Commun. Korean Math. Soc. **30** (2015), No. 3, pp. 221–226 http://dx.doi.org/10.4134/CKMS.2015.30.3.221

SPECTRAL CLASSES AND THE PARAMETER DISTRIBUTION SET

IN-SOO BAEK

ABSTRACT. The natural projection of a parameter lower (upper) distribution set for a self-similar measure on a self-similar set satisfying the open set condition is the cylindrical lower or upper local dimension set for the Legendre self-similar measure which is derived from the self-similar measure and the self-similar set.

1. Introduction

Recently, we [1] investigated the relation between spectral classes of a selfsimilar Cantor set in a set theoretical sense. More recently, using the parameter distribution, we find the parallel results for the self-similar set (attractor of the IFS consisting of $n \geq 2$) similitudes satisfying the OSC (open set condition)) instead of the self-similar Cantor set (attractor of the IFS consisting of 2 similitudes satisfying the SSC (strong separation condition)), which leads to a generalization of [1]. In this paper, we define the Legendre self-similar measures on the self-similar set which is derived from the self-similar measure and the self-similar set. Using the Legendre self-similar measures on the self-similar set, we give full relationship between the natural projection of a parameter lower (upper) distribution set for a self-similar measure on a self-similar set and the cylindrical lower or upper local dimension set for the Legendre self-similar measures.

2. Preliminaries

Let \mathbb{N} and \mathbb{R} be the set of positive integers and the set of real numbers respectively. An attractor K in the *d*-dimensional Euclidean space \mathbb{R}^d of the IFS (f_1, \ldots, f_N) of contractions where $N \geq 2$ makes each point $v \in K$ have an

 $\bigodot 2015$ Korean Mathematical Society

Received February 2, 2015; Revised March 4, 2015.

²⁰¹⁰ Mathematics Subject Classification. Primary 28A78; Secondary 28A80.

 $Key\ words\ and\ phrases.$ Hausdorff dimension, packing dimension, self-similar set, distribution set, local dimension set.

This work was supported by the research grant of the Busan University of Foreign Studies in 2015.

IN-SOO BAEK

infinite sequence $\omega = (m_1, m_2, \ldots) \in \Sigma = \{1, \ldots, N\}^{\mathbb{N}}$ where

$$\{v\} = \bigcap_{n=1}^{\infty} K_{\omega|n}$$

for $K_{\omega|n} = K_{m_1,\dots,m_n} = f_{m_1} \circ \cdots \circ f_{m_n}(K)$ [4]. $\omega|n$ denotes the truncation of ω to the *n*th place. In such case, we sometimes write $\pi(\omega)$ for such vusing the natural projection $\pi : \Sigma \to K$ and call $K_{\omega|n}$ the cylinder of v. We note that $K_{\omega|n}$ may be different for the same $v \in K$ since v may have different codes ω . Therefore we write $K_{\omega|n}$ for such distinction for the cylinder of v. We call such $K_{\omega|n}$ the cylinders of K and call K a self-similar set if the IFS (f_1, \dots, f_N) are similitudes. Each infinite sequence $\omega = (m_1, m_2, \dots)$ in the coding space Σ has the unique subset $A(x_n(\omega))$ of its accumulation points in the simplex of probability vectors in \mathbb{R}^N of the vector-valued sequence $\{x_n(\omega)\} = \{(u_1, \dots, u_N)_n\}$ of the probability vectors where u_k for $1 \leq k \leq N$ in the probability vector $(u_1, \dots, u_N)_n$ for each $n \in \mathbb{N}$ is defined by

$$u_k = \frac{|\{1 \le l \le n : m_l = k\}|}{n}.$$

From now on, we assume that the similarity ratios of the similarities (f_1, \ldots, f_N) are a_1, \ldots, a_N and K is the self-similar set for the IFS (f_1, \ldots, f_N) satisfying the open set condition [3, 4, 5] and $\gamma_{\mathbf{p}}$ on K is the self-similar measure associated with $\mathbf{p} = (p_1, \ldots, p_N) \in (0, 1)^N$ satisfying $\sum_{k=1}^N p_k = 1$. To avoid the degeneration case, we also assume that $\mathbf{p} = (p_1, \ldots, p_N) \neq (a_1^s, \ldots, a_N^s)$ with $\sum_{k=1}^N a_k^s = 1$.

