SIMPLE APPROACH TO MULTIFRACTAL SPECTRUM OF A SELF-SIMILAR CANTOR SET

IN-SOO BAEK

ABSTRACT. We study the transformed measures with respect to the real parameters of a self-similar measure on a self-similar Cantor set to give a simple proof for some result of its multifractal spectrum. A transformed measure with respect to a real parameter of a self-similar measure on a self-similar Cantor set is also a self-similar measure on the self-similar Cantor set and it gives a better information for multifractals than the original self-similar measure. A transformed measure with respect to an optimal parameter determines Hausdorff and packing dimensions of a set of the points which has same local dimension for a self-similar measure. We compute the values of the transformed measures with respect to the real parameters for a set of the points which has same local dimension for a self-similar measure. Finally we investigate the magnitude of the local dimensions of a self-similar measure and give some correlation between the local dimensions.

1. Introduction

Recently the Hausdorff and packing dimensions of multifractal subsets by a self-similar measure on a self-similar Cantor set(cf. [18]) were studied([14, 16, 17, 20]) for the investigation of the sizes of subsets of fixed local dimension. We note that some authors([21, 22]) also investigated the Hausdorff and packing dimensions of multifractal subsets by a self-conformal measure on a self-conformal set as its general case. In their cases, the proof of some result is a little complicated. In this paper, we give a simpler proof to get such a result and an easier method to find the dimensions.

Received November 6, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 28A78.

Key words and phrases: Hausdorff dimension, packing dimension, Cantor set, self-similar measure, distribution set.

This paper was supported by the research grants of Pusan University of Foreign Studies in 2004.

We define a transformed measure with respect to a real parameter of a self-similar measure on a self-similar Cantor set. We show that the transformed measures with respect to the real parameters are also self-similar measures on the self-similar Cantor set. It gives a better information of upper bounds of dimensions for multifractals than the original self-similar measure. Recently we([9, 10]) found the relation between a multifractal subset by a self-similar measure on a self-similar Cantor set and a distribution set([15, 19]) of the self-similar Cantor set. Using this, we find that the values of the transformed measures with respect to the real parameters for a set of the points which has same local dimension for a self-similar measure are 0 or 1. A transformed measure with respect to an optimal parameter which gives its transformed measure value 1 determines Hausdorff and packing dimensions of a set of the points of the same local dimension for a self-similar measure since the transformed measure value 1 gives a lower bound for its dimensions. We check the range of the local dimensions of a self-similar measure and compare their magnitudes of the local dimensions of a self-similar measure with some particular numbers related to the self-similar Cantor set and the self-similar measure, which gives more information of correlation between local dimensions.

Recently we([2, 3, 8]) studied a deranged Cantor set which is the most generalized Cantor set which has a local structure of a perturbed Cantor set([1, 6, 11, 13]), which is also a generalized form of self-similar Cantor set. Further we also introduced a quasi-self-similar measure ([7, 10, 12) on it. We note that a transformed measure with respect to a real parameter of a quasi-self-similar measure on a deranged Cantor set plays an important role to give an information of dimensions of a set of the points which has same local dimension for the quasi-self-similar measure. However we don't have such information of a transformed measure on a deranged Cantor set as that on a self-similar Cantor set since there is no result on a deranged Cantor set like the relation between a multifractal subset by a self-similar measure on a self-similar Cantor set and a distribution set of the self-similar Cantor set. We correlate $\alpha q + \beta(q)$ which appears in the formula $f(\alpha) = \inf_{q \in \mathbb{R}} \{\alpha q + \beta(q)\}$ to compute dimensions of multifractal in the result of Olsen([17, 20]) with a transformed measure with respect to a parameter q and give a hint to make a generalization of transformed measure on a deranged Cantor set to get a better information of dimensions of multifractal on a deranged Cantor set.

