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SIMPLE APPROACH TO MULTIFRACTAL
SPECTRUM OF A SELF-SIMILAR CANTOR SET

IN-S00 BAEK

ABSTRACT. We study the transformed measures with respect to
the real parameters of a self-similar measure on a self-similar Can-
tor set to give a simple proof for some result of its multifractal
spectrum. A transformed measure with respect to a real parameter
of a self-similar measure on a self-similar Cantor set is also a self-
similar measure on the self-similar Cantor set and it gives a better
information for multifractals than the original self-similar measure.
A transformed measure with respect to an optimal parameter deter-
mines Hausdorff and packing dimensions of a set of the points which
has same local dimension for a self-similar measure. We compute
the values of the transformed measures with respect to the real pa-
rameters for a set of the points which has same local dimension for
a self-similar measure. Finally we investigate the magnitude of the
local dimensions of a self-similar measure and give some correlation
between the local dimensions.

1. Introduction

Recently the Hausdorff and packing dimensions of multifractal sub-
sets by a self-similar measure on a self-similar Cantor set(cf. [18]) were
studied([14, 16, 17, 20]) for the investigation of the sizes of subsets of
fixed local dimension. We note that some authors([21, 22]) also investi-
gated the Hausdorff and packing dimensions of multifractal subsets by
a self-conformal measure on a self-conformal set as its general case. In
their cases, the proof of some result is a little complicated. In this paper,
we give a simpler proof to get such a result and an easier method to find
the dimensions.
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We define a transformed measure with respect to a real parameter
of a self-similar measure on a self-similar Cantor set. We show that
the transformed measures with respect to the real parameters are also
self-similar measures on the self-similar Cantor set. It gives a better
information of upper bounds of dimensions for multifractals than the
original self-similar measure. Recently we([9, 10]) found the relation be-
tween a multifractal subset by a self-similar measure on a self-similar
Cantor set and a distribution set([15, 19]) of the self-similar Cantor set.
Using this, we find that the values of the transformed measures with re-
spect to the real parameters for a set of the points which has same local
dimension for a self-similar measure are 0 or 1. A transformed measure
with respect to an optimal parameter which gives its transformed mea-
sure value 1 determines Hausdorff and packing dimensions of a set of
the points of the same local dimension for a self-similar measure since
the transformed measure value 1 gives a lower bound for its dimensions.
We check the range of the local dimensions of a self-similar measure and
compare their magnitudes of the local dimensions of a self-similar mea-
sure with some particular numbers related to the self-similar Cantor set
and the self-similar measure, which gives more information of correlation
between local dimensions.

Recently we([2, 3, 8]) studied a deranged Cantor set which is the
most generalized Cantor set which has a local structure of a perturbed
Cantor set([1, 6, 11, 13]), which is also a generalized form of self-similar
Cantor set. Further we also introduced a quasi-self-similar measure(]7,
10, 12]) on it. We note that a transformed measure with respect to a
real parameter of a quasi-self-similar measure on a deranged Cantor set
plays an important role to give an information of dimensions of a set
of the points which has same local dimension for the quasi-self-similar
measure. However we don’t have such information of a transformed
measure on a deranged Cantor set as that on a self-similar Cantor set
since there is no result on a deranged Cantor set like the relation between
a multifractal subset by a self-similar measure on a self-similar Cantor
set and a distribution set of the self-similar Cantor set. We correlate
aq + ((g) which appears in the formula f(a) = infger{ag + B(q)} to
compute dimensions of multifractal in the result of Olsen([17, 20]) with
a transformed measure with respect to a parameter g and give a hint to
make a generalization of transformed measure on a deranged Cantor set
to get a better information of dimensions of multifractal on a deranged
Cantor set.
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2. Preliminaries

We recall the definition of a deranged Cantor set([3]). Let X4 = [0, 1].
We obtain the left subinterval Xj; and the right subinterval X, of
Xi by deleting a middle open subinterval of X; inductively for each
i€ {1,2}", wheren =0,1,2,... . Let E, = Uie(1,2)»Xi. Then E, is a
decreasing sequence of closed sets. For each n, we set | Xi1|/|Xi| = ¢i1
and | Xia|/|Xi| = ¢ for every i € {1,2}", where n = 0,1,2,--- where
| X| denotes the length of X. We assume that the contraction ratios c;
and gap ratios 1 — (¢i1 + ¢i2) are uniformly bounded away from 0. We
call F' = N2 E, a deranged Cantor set([3]). We note that a deranged
Cantor set satisfying ci1 = an41 and cia = byt for all i € {1,2}",
for each n = 0,1,2,--- is called a perturbed Cantor set([1]). Further a
perturbed Cantor set with an41 =a and b, =bforalln=20,1,2,---
is called a self-similar Cantor set([17]).

For i € {1,2}", X; denotes a fundamental interval of the n-stage
of construction of a deranged Cantor set. Let R be the set of all real
numbers and N be the set of all natural numbers.