For each $q \in \mathbb{R}$, we define the Legendre self-similar measure by the selfsimilar measure $\gamma_{\mathbf{p}}$ with respect to q on the self-similar set K by the self-similar measure $\gamma_{\mathbf{r}}$ associated with $\mathbf{r} = (r_1, \ldots, r_N) \in (0, 1)^N$ satisfying $r_k = p_k^q a_k^{\beta(q)}$ such that $\sum_{k=1}^N p_k^q a_k^{\beta(q)} = 1$. In particular, if q = 1, then $\mathbf{r} = \mathbf{p}$.

We write $\underline{E}_{\alpha}^{(\mathbf{r})}(\overline{E}_{\alpha}^{(\mathbf{r})})$ for the set of points at which the cylindrical lower (upper) local dimension of $\gamma_{\mathbf{r}}$ on K is exactly α , so that

$$\underline{E}_{\alpha}^{(\mathbf{r})} = \pi \{ \omega \in \Sigma : \liminf_{n \to \infty} \frac{\log \gamma_{\mathbf{r}}(K_{\omega|n})}{\log |K_{\omega|n}|} = \alpha \},\$$
$$\overline{E}_{\alpha}^{(\mathbf{r})} = \pi \{ \omega \in \Sigma : \limsup_{n \to \infty} \frac{\log \gamma_{\mathbf{r}}(K_{\omega|n})}{\log |K_{\omega|n}|} = \alpha \}.$$

Here $|K_{\omega|n}|$ denotes the diameter of the cylinder $K_{\omega|n}$. From now on, we fix distinct i, j respectively satisfying

$$\frac{\log p_i}{\log a_i} = \min_{1 \le k \le N} \frac{\log p_k}{\log a_k} < \max_{1 \le k \le N} \frac{\log p_k}{\log a_k} = \frac{\log p_j}{\log a_j}$$

In [2], for $\frac{t \log p_i + (1-t) \log p_j}{t \log a_i + (1-t) \log a_j} = \alpha(t)$ and $g(\mathbf{y}, \mathbf{p}) = \frac{\sum_{k=1}^{N} y_k \log p_k}{\sum_{k=1}^{N} y_k \log a_k}$ where $\mathbf{y} = (y_1, \ldots, y_N)$ in the (N-1)-simplex, the lower and upper parameter distribution

sets for the self-similar measure \mathbf{p} on the self-similar set K are represented by

$$\underline{F}(t) = \{ \omega : \max_{\mathbf{y} \in A(x_n(\omega))} g(\mathbf{y}, \mathbf{p}) = \alpha(t) \}$$

and

$$\overline{F}(t) = \{ \omega : \min_{\mathbf{y} \in A(x_n(\omega))} g(\mathbf{y}, \mathbf{p}) = \alpha(t) \}.$$

3. Subset relation and multifractal spectrum

In the following theorems, let t_0 be the real number satisfying

$$\frac{t_0 \log p_i + (1 - t_0) \log p_j}{t_0 \log a_i + (1 - t_0) \log a_j} = g(\mathbf{r}_0, \mathbf{p})$$

for $\mathbf{r}_0 = (a_1^s, \ldots, a_N^s)$ with $\sum_{k=1}^N a_k^s = 1$. In the following theorem, given 0 < t < 1, we have $\alpha(t) = \frac{t \log p_i + (1-t) \log p_j}{t \log a_i + (1-t) \log a_j}$. For $\beta'(q) = -\alpha(t)$, we put $\mathbf{r}(t) = (r_1, \ldots, r_N)$ satisfying $r_k = p_k^q a_k^{\beta(q)}$. The following theorem gives the relation between the parameter distribution set and the cylindrical local dimension set for the Legendre self-similar measure by the self-similar measure $\gamma_{\mathbf{p}}$ on the self-similar set K.