2. Preliminaries

We recall the definition of a deranged Cantor set([3]). Let $X_{\phi} = [0, 1]$. We obtain the left subinterval $X_{i,1}$ and the right subinterval $X_{i,2}$ of X_i by deleting a middle open subinterval of X_i inductively for each $i \in \{1,2\}^n$, where $n = 0, 1, 2, \ldots$. Let $E_n = \bigcup_{i \in \{1,2\}^n} X_i$. Then E_n is a decreasing sequence of closed sets. For each n, we set $|X_{i,1}|/|X_i| = c_{i,1}$ and $|X_{i,2}|/|X_i| = c_{i,2}$ for every $i \in \{1,2\}^n$, where $n = 0, 1, 2, \cdots$ where |X| denotes the length of X. We assume that the contraction ratios c_i and gap ratios $1 - (c_{i,1} + c_{i,2})$ are uniformly bounded away from 0. We call $F = \bigcap_{n=0}^{\infty} E_n$ a deranged Cantor set([3]). We note that a deranged Cantor set satisfying $c_{i,1} = a_{n+1}$ and $c_{i,2} = b_{n+1}$ for all $i \in \{1,2\}^n$, for each $n = 0, 1, 2, \cdots$ is called a perturbed Cantor set([1]). Further a perturbed Cantor set with $a_{n+1} = a$ and $b_{n+1} = b$ for all $n = 0, 1, 2, \cdots$ is called a self-similar Cantor set([17]).

For $i \in \{1,2\}^n$, X_i denotes a fundamental interval of the *n*-stage of construction of a deranged Cantor set. Let \mathbb{R} be the set of all real numbers and \mathbb{N} be the set of all natural numbers.

For $x \in F$, we write $X_n(x)$ for the n-th level set $X_{i_1 \cdots i_n}$ that contains x. We also note that if $x \in F$, then there is $\sigma \in \{1,2\}^{\mathbb{N}}$ such that $\bigcap_{n=0}^{\infty} X_{\sigma|n} = \{x\}$ (Here $\sigma|n=i_1,i_2,\cdots,i_n$, where $\sigma=i_1,i_2,\cdots,i_n,i_{n+1}\cdots$). Hereafter, we use $\sigma \in \{1,2\}^{\mathbb{N}}$ and $x \in F$ as the same identity freely. In a self-similar Cantor set F, we can consider a generalized expansion of x from σ , that is if $\sigma=i_1,i_2,\cdots,i_k,i_{k+1},\cdots$ then the expansion of x is $0.j_1,j_2,\cdots,j_k,j_{k+1},\cdots$ where $j_k=0$ if $i_k=1$ and $j_k=2$ if $i_k=2$. We denote $n_0(x|k)$ the number of times the digit 0 occurs in the first k places of the generalized expansion of x([19]).

For $r \in [0, 1]$, we define a distribution set F(r) containing the digit 0 in proportion r by

$$F(r) = \left\{ x \in F | \lim_{k \to \infty} \frac{n_0(x|k)}{k} = r \right\}.$$

The lower and upper local dimension of a finite measure μ at $x \in \mathbb{R}$ are defined([17]) by

$$\underline{\dim}_{loc}\mu(x) = \liminf_{r \to 0} \frac{\log \mu(B(x,r))}{\log r},$$

$$\overline{\dim}_{loc}\mu(x) = \limsup_{r \to 0} \frac{\log \mu(B(x,r))}{\log r},$$

where B(x,r) is the closed ball with center $x \in \mathbb{R}$ and radius r > 0.

If $\underline{\dim}_{loc}\mu(x) = \overline{\dim}_{loc}\mu(x)$, we call it the local dimension of μ at x and write it as $\dim_{loc}\mu(x)$. These local dimensions express the power law behaviour of $\mu(B(x,r))$ for some r>0.

We recall a self-similar measure $\gamma_p([17])$ on a self-similar Cantor set where $p \in (0,1)$ induced by $\gamma_p(X_{\mathfrak{i}}) = p_{i_1}p_{i_1,i_2}\cdots p_{i_1,i_2,\cdots,i_n}$ for $\mathfrak{i} \in \{1,2\}^n$ where $p_{i_1,\cdots,i_k,1} = p$ and $p_{i_1,\cdots,i_k,2} = 1 - p$ where $k = 0,1,\cdots,n-1$.

For $\alpha \geq 0$ define for a self-similar measure γ_p

$$\begin{split} E_{\alpha}^{(p)} &= \left. \left\{ x \in \mathbb{R} \middle| \dim_{loc} \gamma_p(x) = \alpha \right\} \right. \\ &= \left. \left\{ x \in \mathbb{R} \middle| \lim_{r \to 0} \frac{\log \gamma_p(B(x,r))}{\log r} = \alpha \right\}. \end{split}$$

From now on, $\dim(E)$ denotes the Hausdorff dimension of $E \subset \mathbb{R}$ and $\dim(E)$ denotes the packing dimension of E.

