xn(ω)).

Assume that y = (y1, . . . , yN ) ∈ A(xn(ω)) such that g(y,p) = α. Since
y = limn→∞ xkn

(ω) where xkn
(ω) = (n1(ω|kn), . . . , nN (ω|kn))

lim
n→∞

log γp(Kω|kn
)

log |Kω|kn
|

= lim
n→∞

∑N
l=1 nl(ω|kn) log pl∑N
l=1 nl(ω|kn) log al

=

∑N
l=1 yl log pl∑N
l=1 yl log al

= g(y,p) = α.

Therefore we argue that

lim sup
k→∞

log γp(Kω|k)

log |Kω|k|
= α.

Otherwise, we may assume that there is a probability vector-valued sequence

{xkn
(ω)} = {(n1(ω|kn), . . . , nN (ω|kn))}

such that limn→∞
log γp(Kω|kn )

log |Kω|kn | > α. However, {xkn
(ω)} in the simplex which is

a compact set gives a limit point y = limm→∞ xknm
(ω) in the simplex satisfying

lim
n→∞

log γp(Kω|kn
)

log |Kω|kn
|

= lim
m→∞

log γp(Kω|knm
)

log |Kω|knm
|

= g(y,p) > α
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since {knm
} is a subsequence of the sequence {kn}. This gives a contradiction

since ω satisfies g(y,p) ≤ α for all y ∈ A(xn(ω)) and the limit point y =
limm→∞ xknm

(ω) is also a limit point in A(xn(ω)).

For the converse, assume that π(ω) ∈ E
(p)

α . Then we see that ω satisfies
g(y,p) ≤ α for all y ∈ A(xn(ω)). Otherwise, we may assume that g(y,p) > α
for some y ∈ A(xn(ω)). Therefore y = limk→∞ xnk

(ω) for some subsequence
{nk}. Hence

lim
k→∞

log γp(Kω|nk
)

log |Kω|nk
|

= g(y,p) > α,

which gives a contradiction since our assumption argues that

lim sup
k→∞

log γp(Kω|k)

log |Kω|k|
= α.

Now it remains to show that g(y,p) = α for some y ∈ A(xn(ω)).

Since lim supk→∞
log γp(Kω|k)

log |Kω|k|
= α, there is a probability vector-valued se-

quence

{xkn
(ω)} = {(n1(ω|kn), . . . , nN (ω|kn))}

such that limn→∞
log γp(Kω|kn )

log |Kω|kn | = α. Using the similar arguments above, we

find a limit point y = limm→∞ xknm
(ω) in the simplex satisfying

lim
n→∞

log γp(Kω|kn
)

log |Kω|kn
|

= lim
m→∞

log γp(Kω|knm
)

log |Kω|knm
|

= g(y,p) = α

since {knm
} is a subsequence of the sequence {kn}. �

The following is the dual result of the above theorem. We omit its proof.

Theorem 3.5. For log pi/ log ai ≤ α ≤ log pj/ log aj, we have

E(p)
α = π(F (t)),

where

F (t) ≡ {ω : max
y∈A(xn(ω))

zy = t},

and
t log pi + (1− t) log pj
t log ai + (1− t) log aj

= α.

Remark 3.6. We note that A(xn(ω)) 6= φ for every ω and

π({ω : g(y,p) ≥ α for all y ∈ A(xn(ω)),

g(y,p) = α for some y ∈ A(xn(ω))}) = π(F (t)) = E(p)
α .

Theorem 3.7. For log pi/ log ai ≤ α ≤ log pj/ log aj, we have

E(p)
α = π(F (t)),
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where

F (t) ≡ {ω : min
y∈A(xn(ω))

zy = max
y∈A(xn(ω))

zy = t},

and
t log pi + (1− t) log pj
t log ai + (1− t) log aj

= α.

