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SPECTRAL CLASSES AND THE PARAMETER

DISTRIBUTION SET

In-Soo Baek

Abstract. The natural projection of a parameter lower (upper) distri-
bution set for a self-similar measure on a self-similar set satisfying the
open set condition is the cylindrical lower or upper local dimension set
for the Legendre self-similar measure which is derived from the self-similar
measure and the self-similar set.

1. Introduction

Recently, we [1] investigated the relation between spectral classes of a self-
similar Cantor set in a set theoretical sense. More recently, using the parameter
distribution, we find the parallel results for the self-similar set (attractor of the
IFS consisting of n(≥ 2) similitudes satisfying the OSC (open set condition))
instead of the self-similar Cantor set (attractor of the IFS consisting of 2 simil-
itudes satisfying the SSC (strong separation condition)), which leads to a gen-
eralization of [1]. In this paper, we define the Legendre self-similar measures
on the self-similar set which is derived from the self-similar measure and the
self-similar set. Using the Legendre self-similar measures on the self-similar set,
we give full relationship between the natural projection of a parameter lower
(upper) distribution set for a self-similar measure on a self-similar set and the
cylindrical lower or upper local dimension set for the Legendre self-similar mea-
sures.

2. Preliminaries

Let N and R be the set of positive integers and the set of real numbers
respectively. An attractor K in the d-dimensional Euclidean space R

d of the
IFS (f1, . . . , fN) of contractions where N ≥ 2 makes each point v ∈ K have an
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infinite sequence ω = (m1,m2, . . .) ∈ Σ = {1, . . . , N}N where

{v} =

∞⋂

n=1

Kω|n

for Kω|n = Km1,...,mn
= fm1

◦ · · · ◦ fmn
(K) [4]. ω|n denotes the truncation

of ω to the nth place. In such case, we sometimes write π(ω) for such v

using the natural projection π : Σ → K and call Kω|n the cylinder of v.
We note that Kω|n may be different for the same v ∈ K since v may have
different codes ω. Therefore we write Kω|n for such distinction for the cylinder
of v. We call such Kω|n the cylinders of K and call K a self-similar set if
the IFS (f1, . . . , fN ) are similitudes. Each infinite sequence ω = (m1,m2, . . .)
in the coding space Σ has the unique subset A(xn(ω)) of its accumulation
points in the simplex of probability vectors in R

N of the vector-valued sequence
{xn(ω)} = {(u1, . . . , uN)n} of the probability vectors where uk for 1 ≤ k ≤ N

in the probability vector (u1, . . . , uN )n for each n ∈ N is defined by

uk =
|{1 ≤ l ≤ n : ml = k}|

n
.

From now on, we assume that the similarity ratios of the similarities (f1, . . .,
fN ) are a1, . . . , aN and K is the self-similar set for the IFS (f1, . . . , fN) satis-
fying the open set condition [3, 4, 5] and γp on K is the self-similar measure

associated with p = (p1, . . . , pN ) ∈ (0, 1)N satisfying
∑N

k=1 pk = 1. To avoid
the degeneration case, we also assume that p = (p1, . . . , pN ) 6= (as1, . . . , a

s
N)

with
∑N

k=1 a
s
k = 1.

For each q ∈ R, we define the Legendre self-similar measure by the self-

similar measure γp with respect to q on the self-similar set K by the self-similar

measure γr associated with r = (r1, . . . , rN ) ∈ (0, 1)N satisfying rk = p
q
ka

β(q)
k

such that
∑N

k=1 p
q
ka

β(q)
k = 1. In particular, if q = 1, then r = p.

We write E(r)
α (E

(r)

α ) for the set of points at which the cylindrical lower
(upper) local dimension of γr on K is exactly α, so that

E(r)
α = π{ω ∈ Σ : lim inf

n→∞

log γr(Kω|n)

log |Kω|n|
= α},

E
(r)

α = π{ω ∈ Σ : lim sup
n→∞

log γr(Kω|n)

log |Kω|n|
= α}.

Here |Kω|n| denotes the diameter of the cylinder Kω|n. From now on, we fix
distinct i, j respectively satisfying

log pi
log ai

= min
1≤k≤N

log pk
log ak

< max
1≤k≤N

log pk
log ak

=
log pj
log aj

.