Theorem 3.1. Let $0 \le t \le 1$ and $0 < t' < t_0 < t'' < 1$. Then we have the followings:

(1)
$$\pi(\underline{F}(t)) = \underline{E}_{g(\mathbf{r}(t),\mathbf{r}(t'))}^{(\mathbf{r}(t'))} = \overline{E}_{g(\mathbf{r}(t),\mathbf{r}(t''))}^{(\mathbf{r}(t''))} = \overline{E}_{g(\mathbf{r}(t),\mathbf{p})}^{(\mathbf{p})}$$

(2) $\pi(\overline{F}(t)) = \overline{E}_{g(\mathbf{r}(t),\mathbf{r}(t'))}^{(\mathbf{r}(t'))} = \underline{E}_{g(\mathbf{r}(t),\mathbf{r}(t''))}^{(\mathbf{r}(t'))} = \underline{E}_{g(\mathbf{r}(t),\mathbf{p})}^{(\mathbf{p})}$

Proof. We note that

$$0 < t_0 \le t < 1 \iff q \ge 0$$

and

$$0 < t \le t_0 < 1 \iff q \le 0.$$

Therefore

$$= t_0 \iff q = 0.$$

From the proof of Theorem 4.1 of [2], it is not to difficult to show that $\pi(\underline{F}(t)) = \overline{E}_{g(\mathbf{r}(t),\mathbf{r}(t''))}^{(\mathbf{r}(t''))}$ where $\mathbf{r}(t'') = (p_1^{q''}a_1^{\beta(q'')}, \dots, p_N^{q''}a_N^{\beta(q'')})$ such that

$$-\beta'(q'') = \frac{t'' \log p_i + (1 - t'') \log p_j}{t'' \log a_i + (1 - t'') \log a_j}$$

for $t_0 < t'' < 1$.

Precisely, if $v \in \pi(\underline{F}(t))$, then $v = \pi(\omega)$ with $g(\mathbf{y}, \mathbf{p}) \leq \alpha(t)$ for all $\mathbf{y} \in A(x_n(\omega))$, and $g(\mathbf{y}, \mathbf{p}) = \alpha(t)$ for some $\mathbf{y} \in A(x_n(\omega))$ since

$$\{\omega: \max_{\mathbf{y}\in A(x_n(\omega))} g(\mathbf{y}, \mathbf{p}) = \alpha(t)\} = \underline{F}(t)$$

by Lemma 3.3 of [2]. We note that $\alpha(t) = g(\mathbf{r}(t), \mathbf{p})$ from (11.35) of [4]. Since $q'' \ge 0$, we have $g(\mathbf{y}, \mathbf{r}(t'')) \le \alpha(t)q'' + \beta(q'') = g(\mathbf{r}(t), \mathbf{r}(t''))$ for all

 $\mathbf{y} \in A(x_n(\omega))$, and $g(\mathbf{y}, \mathbf{r}(t'')) = \alpha(t)q'' + \beta(q'') = g(\mathbf{r}(t), \mathbf{r}(t''))$ for some $\mathbf{y} \in A(x_n(\omega))$. Let

$$G = \{\omega : \max_{\mathbf{y} \in A(x_n(\omega))} g(\mathbf{y}, \mathbf{r}(t'')) = g(\mathbf{r}(t), \mathbf{r}(t''))\}.$$

Then $\pi(G) = \overline{E}_{g(\mathbf{r}(t),\mathbf{r}(t''))}^{(\mathbf{r}(t''))}$ by the similar arguments of the proof of Theorem 3.4 of [2]. Therefore $\omega \in G$. This gives $v = \pi(\omega) \in \overline{E}_{g(\mathbf{r}(t),\mathbf{r}(t''))}^{(\mathbf{r}(t''))}$.

