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SPECTRAL CLASSES AND THE PARAMETER
DISTRIBUTION SET

IN-S00 BAEK

ABSTRACT. The natural projection of a parameter lower (upper) distri-
bution set for a self-similar measure on a self-similar set satisfying the
open set condition is the cylindrical lower or upper local dimension set
for the Legendre self-similar measure which is derived from the self-similar
measure and the self-similar set.

1. Introduction

Recently, we [1] investigated the relation between spectral classes of a self-
similar Cantor set in a set theoretical sense. More recently, using the parameter
distribution, we find the parallel results for the self-similar set (attractor of the
IFS consisting of n(> 2) similitudes satisfying the OSC (open set condition))
instead of the self-similar Cantor set (attractor of the IFS consisting of 2 simil-
itudes satisfying the SSC (strong separation condition)), which leads to a gen-
eralization of [1]. In this paper, we define the Legendre self-similar measures
on the self-similar set which is derived from the self-similar measure and the
self-similar set. Using the Legendre self-similar measures on the self-similar set,
we give full relationship between the natural projection of a parameter lower
(upper) distribution set for a self-similar measure on a self-similar set and the
cylindrical lower or upper local dimension set for the Legendre self-similar mea-
sures.

2. Preliminaries

Let N and R be the set of positive integers and the set of real numbers
respectively. An attractor K in the d-dimensional Euclidean space R? of the
IFS (f1,..., fn) of contractions where N > 2 makes each point v € K have an
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infinite sequence w = (my,ma,...) € ¥ = {1,..., N} where

(v} = Kupn

for Kyjn = Kmy,...omy = fmy © 0 fm, (K) [4]. w|n denotes the truncation
of w to the nth place. In such case, we sometimes write 7(w) for such v
using the natural projection 7 : ¥ — K and call K, the cylinder of v.
We note that K, may be different for the same v € K since v may have
different codes w. Therefore we write K|, for such distinction for the cylinder
of v. We call such K, the cylinders of K and call K a self-similar set if
the IFS (f1,..., fn) are similitudes. Each infinite sequence w = (mq,ma,...)
in the coding space ¥ has the unique subset A(x,(w)) of its accumulation
points in the simplex of probability vectors in R™ of the vector-valued sequence
{zn (W)} = {(u1,...,un)n} of the probability vectors where uy for 1 <k < N
in the probability vector (ui,...,un)y for each n € N is defined by

{1 <nm =k}

n

Uk

From now on, we assume that the similarity ratios of the similarities (fi, ...,
fn) are ai,...,ay and K is the self-similar set for the IFS (f1,..., fi) satis-
fying the open set condition [3, 4, 5] and 7p on K is the self-similar measure
associated with p = (p1,...,pn) € (0,1)V satisfying Zszlpk = 1. To avoid
the degeneration case, we also assume that p = (p1,...,pn) # (af,...,a%)
with S>0_ af = 1.

For each ¢ € R, we define the Legendre self-similar measure by the self-
similar measure yp with respect to q on the self-similar set K by the self-similar
measure 7, associated with r = (ry,...,7n5) € (0,1)" satisfying rj, = pZaf(q)
such that Z,ivzl pZag(Q) = 1. In particular, if ¢ = 1, then r = p.

We write EF) (ES)) for the set of points at which the cylindrical lower
(upper) local dimension of v, on K is exactly «, so that

1 r KUJTL
EM = 1{w e X : liminf 108 e (Kujn) = a},

n—00 1og|Kw‘n|

() . log e (Kujn)
ertoe i S <o

Here |K,,| denotes the diameter of the cylinder K, ,. From now on, we fix
distinct ¢, j respectively satisfying

logp; min log px, < max logpr,  logp;

loga; 1<k<Nloga, 1<k<N logay loga;’

tlogpi+(1—t)logp; _ _ X yklogpk _
In [2], for m = Oé(t) and g(y,p) = m where y =

(y1,...,yn) in the (N —1)-simplex, the lower and upper parameter distribution
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sets for the self-similar measure p on the self-similar set K are represented by

Et) ={w: yej?gﬁw))g(y, p) = a(t)}

and

Fi#)={w: _min g(y.p) = a(t)}

3. Subset relation and multifractal spectrum

In the following theorems, let ¢y be the real number satisfying

tologpi + (1 —to)logp; _ (
tologa; + (1 —to)loga;

ro, p)

for ro = (aj,...,a%) Withlzgzl a; 1: 1. In the following theorem, given
tlog pi+(1—t j

0 <t <1, we have a(t) = %. For B'(q) = —a(t), we put r(t) =

(ri,...,rn) satisfying r, = pZag(q). The following theorem gives the relation

between the parameter distribution set and the cylindrical local dimension set

for the Legendre self-similar measure by the self-similar measure v, on the

self-similar set K.

Theorem 3.1. Let 0 <t <1 and 0 <t <ty <t” < 1. Then we have the
followings:

N CIC)) —=(x (")) —=(P)
(1) m(E®) = Eypiiy ey = o ey = Eg).p);

(2) 7(F (1) = Byeirewy) = = B = EXlo.p

Proof. We note that

O0<ty<t<l < q=>0
and

0<t<ty<l < ¢<0.
Therefore

t=1 <= ¢q=0.