The following Proposition is fundamental to give informations of dimensions of a subset of a self-similar Cantor set.

PROPOSITION 1. [17] Let $E \subset \mathbb{R}$ be a Borel set and let μ be a finite measure.

- (a) If $\underline{\dim}_{loc}\mu(x) \geq s$ for all $x \in E$ and $\mu(E) > 0$ then $\dim(E) \geq s$.
- (b) If $\underline{\dim}_{loc}\mu(x) \leq s$ for all $x \in E$ then $\dim(E) \leq s$.
- (c) If $\overline{\dim}_{loc}\mu(x) \geq s$ for all $x \in E$ and $\mu(E) > 0$ then $Dim(E) \geq s$.
- (d) If $\overline{\dim}_{loc}\mu(x) \leq s$ for all $x \in E$ then $Dim(E) \leq s$.

In this paper, we assume that $0 \log 0 = 0$ for convenience.

3. Main results

Consider a self-similar Cantor set F with two contraction ratios a and b. Fix $p \in (0,1)$ and let $q \in \mathbb{R}$ and $\beta(q)$ satisfy $p^q a^{\beta(q)} + (1-p)^q b^{\beta(q)} = 1$.

For positive α between $\frac{\log(1-p)}{\log b}$ and $\frac{\log p}{\log a}$, the Legendre transform $f(\alpha)$ of the function β is defined by

$$f(\alpha) = \inf_{-\infty < q < \infty} \{\alpha q + \beta(q)\}.$$

We define a transformed measure $\gamma_{t(q)}$ with respect to a real q of a self-similar measure γ_p to be $\gamma_{p^q a^{\beta(q)}}$.

LEMMA 2. [5, 9] Let $p \in (0, 1)$. Consider a self-similar measure γ_p on a self-similar Cantor set F and let $r \in [0, 1]$ and $g(r, p) = \frac{r \log p + (1-r) \log(1-p)}{r \log a + (1-r) \log b}$. Then $\dim(E_{\alpha}^{(p)}) = \dim(E_{\alpha}^{(p)}) = g(r, r)$ for $\alpha = g(r, p)$.

LEMMA 3. Fix $p \in (0,1)$ and $\frac{\log(1-p)}{\log b} < \alpha < \frac{\log p}{\log a}$ or $\frac{\log p}{\log a} < \alpha < \frac{\log(1-p)}{\log b}$. Let $\alpha = g(r_0,p)$. Then there is $q_0 \in \mathbb{R}$ such that $\alpha q_0 + \beta(q_0) = g(r_0,r_0)$.

PROOF. Since $\dim(E_{\alpha}^{(p)}) = \dim(E_{\alpha}^{(p)}) = g(r_0, r_0)$ where $\alpha = g(r_0, p)$, we easily see that $f(\alpha) = \inf_{-\infty < q < \infty} \{\alpha q + \beta(q)\} = g(r_0, r_0)([17, 20])$. Noting $\frac{\log(1-p)}{\log b} \neq \alpha \neq \frac{\log p}{\log a}, \ 0 \neq r_0 \neq 1$. Since g(0,0) or g(1,1) is $\lim_{q\to-\infty} (\alpha q + \beta(q))$ or $\lim_{q\to\infty} (\alpha q + \beta(q))$, it follows.

REMARK 1. From now on, we fix $p \in (0,1)$ and $\frac{\log(1-p)}{\log b} < \alpha < \frac{\log p}{\log a}$ or $\frac{\log p}{\log a} < \alpha < \frac{\log(1-p)}{\log b}$ if there is no mention of α .

LEMMA 4. For q_0 such that $\alpha q_0 + \beta(q_0) = g(r_0, r_0)$ where $\alpha = g(r_0, p)$, $p^{q_0}a^{\beta(q_0)} = r_0$.