Proof. By the above theorems, we see that π(F (t)) = π(F (t)∩F (t)) ⊂ π(F (t))∩

π(F (t)) = E
(p)

α ∩E(p)
α = E

(p)
α . E

(p)
α ⊂ π(F (t)) follows similarly from the proof

of Theorem 3.4 and its dual proof of Theorem 3.5. �

Remark 3.8. We call the above F (t)(F (t)) the lower (upper) distribution set
(induced from (p, i, j, t)) and F (t) the distribution set (induced from (p, i, j, t)).
We call such (i, j) axes the parameter axes and call such distribution sets the

parameter distribution sets for the self-similar measure γp with respect to the
parameter axes.

Remark 3.9. If min1≤k≤N
log pk

log ak
= max1≤k≤N

log pk

log ak
, then we have

E
(p)

α = E(p)
α = E(p)

α = K

for

α = min
1≤k≤N

log pk
log ak

= max
1≤k≤N

log pk
log ak

.

Remark 3.10. We have

K =
⋃

log pi
log ai

≤α≤
log pj

log aj

E
(p)

α =
⋃

0≤t≤1

π(F (t)).

Similarly we have

K =
⋃

log pi
log ai

≤α≤
log pj

log aj

E(p)
α =

⋃

0≤t≤1

π(F (t)).

4. Subset relation and multifractal spectrum

The following theorems are byproducts of our main results Theorems 3.4
and 3.5. They generalize the multifractal results for the self-similar set of
[8] and give the relation between our results and those of [8]. They are also
generalizations of Corollaries 5 and 7 with Theorem 6 of [1]. In the following
theorems, let t0 be the real number satisfying

t0 log pi + (1 − t0) log pj
t0 log ai + (1 − t0) log aj

= g(r0,p)

for r0 = (as1, . . . , a
s
N ) with

∑N
k=1 a

s
k = 1. We note that when α ∈ (αmin, αmax),

there exists q0 ∈ R such that g(r,p) = α for r = (r1, . . . , rN ) where rk =

pq0k a
β(q0)
k such that β′(q0) = −α by Lemma 3.2(1). Therefore in the following
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theorems, given 0 < t < 1, we put r = r(t) = (r1, . . . , rN ) satisfying rk =

pq0k a
β(q0)
k for β′(q0) = −α where

α = α(t) =
t log pi + (1 − t) log pj
t log ai + (1 − t) log aj

.

Theorem 4.1. We have the following:
(1) if 0 < t0 < t < 1, then

E
(p)

α = π(F (t)) = E
(r(t))

g(r(t),r(t)),

(2) if 0 < t < t0 < 1, then

E
(p)

α = π(F (t)) = E
(r(t))
g(r(t),r(t)),

(3) if 0 < t0 < t < 1, then

E(p)
α = π(F (t)) = E

(r(t))
g(r(t),r(t)),

(4) if 0 < t < t0 < 1, then

E(p)
α = π(F (t)) = E

(r(t))

g(r(t),r(t)).

Proof. If 0 < t < 1, then there exists q0 ∈ R satisfying β′(q0) = −α since

αmin < α =
t log pi + (1− t) log pj
t log ai + (1− t) log aj

< αmax.

For r = r(t) = (r1, . . . , rN ) such that rk = pq0k a
β(q0)
k satisfying β′(q0) = −α, we

have

g(y, r) = g(y, (pq01 a
β(q0)
1 , . . . , pq0N a

β(q0)
N ))

=

∑N
k=1 yk log p

q0
k a

β(q0)
k∑N

k=1 yk log ak

= q0g(y,p) + β(q0),

where y = (y1, . . . , yN ) in the simplex. Therefore g(y, r) ≤ αq0 + β(q0) for
g(y,p) ≤ α with q0 ≥ 0. Similarly g(y, r) ≥ αq0 + β(q0) for g(y,p) ≤ α with
q0 ≤ 0.

We note that

0 < t0 ≤ t < 1 ⇐⇒ q0 ≥ 0

and

0 < t ≤ t0 < 1 ⇐⇒ q0 ≤ 0.

We also note that

t = t0 ⇐⇒ q0 = 0.