For (1), since $\overline{E}_{\alpha(t)}^{(\mathbf{p})} = \pi(\underline{F}(t))$ from Theorem 3.4 of [2], we only need to show that $\overline{E}_{g(\mathbf{r}(t),\mathbf{r}(t''))}^{(\mathbf{r}(t''))} \subset \overline{E}_{\alpha(t)}^{(\mathbf{p})}$. If $v \in \pi(G) = \overline{E}_{g(\mathbf{r}(t),\mathbf{r}(t''))}^{(\mathbf{r}(t''))}$, then $v = \pi(\omega)$ with $g(\mathbf{y},\mathbf{r}(t'')) \leq \alpha(t)q'' + \beta(q'') = g(\mathbf{r}(t),\mathbf{r}(t''))$ for all $\mathbf{y} \in A(x_n(\omega))$, and $g(\mathbf{y},\mathbf{r}(t'')) = \alpha(t)q'' + \beta(q'') = g(\mathbf{r}(t),\mathbf{r}(t''))$ for some $\mathbf{y} \in A(x_n(\omega))$. Since q'' > 0 and $g(\mathbf{y},\mathbf{r}(t'')) = q''g(\mathbf{y},\mathbf{p}) + \beta(q'')$, we have $g(\mathbf{y},\mathbf{p}) \leq \alpha(t)$ for all $\mathbf{y} \in A(x_n(\omega))$ and $g(\mathbf{y},\mathbf{p}) = \alpha(t)$ for some $\mathbf{y} \in A(x_n(\omega))$. This gives v = $\pi(\omega) \in \pi(\underline{F}(t)) = \overline{E}_{\alpha(t)}^{(\mathbf{p})}$. We have the rest parts of (1), (2) from the similar arguments above.

Remark 3.2. 0 < t < 1 determines $\alpha(t)$, and $\alpha(t)$ determines $q \in \mathbb{R}$ from $\beta'(q) = -\alpha(t)$. Conversely $q \in \mathbb{R}$ determines t from $\beta'(q) = -\alpha(t)$, and t determines $\mathbf{r}(t)$. In particular, if q = 1, then $\beta(q) = \beta(1) = 0$ and there is $0 < t_0 < t < 1$ such that $\alpha(t) = -\beta'(1)$. For t such that $\alpha(t) = -\beta'(1)$, $\mathbf{r}(t) = \mathbf{p}$.

Corollary 3.3 ([2]). We have the followings: (1) if $t_0 < t'' < 1$, then

$$\pi(\underline{F}(t'')) = \overline{E}_{g(\mathbf{r}(t''))}^{(\mathbf{r}(t''))},$$

(2) if $0 < t' < t_0$, then

$$\pi(\underline{F}(t')) = \underline{E}_{g(\mathbf{r}(t'))}^{(\mathbf{r}(t'))},$$

(3) if $t_0 < t'' < 1$, then

$$\pi(\overline{F}(t'')) = \underline{E}_{g(\mathbf{r}(t''))}^{(\mathbf{r}(t''))}, \mathbf{r}(t'')),$$

(4) if $0 < t' < t_0$, then

$$\pi(\overline{F}(t')) = \overline{E}_{g(\mathbf{r}(t),\mathbf{r}(t'))}^{(\mathbf{r}(t'))}.$$

Proof. Putting t = t' or t = t'', we have the results from the above theorem. For (1) and (3), we note that $t_0 < t'' < 1 \iff q > 0$. Therefore $q = 1 \iff \mathbf{r}(t'') = \mathbf{p}$.

Corollary 3.4. We have the followings: (1) if $\mathbf{r}(t) = \mathbf{p}$, then

$$\pi(\underline{F}(t)) = \overline{E}_{g(\mathbf{p},\mathbf{p})}^{(\mathbf{p})},$$

(2) if
$$\mathbf{r}(t) = \mathbf{p}$$
, then

 $\pi(\overline{F}(t)) = \underline{E}_{g(\mathbf{p},\mathbf{p})}^{(\mathbf{p})}.$

Proof. We note that if $\mathbf{r}(t) = \mathbf{p}$, then $0 < t_0 < t < 1$. From (1) and (3) of the above corollary, it follows.

In the following corollary, Dim means the packing dimension and dim means the Hausdorff dimension.