In [2], for
t log pi+(1−t) log pj

t log ai+(1−t) log aj
= α(t) and g(y,p) =

∑N
k=1

yk log pk∑
N
k=1

yk log ak
where y =

(y1, . . . , yN) in the (N−1)-simplex, the lower and upper parameter distribution
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sets for the self-similar measure p on the self-similar set K are represented by

F (t) = {ω : max
y∈A(xn(ω))

g(y,p) = α(t)}

and

F (t) = {ω : min
y∈A(xn(ω))

g(y,p) = α(t)}.

3. Subset relation and multifractal spectrum

In the following theorems, let t0 be the real number satisfying

t0 log pi + (1 − t0) log pj
t0 log ai + (1 − t0) log aj

= g(r0,p)

for r0 = (as1, . . . , a
s
N ) with

∑N
k=1 a

s
k = 1. In the following theorem, given

0 < t < 1, we have α(t) =
t log pi+(1−t) log pj

t log ai+(1−t) log aj
. For β′(q) = −α(t), we put r(t) =

(r1, . . . , rN ) satisfying rk = p
q
ka

β(q)
k . The following theorem gives the relation

between the parameter distribution set and the cylindrical local dimension set
for the Legendre self-similar measure by the self-similar measure γp on the
self-similar set K.

Theorem 3.1. Let 0 ≤ t ≤ 1 and 0 < t′ < t0 < t′′ < 1. Then we have the

followings:

(1) π(F (t)) = E
(r(t′))
g(r(t),r(t′)) = E

(r(t′′))

g(r(t),r(t′′)) = E
(p)

g(r(t),p),

(2) π(F (t)) = E
(r(t′))

g(r(t),r(t′)) = E
(r(t′′))
g(r(t),r(t′′)) = E

(p)
g(r(t),p).

Proof. We note that

0 < t0 ≤ t < 1 ⇐⇒ q ≥ 0

and

0 < t ≤ t0 < 1 ⇐⇒ q ≤ 0.

Therefore

t = t0 ⇐⇒ q = 0.

From the proof of Theorem 4.1 of [2], it is not to difficult to show that π(F (t)) =

E
(r(t′′))

g(r(t),r(t′′)) where r(t′′) = (pq
′′

1 a
β(q′′)
1 , . . . , p

q′′

N a
β(q′′)
N ) such that

−β′(q′′) =
t′′ log pi + (1− t′′) log pj
t′′ log ai + (1− t′′) log aj

for t0 < t′′ < 1.
Precisely, if v ∈ π(F (t)), then v = π(ω) with g(y,p) ≤ α(t) for all y ∈

A(xn(ω)), and g(y,p) = α(t) for some y ∈ A(xn(ω)) since

{ω : max
y∈A(xn(ω))

g(y,p) = α(t)} = F (t)

by Lemma 3.3 of [2]. We note that α(t) = g(r(t),p) from (11.35) of [4].
Since q′′ ≥ 0, we have g(y, r(t′′)) ≤ α(t)q′′ + β(q′′) = g(r(t), r(t′′)) for all
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y ∈ A(xn(ω)), and g(y, r(t′′)) = α(t)q′′ + β(q′′) = g(r(t), r(t′′)) for some y ∈
A(xn(ω)). Let

G = {ω : max
y∈A(xn(ω))

g(y, r(t′′)) = g(r(t), r(t′′))}.

Then π(G) = E
(r(t′′))

g(r(t),r(t′′)) by the similar arguments of the proof of Theorem

3.4 of [2]. Therefore ω ∈ G. This gives v = π(ω) ∈ E
(r(t′′))

g(r(t),r(t′′)).