For q0 ≥ 0,

π(F (t)) ⊂ E
(r(t))

g(r(t),r(t)).
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Precisely, if v ∈ π(F (t)), then v = π(ω) with g(y,p) ≤ α for all y ∈ A(xn(ω)),
and g(y,p) = α for some y ∈ A(xn(ω)) since

{ω : max
y∈A(xn(ω))

g(y,p) = α} = F (t)

by Lemma 3.3. Since q0 ≥ 0, we have g(y, r) ≤ αq0+β(q0) = g(r(t), r(t)) for all
y ∈ A(xn(ω)), and g(y, r) = αq0+β(q0) = g(r(t), r(t)) for some y ∈ A(xn(ω)).
Let

G = {ω : max
y∈A(xn(ω))

g(y, r) = g(r(t), r(t))}.

Then π(G) = E
(r(t))

g(r(t),r(t)) by the similar arguments of the proof of Theorem

3.4. Therefore ω ∈ G. This gives v = π(ω) ∈ E
(r(t))

g(r(t),r(t)).

For (1), since E
(p)

α = π(F (t)) from Theorem 3.4, we only need to show

that E
(r(t))

g(r(t),r(t)) ⊂ E
(p)

α . If v ∈ π(G) = E
(r(t))

g(r(t),r(t)), then v = π(ω) with

g(y, r) ≤ αq0 + β(q0) = g(r(t), r(t)) for all y ∈ A(xn(ω)), and g(y, r) =
αq0 + β(q0) = g(r(t), r(t)) for some y ∈ A(xn(ω)). Since q0 > 0 and g(y, r) =
q0g(y,p) + β(q0), we have g(y,p) ≤ α for all y ∈ A(xn(ω)) and g(y,p) = α

for some y ∈ A(xn(ω)). This gives v = π(ω) ∈ π(F (t)) = E
(p)

α . We have (2),
(3) and (4) from the similar arguments above. �

Theorem 4.2. We have the following:
(1) if 0 < t0 ≤ t < 1, then

dim(π(F (t))) = Dim(π(F (t))) = g(r(t), r(t)) = αq0 + β(q0),

hence

dim(E
(p)

α(t)) = Dim(E
(p)

α(t)) = g(r(t), r(t)) = αq0 + β(q0),

(2) if 0 < t ≤ t0 < 1, then

dim(π(F (t))) = Dim(π(F (t))) = g(r(t), r(t)) = αq0 + β(q0),

hence

dim(E
(p)
α(t)) = Dim(E

(p)
α(t)) = g(r(t), r(t)) = αq0 + β(q0).

Proof. Since {ω : A(xn(ω)) = {r(t)}} ⊂ F (t) ∩ F (t) = F (t), we have

γr(t)(π(F (t))) = 1

from the strong law of large numbers. Noting that γ is a self-similar measure
on the self-similar set, we have (1) and (2) from Proposition 2.1 with the
following arguments. For the arguments, we also note that the cylindrical local
dimension sets correspond with the natural projection of the distribution sets
from Theorems 3.4 and 3.5.

For (1), q0 ≥ 0 gives

E
(p)

α = π(F (t)) ⊂ E
(r(t))

g(r(t),r(t))
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and
E(p)

α = π(F (t)) ⊂ E
(r(t))
g(r(t),r(t)).

Since π(F (t)) ⊂ π(F (t)) ⊂ E
(r(t))

g(r(t),r(t)) and γr(t)(π(F (t))) = 1, we have

g(r(t), r(t)) ≤ dim(π(F (t))) ≤ dim(π(F (t))) ≤ Dim(π(F (t))) ≤ g(r(t), r(t))

from Proposition 2.1.
For (2), q0 ≤ 0 gives

E(p)
α = π(F (t)) ⊂ E

(r(t))

g(r(t),r(t))

and

E
(p)

α = π(F (t)) ⊂ E
(r(t))
g(r(t),r(t)).