For z € F, we write X,,(x) for the n-th level set Xj,..;, that con-
tains . We also note that if z € F, then there is ¢ € {1,2}" such that
o X, = {x} (Here oln = 41,4, -+ ,in, where 0 = 1,19, - ,in, int1
--+). Hereafter, we use o € {1,2}" and = € F as the same identity freely.
In a self-similar Cantor set F', we can consider a generalized expansion
of x from o, that is if ¢ = 43,49, -+ ,ix, igs1, - then the expansion of
T is O.jl,jg,”- ,jk,j]ﬂ_l,”- Wherejk =0 ifik =1 andjk =2 ifik = 2.
We denote ng(z|k) the number of times the digit 0 occurs in the first k
places of the generalized expansion of z([19]).

For r € [0, 1], we define a distribution set F(r) containing the digit 0 in
proportion r by

—r 0

F(r)= {SE € F|k1im ﬂ:@ = r}.

The lower and upper local dimension of a finite measure u at z € R are
defined([17]) by

dimy, p(x) = lim iélf log u(B(z, 7))
77—

logr ’
S— 1 B
Finoeps(z) = lim sup ‘2B BE )
r—0 log T

where B(z,r) is the closed ball with center € R and radius r > 0.
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If dimy, pu(z) = dimyep(z), we call it the local dimension of p at x
and write it as dimy,.u(z). These local dimensions express the power
law behaviour of p(B(z,r)) for some r > 0.

We recall a self-similar measure 7,([17]) on a self-similar Cantor set
where p € (0,1) induced by Vp(Xi) = DiyPis iz - * * Pis ig, in TOr i € {1,2}"
where p;, ... 5,1 =pand p;; ... j, 0 =1—p where k =0,1,--- ,n— 1.

For o > 0 define for a self-similar measure ~,

E®P = {z € R|dimyp. () = a}

_ {MR“ Mﬁﬂza},
o0 logr
From now on, dim(E) denotes the Hausdorff dimension of £ C R and
Dim(FE) denotes the packing dimension of F.
The following Proposition is fundamental to give informations of di-
mensions of a subset of a self-similar Cantor set.

PROPOSITION 1. [17] Let E C R be a Borel set and let p be a finite
measure.

(a) If dimy, p(x) > s for all z € FE and p(E) > 0 then dim(E) > s.

(b) If dimy . u(x) < s for all z € E then dim(E) < s.

(c) If dimyoeps(x) > s for all z € E and u(E) > 0 then Dim(E) > s.

(d) If dimpep(z) < s for all z € E then Dim(E) < s.

In this paper, we assume that 0log0 = 0 for convenience.

3. Main results

Consider a self-similar Cantor set F' with two contraction ratios a and
b. Fix p € (0,1) and let ¢ € R and §(q) satisfy p?a®@ 4 (1—p)6P@ = 1.

For positive a between Og—%b—m and ﬁ, the Legendre transform f(«)
of the function (3 is defined by

flo)=__inf {oq+B(g)}-

We define a transformed measure Yyq) with respect to a real q of a
self-similar measure vy, to be Vp1aB@) -

LEMMA 2. [5,9] Let p € (0,1). Consider a self-similar measure 7, on a

self-similar Cantor set F" and let r € [0, 1] and g(r, p) = 722 ;ﬁ?{%gﬁ%? )

Then dim(EC(yp)) Dim( (p)) = g(r,r) for a = g(r,p).
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LEMMA 3. Fix p € (0,1) and % < o< ig—g% or iiggg < a<
log(1—p)

togb - Let o = g(rg,p). Then there is gy € R such that aqg + 3(qo) =
g(’l"(),TO)-

PROOF. Since dim( &p)) = Dim(Eép)) = g(ro,70) where a = g(ro, p),
we easily see that f(a) = inf_<qcoc{ag + B8(q)} = g(ro,m0)([17, 20]).
Noting logk()%’—) + a # %ggz, 0 # rg # 1. Since ¢(0,0) or g(1,1) is

limg, oo (g + B(q)) or limg_,o(ag + B(q)), it follows. O

log(1—-p) log
REMARK 1. From now on, we fix p € (0,1) and g < @ < ok

g log(1— . . .
or iggg <a< *Ogl;(()g bp ) if there is no mention of «.

LEMMA 4. For qq such that ago+05(qo0) = g(ro, 7o) where a = g(ro,p),
p%aﬁ(qo) = 7.

PROOF. g such that age + B(q0) = g(ro,70) where a = g(ro,p)
satisfies 3'(qo) = —a([17]). We note that 3'(q) = —a <= a =
g(p?aP®) p)([17]). Further o = g(ro,p) and o = g(pPaP®) p). Since
g(r,p) is one to one(strictly increasing) function for r € (0, 1), p®af@) =
ro. O

LEMMA 5. Let a® 4+ b° = 1 and p(# «*) € (0,1). Let ¢ € R and 5(q)

satisfy pla®@ + (1 - p)ib@ = 1. I q # 0, EY = EY"*") I q =0,
(») (p1aP12)
Ea” C an+ﬁ(q) ’

Proor. EP = F(rg), where a = g(rg,p)([9]). Let q(# 0) € R.