From the proof of Theorem 4.1 of [2], it is not to difficult to show that 7 (F(¢)) =
E&E.t(z))?r(t,,)) where r(t") = (p] aﬁ(q ). Na aﬁ(q )) such that
t"logp; + (1 —t"") log p;

-V
Fla") t"loga; + (1 —t")loga;

for to < t” < 1.
Precisely, if v € w(F(t)), then v = w(w) with g(y,p) < a(t) for all y €
A(zp(w)), and g(y,p) = a(t) for some y € Az, (w)) since

)
{w: Jeinax g 9(y,p) = a(t)} = E()

by Lemma 3.3 of [2]. We note that a(t) = g¢(r(¢),p) from (11.35) of [4].
Since ¢” > 0, we have g(y,r(t")) < a(t)q” + 8(¢") = g(r(t),r(t"”)) for all
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Y € A(za(w)), and g(y, 1(")) = a(t)g” + B(a") = g(r(t), 1(t")) for some y €
A(xn(w)). Let

G={w: yeﬁlﬁw))g(y,r(t”)) = g(r(t),r(t"))}.

Then 7(G) = E;l(f(t))’)r(t,,)) by the similar arguments of the proof of Theorem

3.4 of [2]. Therefore w € G. This gives v = m(w) € E&E,t(z))?r(t”)).

For (1), since E(;z,)f) = w(F(t)) from Theorem 3.4 of [2], we only need to
(")) =) ("))

show that E ) r@r)) C E;Et)- If v € m(G) = Eyp()rry) then v = m(w)
with g(y,r(t")) < a(t)q” + B(¢") = g(r(t),r(t")) for all y € A(zy(w)), and
9y, ¥(t") = ()" + B(d") = g(x(t),x(t")) for some y € A(zn(w)). Since
¢" > 0 and g(y,r(t")) = ¢"g9(y,p) + B(¢"), we have g(y,p) < a(t) for all
y € A(zp(w)) and g(y,p) = a(t) for some y € A(x,(w)). This gives v =
m(w) € w(E(t)) = E(alzr)f)' We have the rest parts of (1), (2) from the similar
arguments above. O

Remark 3.2. 0 < t < 1 determines «(t), and «(t) determines ¢ € R from
B'(q) = —a(t). Conversely ¢ € R determines ¢t from §'(q) = —a(t), and ¢
determines r(t). In particular, if ¢ = 1, then S(q) = (1) = 0 and there is
0 < to < t < 1 such that a(t) = —p’(1). For ¢ such that a(t) = —p'(1),
r(t) = p.
Corollary 3.3 ([2]). We have the followings:

(1) if to <t <1, then

(")
T‘-(E(t”)) = Eg(r(t“),r(t”))a

(2) if 0 < t' < to, then

_ )
TE() = Eyiar) xier):

(3) ifto <t <1, then
w(F(t")) = Egai) aery:
(4) if 0 < t' < to, then
m(F (') = By ioeie)-

Proof. Putting t =t/ or t = t”, we have the results from the above theorem.
For (1) and (3), we note that to < t” <1 <= ¢ > 0. Therefore ¢ = 1 <~
r(t") = p. O

Corollary 3.4. We have the followings:
(1) ifr(t) = p, then
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(2) if r(t) = p, then B
w(F(t) = E®) .

Proof. We note that if r(t) = p, then 0 < to <t < 1. From (1) and (3) of the
above corollary, it follows. (I

In the following corollary, Dim means the packing dimension and dim means
the Hausdorff dimension.

Corollary 3.5. We have the followings:
(1) if to <t < 1, then

Dim(Upr<i<1m(E(t)) = g(r(t"),x(t")),
(2) if 0 < t' < tg, then

dim(Uo<e<erm(E(t)) = g(x(t), x(t')),
(3) if to <t <1, then

dim(Upr <e<im(F (1)) = g(x(t"),x(t")),
(4) if 0 < t' < to, then

Dim(Up<i<pm(F(t) = g(r(t'), r(t)).

Proof. We note that
g9(r(t),x(t")) = alt)q” + B(g"),

where a(t) = % and f'(¢") = —a(t") where r(t"’) = (r1,...,7n)
satisfying 7 = pzu a’g(q ).

We also note that
0<tp<t' <1 <= ¢">0

and
0<t'<tg<1l <= ¢"<0.
If ty < t” < 1, then from the above theorem

(x(t"))

Dim(Upr<e<im(E(t)) = Dim(Upr<e<1 Egpe) e(eryy) < supg(r(t),x(t")).
gtr(@x@) S SUP
Since sup;» ;<1 g(r(t),r(t")) = g(r(t”),r(t")) and Theorem 4.2(1) of [2], (1)
follows.
If 0 < ¢’ < tg, then from the above theorem
dim(Upr<em(E (1)) = dim(Uosese B ) < sup g(x(t),x(t)).
o)) = SUP

Since supg<;<y g(r(t),r(t')) = g(r(t'),r(t')) and Theorem 4.3(1) of [2], (2)
follows. Similarly (3) and (4) follow. O
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