Since π(F (t)) ⊂ π(F (t)) ⊂ E
(r(t))

g(r(t),r(t)) and γr(t)(π(F (t))) = 1, we have

g(r(t), r(t)) ≤ dim(π(F (t))) ≤ dim(π(F (t))) ≤ Dim(π(F (t))) ≤ g(r(t), r(t))

from Proposition 2.1. �

Theorem 4.3. We have the following:
(1) if 0 < t ≤ t0 < 1, then

dim(π(F (t))) = g(r(t), r(t)) = αq0 + β(q0),

and

Dim(π(F (t))) = s,

hence

dim(E
(p)

α(t)) = g(r(t), r(t)) = αq0 + β(q0),

and

Dim(E
(p)

α(t)) = s,

(2) if 0 < t0 ≤ t < 1, then

dim(π(F (t))) = g(r(t), r(t)) = αq0 + β(q0),

and

Dim(π(F (t))) = s,

hence

dim(E
(p)
α(t)) = g(r(t), r(t)) = αq0 + β(q0),

and

Dim(E
(p)
α(t)) = s.

Proof. We use the arguments in the above proof. For (1), q0 ≤ 0 gives

E
(p)

α = π(F (t)) ⊂ E
(r(t))
g(r(t),r(t)).

Since π(F (t)) ⊂ π(F (t)) ⊂ E
(r(t))
g(r(t),r(t)) and γr(t)(π(F (t))) = 1, we have

g(r(t), r(t)) ≤ dim(π(F (t))) ≤ dim(π(F (t))) ≤ g(r(t), r(t))

from Proposition 2.1.
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For (2), q0 ≥ 0 gives

E(p)
α = π(F (t)) ⊂ E

(r(t))
g(r(t),r(t)).

Since π(F (t)) ⊂ π(F (t)) ⊂ E
(r(t))
g(r(t),r(t)) and γr(t)(π(F (t))) = 1, we have

g(r(t), r(t)) ≤ dim(π(F (t))) ≤ dim(π(F (t))) ≤ g(r(t), r(t))

from Proposition 2.1. For the arguments of the packing dimension of (1) and
(2), we note that the distribution set of (1) or (2) contains {ω : A(xn(ω)) = C}
where r0 ∈ C andC is a continuum. It follows from that the packing dimension

of π({ω : A(xn(ω)) = C}) is s ([4]) where
∑N

k=1 a
s
k = 1. �

Theorem 4.4. We have the following if { log pk

log ak
}Nk=1 are all different:

(1) dim(π(F (1))) = Dim(π(F (1))) = dim(E
(p)

α(1)) = Dim(E
(p)

α(1)) = 0,

(2) dim(π(F (0))) = dim(E
(p)

α(0)) = 0,Dim(π(F (0))) = Dim(E
(p)

α(0)) = s,

(3) dim(π(F (1))) = dim(E
(p)
α(1)) = 0,Dim(π(F (1))) = Dim(E

(p)
α(1)) = s,

(4) dim(π(F (0))) = Dim(π(F (0))) = dim(E
(p)
α(0)) = Dim(E

(p)
α(0)) = 0.

Proof. It easily follows from Lemma 3.2(2) for the case α ∈ {αmin, αmax} and
Theorems 3.4 and 3.5 and the similar arguments of the packing dimension of
(1) and (2) of the above proof. �

Remark 4.5. Every number t ∈ [0, 1] defines a point z in the edge lying on
the two dimensional (i, j)-plane in R

N of the simplex S and z also defines
a hyper-plane {y ∈ S : g(y,p) = α} of the simplex S for some α where
the intersection of the edge and the hyper-plane is z. In the proofs of the
above theorems, in particular, if t = t0, then q0 = 0 and it gives r(t) = r0 =

(as1, . . . , a
s
N ) with

∑N
k=1 a

s
k = 1, so E

(r0)
s = K. We also note that the above

cylindrical multifractal results provide us with a new definition (Example 2)
of the generalized Riesz-Nágy -Takács function and a generalization [3] of the
results [2] of the derivative of the Riesz-Nágy-Takács function.

Remark 4.6. We note that for every α, unless min1≤k≤N
log pk

log ak
=max1≤k≤N

log pk

log ak
,

dim(E
(p)

α ) = dim(E(p)
α ) = Dim(E(p)

α ) = dim(E(p)
α ),

even though there exists α such that Dim(E(p)
α ) 6= Dim(E

(p)
α ) or Dim(E

(p)
α ) 6=

Dim(E
(p)

α ).