We only need to show that Eg; q_fgz))) = F(rp). For this, we only need

to show that aq + B(q) = g(ro,7) where p?a®@ = r by Lemma 2 and
[9]. We note that 8(g)loga = logr — ¢logp from p?a?@ = r and
B(q) logb = log(1 — r) — qlog(1 — p) from (1 — p)?*@ =1 —r. Hence
we get
(g) = rologr + (1 —rg)log(l — r) — roqlogp — (1 — ro)qlog(l — p)
? rologa+ (1 —rg)logh )
Noting a = g(ro,p), we see that ag + 8(q) = g(re, 7o) by cancellation.

If g =0 then 3(0) = s. So E(%lﬁ(m = £ N

We get information of a transformed measure YpaaBla) With respect to
a parameter g of a self-similar measure ~,. We note that the following
Theorem is essentially similar with the lemma 4.5 in [21] for the case of
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a self-similar measure on a self-similar Cantor set but our proof is much
simpler.

THEOREM 6. Let p(# a®) € (0,1), where a® + b° = 1. Consider

EY and gy such that ago + f(de) = g(ro, o), where a = g(rq,p) and
p9aP@ + (1 - p)P@) = 1. For ¢(# 0) € R,

PN pqaﬁ(q)) _ 0 ifq;éqo,
”/pqaﬁ(q)(E )= ’quaﬁ(q)( aq+,6(q))_ 1 ifq =g

PROOF. Since v,(F(r)) = 1 by the strong law of large numbers,

if ro # r then v.(F(ro)) = 0. We note that EP = F(ry) where

a = g(rg,p). We can assume that pqaﬁ(q) # a® since g 75 0. If
1 ﬂ(q)
q # qo, by the above Lemma .6 (EY e q)) 7pqag(q)(E )y =0

since p?af(® £ 7"0 lg(y)Lemma 4. If q = gp, then p?a#@ = ry by Lemma
q q
4, so 'quqﬂ(q)( aq_:_lﬁ(ﬁ )= YpaaBa) (Ea )) = 1. O

REMARK 2. In the above Theorem, if ¢ = 0, then p?a®@ = ¢*. So

B(a)
Ypaasa (£, qq_:_lﬂ((;))) = 7v4s(F) = 1 for ¢ = 0. But EP = F(rq) where

a = g(rg,p). Hence

'Yas(Eép)) — 0 lfO # QO( <~ To 7é as)’
1 if 0=qo( &= ro=a).

REMARK 3. A transformed measure 7;(q) (= V,408() With respect to

a real q of a self-similar measure -y, gives information for Hausdorff and

packing dimensions ago+3(go) of EP = Eg;?f;ézz))) since fyt(qo)(Eg’ )) =

Alap) )
,.ypqoaﬁ(qo) (Eél;iofﬁ(:?)))) —_ 1 lf pQOaﬂ((IO) # a (lf pqoaﬂ(qo) = as( L qo =

0) then its Hausdorff and packing dimensions are also agg + B(gp)(= s)
since EP) = F(a®) C E{) = F and ,YaS(E(p ) ) = 1). By Proposition 1,
this means that a transformed measure 7,4 with respect to an optimal
parameter to find the Hausdorff and packing dimensions of Ec(,p ) is V(o)
with respect to an optimal parameter qo where agg + 8(q) = g(ro,70)
where a = g(rg,p). We also note that Yi(g0) = Vpt0a8(a0) and it is also a
self-similar measure.

REMARK 4. The transformed measures with respect to real parame-
ters of a quasi-self-similar measure([7, 10, 12]) on a deranged Cantor set
can also be defined and give a better information for dimensions, but
are not quasi-self-similar measures([12]).
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REMARK 5. In the above Theorem, we consider E((Xp ) together with
go such that agy + 5(q0) = g(ro,m0) where o = g(rg,p), the range of

- (logp log(1—p log(1—p ()

a is (loga7 —logd )) or (—l(()gb ), loga) But when we just consider Eg ",
. [logp log(1—p) log(1—p) logp B

the range of a is [EE, iceb ] OF [Ticgs > Tog s Which has non-empty

interior if @ # logl((;; PA singular behaviour is observed when p = a°

where a® + b° = 1.

We have more information of the values of o from the following The-
orems.

THEOREM 7. Let 0 < p < a° and consider E(p). Then we have

log(1—
ogr_,()gbp) <g(p,p) < s<gla s.p) < 12ga, where a° 4+ b°* = 1.
PROOF. Putting g(a®, p) = h(p), where 0 < p < 1, we have h'(p) <

0 where 0 < p < a® and h/(a®) = 0. So we have h(p) > h(a®) =
g(a®,a®) = s where 0 < p < a®. Since % < %g—a, K(r) >0
where 0 < r < @° and k(r) = g(r,r). So g(p,p) < g(a®,a®) = s.

Since g(r,p) is a strictly increasing function for r € [0, 1], we see that

1 — 0
9(0,p) = 4832 < g(r,p) < B2 = g(1,p). U

THEOREM 8. Let a® < p < 1 and consider E((f ). Then we have

log(1—
@—g < g(a®,p) < s < g(p,p) < ng()gbp), where a® + b° = 1.

ProOF. It follows from the dual arguments of the proof of the above
Theorem. O
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