PROOF. q_0 such that $\alpha q_0 + \beta(q_0) = g(r_0, r_0)$ where $\alpha = g(r_0, p)$ satisfies $\beta'(q_0) = -\alpha([17])$. We note that $\beta'(q_0) = -\alpha \iff \alpha = g(p^{q_0}a^{\beta(q_0)}, p)([17])$. Further $\alpha = g(r_0, p)$ and $\alpha = g(p^{q_0}a^{\beta(q_0)}, p)$. Since g(r, p) is one to one(strictly increasing) function for $r \in (0, 1)$, $p^{q_0}a^{\beta(q_0)} = r_0$.

LEMMA 5. Let $a^s + b^s = 1$ and $p(\neq a^s) \in (0,1)$. Let $q \in \mathbb{R}$ and $\beta(q)$ satisfy $p^q a^{\beta(q)} + (1-p)^q b^{\beta(q)} = 1$. If $q \neq 0$, $E_{\alpha}^{(p)} = E_{\alpha q + \beta(q)}^{(p^q a^{\beta(q)})}$. If q = 0, $E_{\alpha}^{(p)} \subset E_{\alpha q + \beta(q)}^{(p^q a^{\beta(q)})}$.

PROOF. $E_{\alpha}^{(p)} = F(r_0)$, where $\alpha = g(r_0, p)([9])$. Let $q \neq 0 \in \mathbb{R}$. We only need to show that $E_{\alpha q + \beta(q)}^{(p^q a^{\beta(q)})} = F(r_0)$. For this, we only need to show that $\alpha q + \beta(q) = g(r_0, r)$ where $p^q a^{\beta(q)} = r$ by Lemma 2 and [9]. We note that $\beta(q) \log a = \log r - q \log p$ from $p^q a^{\beta(q)} = r$ and $\beta(q) \log b = \log(1-r) - q \log(1-p)$ from $(1-p)^q b^{\beta(q)} = 1-r$. Hence we get

$$\beta(q) = \frac{r_0 \log r + (1 - r_0) \log(1 - r) - r_0 q \log p - (1 - r_0) q \log(1 - p)}{r_0 \log a + (1 - r_0) \log b}.$$

Noting $\alpha = g(r_0, p)$, we see that $\alpha q + \beta(q) = g(r_0, r_0)$ by cancellation. If q = 0 then $\beta(0) = s$. So $E_{\alpha 0 + \beta(0)}^{(a^s)} = F$.

We get information of a transformed measure $\gamma_{p^q a^{\beta(q)}}$ with respect to a parameter q of a self-similar measure γ_p . We note that the following Theorem is essentially similar with the lemma 4.5 in [21] for the case of

a self-similar measure on a self-similar Cantor set but our proof is much simpler.

THEOREM 6. Let $p(\neq a^s) \in (0,1)$, where $a^s + b^s = 1$. Consider $E_{\alpha}^{(p)}$ and q_0 such that $\alpha q_0 + \beta(q_0) = g(r_0, r_0)$, where $\alpha = g(r_0, p)$ and $p^q a^{\beta(q)} + (1-p)^q b^{\beta(q)} = 1$. For $q(\neq 0) \in \mathbb{R}$,

$$\gamma_{p^q a^{\beta(q)}}(E_{\alpha}^{(p)}) = \gamma_{p^q a^{\beta(q)}}(E_{\alpha q + \beta(q)}^{(p^q a^{\beta(q)})}) = \begin{cases} 0 & \text{if } q \neq q_0, \\ 1 & \text{if } q = q_0. \end{cases}$$

PROOF. Since $\gamma_r(F(r))=1$ by the strong law of large numbers, if $r_0\neq r$ then $\gamma_r(F(r_0))=0$. We note that $E_{\alpha}^{(p)}=F(r_0)$ where $\alpha=g(r_0,p)$. We can assume that $p^qa^{\beta(q)}\neq a^s$ since $q\neq 0$. If $q\neq q_0$, by the above Lemma $\gamma_{p^qa^{\beta(q)}}(E_{\alpha q+\beta(q)}^{(p^qa^{\beta(q)})})=\gamma_{p^qa^{\beta(q)}}(E_{\alpha}^{(p)})=0$ since $p^qa^{\beta(q)}\neq r_0$ by Lemma 4. If $q=q_0$, then $p^qa^{\beta(q)}=r_0$ by Lemma 4, so $\gamma_{p^qa^{\beta(q)}}(E_{\alpha q+\beta(q)}^{(p^qa^{\beta(q)})})=\gamma_{p^qa^{\beta(q)}}(E_{\alpha}^{(p)})=1$.