Remark 4.7. In the above cases for the OSC, we use the cylindrical density
theorem (Proposition 2.1) for the family of the cylinders of the self-similar
set K instead of the Frostman’s density theorem [8]. In the above cases for
the SSC, our cylindrical local dimension set is exactly the local dimension
set[8], so we may use the Frostman’s density theorem instead of the cylindrical
density theorem (Proposition 2.1). Further, our results of [1] are also direct
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consequences of Theorem 4.2 for the self-similar set K with N = 2 satisfying
the SSC.

Example 1. Let K = [0, 1] be the self-similar set for the IFS (f1, f2, f3)
satisfying the OSC whose similarity ratios are (a1, a2, a3) = (1/9, 5/9, 1/3)
and γp on K be the self-similar measure associated with p = (p1, p2, p3) =
(1/4, 1/4, 1/2). We can consider two different distribution structures fixing
distinct i, j respectively

log pi
log ai

= min
1≤k≤3

log pk
log ak

=
log 2

log 3
=

log 4

log 9
<

log 4

log 9/5
= max

1≤k≤3

log pk
log ak

=
log pj
log aj

.

For (i, j) = (1, 2), in Theorem 4.1, t0 is the solution of the equation

t0 log 1/4 + (1− t0) log 1/4

t0 log 1/9 + (1− t0) log 5/9
= g(r0,p)

for r0 = (a1, a2, a3) = (1/9, 5/9, 1/3).
Similarly, for (i, j) = (3, 2), in Theorem 4.1, T0 is the solution of the equation

T0 log 1/2 + (1− T0) log 1/4

T0 log 1/3 + (1− T0) log 5/9
= g(r0,p)

for r0 = (a1, a2, a3) = (1/9, 5/9, 1/3). We note that the solutions t0 and T0 of
the two different equations are different, which gives the different distribution
sets. More precisely, given log 4

log 9 < α < log 4
log 9/5 , we find different t and T for

(i, j) = (1, 2) and (i, j) = (3, 2) cases respectively such that α = α(t) and
α = α(T ) in Theorem 4.1. However we note that the different distribution sets
give the same cylindrical local dimension set in Theorem 4.1. For example, in
Theorem 4.1(1),

E
(p)

α = π(F (t)) = π(G(T )) = E
(r)

g(r,r),

where r = (r1, r2, r3) satisfying rk = pq0k a
β(q0)
k for β′(q0) = −α where

α =
t log p1 + (1 − t) log p2
t log a1 + (1 − t) log a2

=
T log p3 + (1− T ) log p2
T log a3 + (1− T ) log a2

for 0 < t0 < t < 1 and 0 < T0 < T < 1. We note that F (t) is the lower
distribution set induced from (p, 1, 2, t) and G(T ) is the lower distribution set
induced from (p, 3, 2, T ). This example shows that the choice of the parameter
axes(=(i, j) axes) is not unique.

Example 2 ([3]). For the probability vectors (a1, . . . , aN) ∈ (0, 1)N and p =
(p1, . . . , pN) ∈ (0, 1)N where N ≥ 2 is a positive integer,

[0, 1] =

N⋃

k=1

fk([0, 1]),
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where fk(x) = akx +
∑k−1

i=1 ai, and γp is the unique probability measure on
[0, 1] such that

γp =

N∑

i=1

piγp ◦ f−1
i .

We define
S(x) = γp([0, x]),

where γp is the self-similar measure on the self-similar set [0, 1]. We call the
function S the generalized Riesz-Nágy-Takács function (GRNT function). We
assume that p = (p1, . . . , pN ) 6= (a1, . . . , aN ). Let t1 be the real number
satisfying

t1 log pi + (1− t1) log pj
t1 log ai + (1− t1) log aj

= 1.

Then there is q satisfying β′(q) = −1. Then r1 = (pq1a
β(q)
1 , . . . , pqNa

β(q)
N ) satisfies

g(r1,p) = 1. For the non-differentiability points M of the GRNT function S,
using a variation of Theorem 4.3, we have

0 < g(r1, r1) ≤ dim(M) ≤ Dim(M) = 1.
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