Corollary 3.5. We have the followings: (1) if $t_0 < t'' < 1$, then

$$\operatorname{Dim}(\bigcup_{t'' \le t \le 1} \pi(\underline{F}(t)) = g(\mathbf{r}(t''), \mathbf{r}(t'')),$$

(2) if $0 < t' < t_0$, then

$$\dim(\bigcup_{0 \le t \le t'} \pi(\underline{F}(t)) = g(\mathbf{r}(t'), \mathbf{r}(t')),$$

(3) if $t_0 < t'' < 1$, then

$$\dim(\bigcup_{t''\leq t\leq 1}\pi(\overline{F}(t))=g(\mathbf{r}(t''),\mathbf{r}(t'')),$$

(4) if $0 < t' < t_0$, then

$$\operatorname{Dim}(\bigcup_{0 \le t \le t'} \pi(\overline{F}(t)) = g(\mathbf{r}(t'), \mathbf{r}(t')).$$

Proof. We note that

$$g(\mathbf{r}(t), \mathbf{r}(t'')) = \alpha(t)q'' + \beta(q''),$$

where $\alpha(t) = \frac{t \log p_i + (1-t) \log p_j}{t \log a_i + (1-t) \log a_j}$ and $\beta'(q'') = -\alpha(t'')$ where $\mathbf{r}(t'') = (r_1, \ldots, r_N)$ satisfying $r_k = p_k^{q''} a_k^{\beta(q'')}$.

We also note that

$$0 < t_0 \le t'' < 1 \iff q'' \ge 0$$

and

$$0 < t'' \le t_0 < 1 \iff q'' \le 0.$$

If $t_0 < t'' < 1$, then from the above theorem

$$\operatorname{Dim}(\cup_{t'' \le t \le 1} \pi(\underline{F}(t)) = \operatorname{Dim}(\cup_{t'' \le t \le 1} \overline{E}_{g(\mathbf{r}(t), \mathbf{r}(t''))}^{(\mathbf{r}(t''))}) \le \sup_{t'' \le t \le 1} g(\mathbf{r}(t), \mathbf{r}(t'')).$$

Since $\sup_{t'' \le t \le 1} g(\mathbf{r}(t), \mathbf{r}(t'')) = g(\mathbf{r}(t''), \mathbf{r}(t''))$ and Theorem 4.2(1) of [2], (1) follows.

If $0 < t' < t_0$, then from the above theorem

$$\dim(\bigcup_{0 \le t \le t'} \pi(\underline{F}(t))) = \dim(\bigcup_{0 \le t \le t'} \underline{E}_{g(\mathbf{r}(t),\mathbf{r}(t'))}^{(\mathbf{r}(t'))}) \le \sup_{0 \le t \le t'} g(\mathbf{r}(t),\mathbf{r}(t')).$$

Since $\sup_{0 \le t \le t'} g(\mathbf{r}(t), \mathbf{r}(t')) = g(\mathbf{r}(t'), \mathbf{r}(t'))$ and Theorem 4.3(1) of [2], (2) follows. Similarly (3) and (4) follow.

IN-SOO BAEK

References

- I.-S. Baek, Relation between spectral classes of a self-similar Cantor set, J. Math. Anal. Appl. 292 (2004), no. 1, 294–302.
- [2] _____, The parameter distribution set for a self-similar measure, Bull. Korean Math. Soc. 49 (2012), no. 5, 1041–1055.
- [3] I.-S. Baek, L. Olsen, and N. Snigireva, Divergence points of self-similar measures and packing dimension, Adv. Math. 214 (2007), no. 1, 267–287.
- [4] K. J. Falconer, Techniques in Fractal Geometry, John Wiley and Sons, 1997.
- [5] L. Olsen and S. Winter, Normal and non-normal points of self-similar sets and divergence points of self-similar measures, J. London Math. Soc. 67 (2003), no. 1, 103–122.

DEPARTMENT OF MATHEMATICS BUSAN UNIVERSITY OF FOREIGN STUDIES BUSAN 609-815, KOREA *E-mail address*: isbaek@bufs.ac.kr