REMARK 2. In the above Theorem, if q=0, then $p^q a^{\beta(q)}=a^s$. So $\gamma_{p^q a^{\beta(q)}}(E_{\alpha q+\beta(q)}^{(p^q a^{\beta(q)})})=\gamma_{a^s}(F)=1$ for q=0. But $E_{\alpha}^{(p)}=F(r_0)$ where $\alpha=g(r_0,p)$. Hence

$$\gamma_{a^s}(E_{\alpha}^{(p)}) = \begin{cases} 0 & \text{if } 0 \neq q_0 (\iff r_0 \neq a^s), \\ 1 & \text{if } 0 = q_0 (\iff r_0 = a^s). \end{cases}$$

REMARK 3. A transformed measure $\gamma_{t(q)}(=\gamma_{p^q a^{\beta(q)}})$ with respect to a real q of a self-similar measure γ_p gives information for Hausdorff and packing dimensions $\alpha q_0 + \beta(q_0)$ of $E_{\alpha}^{(p)} = E_{\alpha q_0 + \beta(q_0)}^{(p^{q_0} a^{\beta(q_0)})}$ since $\gamma_{t(q_0)}(E_{\alpha}^{(p)}) = \gamma_{p^{q_0} a^{\beta(q_0)}}(E_{\alpha q_0 + \beta(q_0)}^{(p^{q_0} a^{\beta(q_0)})}) = 1$ if $p^{q_0} a^{\beta(q_0)} \neq a^s$ (if $p^{q_0} a^{\beta(q_0)} = a^s$ ($\iff q_0 = 0$) then its Hausdorff and packing dimensions are also $\alpha q_0 + \beta(q_0)(=s)$ since $E_{\alpha}^{(p)} = F(a^s) \subset E_s^{(a^s)} = F$ and $\gamma_{a^s}(E_{\alpha}^{(p)}) = 1$). By Proposition 1, this means that a transformed measure $\gamma_{t(q)}$ with respect to an optimal parameter to find the Hausdorff and packing dimensions of $E_{\alpha}^{(p)}$ is $\gamma_{t(q_0)}$ with respect to an optimal parameter q_0 where $\alpha q_0 + \beta(q_0) = g(r_0, r_0)$ where $\alpha = g(r_0, p)$. We also note that $\gamma_{t(q_0)} = \gamma_{p^{q_0} a^{\beta(q_0)}}$ and it is also a self-similar measure.

REMARK 4. The transformed measures with respect to real parameters of a quasi-self-similar measure([7, 10, 12]) on a deranged Cantor set can also be defined and give a better information for dimensions, but are not quasi-self-similar measures([12]).

REMARK 5. In the above Theorem, we consider $E_{\alpha}^{(p)}$ together with q_0 such that $\alpha q_0 + \beta(q_0) = g(r_0, r_0)$ where $\alpha = g(r_0, p)$, the range of α is $(\frac{\log p}{\log a}, \frac{\log(1-p)}{\log b})$ or $(\frac{\log(1-p)}{\log b}, \frac{\log p}{\log a})$. But when we just consider $E_{\alpha}^{(p)}$, the range of α is $[\frac{\log p}{\log a}, \frac{\log(1-p)}{\log b}]$ or $[\frac{\log(1-p)}{\log b}, \frac{\log p}{\log a}]$ which has non-empty interior if $\frac{\log p}{\log a} \neq \frac{\log(1-p)}{\log b}$. A singular behaviour is observed when $p = a^s$ where $a^s + b^s = 1$.

We have more information of the values of α from the following Theorems.

Theorem 7. Let $0 and consider <math>E_{\alpha}^{(p)}$. Then we have $\frac{\log(1-p)}{\log b} < g(p,p) < s < g(a^s,p) < \frac{\log p}{\log a}$, where $a^s + b^s = 1$.