For (1), since E
(p)

α(t) = π(F (t)) from Theorem 3.4 of [2], we only need to

show that E
(r(t′′))

g(r(t),r(t′′)) ⊂ E
(p)

α(t). If v ∈ π(G) = E
(r(t′′))

g(r(t),r(t′′)), then v = π(ω)

with g(y, r(t′′)) ≤ α(t)q′′ + β(q′′) = g(r(t), r(t′′)) for all y ∈ A(xn(ω)), and
g(y, r(t′′)) = α(t)q′′ + β(q′′) = g(r(t), r(t′′)) for some y ∈ A(xn(ω)). Since
q′′ > 0 and g(y, r(t′′)) = q′′g(y,p) + β(q′′), we have g(y,p) ≤ α(t) for all
y ∈ A(xn(ω)) and g(y,p) = α(t) for some y ∈ A(xn(ω)). This gives v =

π(ω) ∈ π(F (t)) = E
(p)

α(t). We have the rest parts of (1), (2) from the similar
arguments above. �

Remark 3.2. 0 < t < 1 determines α(t), and α(t) determines q ∈ R from
β′(q) = −α(t). Conversely q ∈ R determines t from β′(q) = −α(t), and t

determines r(t). In particular, if q = 1, then β(q) = β(1) = 0 and there is
0 < t0 < t < 1 such that α(t) = −β′(1). For t such that α(t) = −β′(1),
r(t) = p.

Corollary 3.3 ([2]). We have the followings:
(1) if t0 < t′′ < 1, then

π(F (t′′)) = E
(r(t′′))

g(r(t′′),r(t′′)),

(2) if 0 < t′ < t0, then

π(F (t′)) = E
(r(t′))
g(r(t′),r(t′)),

(3) if t0 < t′′ < 1, then

π(F (t′′)) = E
(r(t′′))
g(r(t′′),r(t′′)),

(4) if 0 < t′ < t0, then

π(F (t′)) = E
(r(t′))

g(r(t),r(t′)).

Proof. Putting t = t′ or t = t′′, we have the results from the above theorem.
For (1) and (3), we note that t0 < t′′ < 1 ⇐⇒ q > 0. Therefore q = 1 ⇐⇒
r(t′′) = p. �

Corollary 3.4. We have the followings:
(1) if r(t) = p, then

π(F (t)) = E
(p)

g(p,p),
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(2) if r(t) = p, then

π(F (t)) = E
(p)
g(p,p).

Proof. We note that if r(t) = p, then 0 < t0 < t < 1. From (1) and (3) of the
above corollary, it follows. �

In the following corollary, Dim means the packing dimension and dim means
the Hausdorff dimension.

Corollary 3.5. We have the followings:
(1) if t0 < t′′ < 1, then

Dim(∪t′′≤t≤1π(F (t)) = g(r(t′′), r(t′′)),

(2) if 0 < t′ < t0, then

dim(∪0≤t≤t′π(F (t)) = g(r(t′), r(t′)),

(3) if t0 < t′′ < 1, then

dim(∪t′′≤t≤1π(F (t)) = g(r(t′′), r(t′′)),

(4) if 0 < t′ < t0, then

Dim(∪0≤t≤t′π(F (t)) = g(r(t′), r(t′)).

Proof. We note that

g(r(t), r(t′′)) = α(t)q′′ + β(q′′),

where α(t) =
t log pi+(1−t) log pj

t log ai+(1−t) log aj
and β′(q′′) = −α(t′′) where r(t′′) = (r1, . . . , rN )

satisfying rk = p
q′′

k a
β(q′′)
k .

We also note that

0 < t0 ≤ t′′ < 1 ⇐⇒ q′′ ≥ 0

and

0 < t′′ ≤ t0 < 1 ⇐⇒ q′′ ≤ 0.

If t0 < t′′ < 1, then from the above theorem

Dim(∪t′′≤t≤1π(F (t)) = Dim(∪t′′≤t≤1E
(r(t′′))

g(r(t),r(t′′))) ≤ sup
t′′≤t≤1

g(r(t), r(t′′)).

Since supt′′≤t≤1 g(r(t), r(t
′′)) = g(r(t′′), r(t′′)) and Theorem 4.2(1) of [2], (1)

follows.
If 0 < t′ < t0, then from the above theorem

dim(∪0≤t≤t′π(F (t)) = dim(∪0≤t≤t′E
(r(t′))
g(r(t),r(t′))) ≤ sup

0≤t≤t′
g(r(t), r(t′)).

Since sup0≤t≤t′ g(r(t), r(t
′)) = g(r(t′), r(t′)) and Theorem 4.3(1) of [2], (2)

follows. Similarly (3) and (4) follow. �
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