PROOF. Putting $g(a^s,p)=h(p)$, where 0 , we have <math>h'(p) < 0 where $0 and <math>h'(a^s)=0$. So we have $h(p)>h(a^s)=g(a^s,a^s)=s$ where $0 . Since <math>\frac{\log(1-p)}{\log b} < \frac{\log p}{\log a}$, k'(r)>0 where $0 < r < a^s$ and k(r)=g(r,r). So $g(p,p) < g(a^s,a^s)=s$. Since g(r,p) is a strictly increasing function for $r \in [0,1]$, we see that $g(0,p)=\frac{\log(1-p)}{\log b} \leq g(r,p) \leq \frac{\log p}{\log a}=g(1,p)$.

Theorem 8. Let $a^s and consider <math>E_{\alpha}^{(p)}$. Then we have $\frac{\log p}{\log a} < g(a^s,p) < s < g(p,p) < \frac{\log(1-p)}{\log b}$, where $a^s + b^s = 1$.

PROOF. It follows from the dual arguments of the proof of the above Theorem. \Box

References

- I. S. Baek, Dimension of the perturbed Cantor set, Real Anal. Exchange 19 (1994), no. 1, 269–273.
- [2] _____, Dimensions of weakly convergent deranged Cantor sets, Real Anal. Exchange 23 (1998), no. 2, 689–696.
- [3] ______, Weak local dimension on deranged Cantor sets, Real Anal. Exchange 26 (2001), no. 2, 553–558.
- [4] ______, Hausdorff dimension of perturbed Cantor sets without some boundedness condition, Acta Math. Hungar. 99 (2003), no. 4, 279–283.
- [5] _____, On a self-similar measure on a self-similar Cantor set, J. Chungcheong Math. Soc. 16 (2003), no. 2, 1–10.
- [6] ______, Dimensions of measures on perturbed Cantor set, J. Appl. Math. Comput. 14 (2004), no. 1-2, 397–403.
- [7] ______, Multifractal spectra by quasi-self-similar measures on a perturbed Cantor set, J. Appl. Math. Comput. 14 (2004), no. 1-2, 447-454.

- [8] _____, Cantor dimension and its application, Bull. Korean Math. Soc. 41 (2004), no. 1, 13–18.
- [9] _____, Relation between spectral classes of a self-similar Cantor set, J. Math. Anal. Appl. 292 (2004), no. 1, 294–302.
- [10] _____, On a quasi-self-similar measure on a self-similar set on the way to a perturbed Cantor set, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 11 (2004), no. 1, 51-61.
- [11] _____, Spectra of deranged Cantor set by weak local dimension, J. Math. Kyoto Univ. 44 (2004), no. 3, 493-500.
- [12] _____, On transformed dimension, preprint.
- [13] I. S. Baek and H. H. Lee, Perturbed type random Cantor set, Real Anal. Exchange 23 (1998), no. 1, 223–224.
- [14] L. Barreira and B. Saussol, Variational principles and mixed multifractal spectra, Trans. Amer. Math. Soc. 353 (2001), 3919–3944.
- [15] L. Barreira, B. Saussol, and J. Schmeling, Distribution of frequencies of digits via multifractal analysis, J. Number Theory 97 (2002), 410–438.
- [16] R. Cawley and R. D Mauldin, Multifractal decompositions of Moran fractals, Adv. Math. 92 (1992), 196–236.
- [17] K. J. Falconer, Techniques in fractal geometry, John Wiley and Sons, 1997.
- [18] T. H. Kim, S. P. Hong, and H. H. Lee, The Hausdorff dimension of deformed self-similar sets, Hiroshima Math. J. 32 (2002), no. 1, 1-6.
- [19] H. H. Lee and I. S. Baek, Dimensions of a Cantor type set and its distribution sets, Kyungpook Math. J. 32 (1992), no. 2, 149–152.
- [20] L. Olsen, A multifractal formalism, Adv. Math. 116 (1995), 82-196.
- [21] N. Patzschke, Self-conformal multifractal measure, Adv. Math. Sci. Appl. 19 (1997), no. 4, 486–513.
- [22] D. Rand, The singularity spectrum $f(\alpha)$ for cookie-cutters, Ergodic Theory Dynam. Systems 9 (1989), 527–541.

Department of Mathematics Pusan University of Foreign Studies Pusan 608-738, Korea

E-mail: isbaek@pufs.ac.kr