• Title/Summary/Keyword: lithium anode

Search Result 459, Processing Time 0.03 seconds

High-$T_c$ SQUID Application for Roll to Roll Metallic Contaminant Detector

  • Tanaka, S.;Kitamura, Y.;Uchida, Y.;Hatsukade, Y.;Ohtani, T.;Suzuki, S.
    • Progress in Superconductivity
    • /
    • v.14 no.2
    • /
    • pp.82-86
    • /
    • 2012
  • A sensitive eight-channel high-Tc Superconducting Interference Device (SQUID) detection system for magnetic contaminant in a lithium ion battery anode was developed. Finding ultra-small metallic foreign matter is an important issue for a manufacturer because metallic contaminants carry the risk of an internal short. When contamination occurs, the manufacturer of the product suffers a great loss from recalling the tainted product. Metallic particles with outer dimensions smaller than 100 microns cannot be detected using a conventional X-ray imaging system. Therefore, a highly sensitive detection system for small foreign matter is required. We have already developed a detection system based on a single-channel SQUID gradiometer and horizontal magnetization. For practical use, the detection width of the system should be increased to at least 65 mm by employing multiple sensors. In this paper, we present an 8-ch high-Tc SQUID roll-to-roll system for inspecting a lithium-ion battery anode with a width of 65 mm. A special microscopic type of a cryostat was developed upon which eight SQUID gradiometers were mounted. As a result, small iron particles of 35 microns on a real lithium-ion battery anode with a width of 70 mm were successfully detected. This system is practical for the detection of contaminants in a lithium ion battery anode sheet.

A New Way to Prepare MoO3/C as Anode of Lithium ion Battery for Enhancing the Electrochemical Performance at Room Temperature

  • Yu, Zhian;Jiang, Hongying;Gu, Dawei;Li, Jishu;Wang, Lei;Shen, Linjiang
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.170-178
    • /
    • 2016
  • Composited molybdenum oxide and amorphous carbon (MoO3/C) as anode material for lithium ion batteries has been successfully synthesized by calcining polyaniline (PANI) doped with ammonium heptamolybdate tetrahydrate (AMo). The as prepared electrode material was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and field emission scanning electron microscopy (FE-SEM). The electrochemical performance of the anode was investigated by galvanostatic charge/discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The MoO3/C shows higher specific capacity, better cyclic performance and rate performance than pristine MoO3 at room temperature. The electrochemical of MoO3/C properties at various temperatures were also investigated. At elevated temperature, MoO3/C exhibited higher specific capacity but suffered rapidly declines. While at low temperature, the electrochemical performance was mainly limited by the low kinetics of lithium ion diffusion and the high charge transfer resistance.

Suppression of Co-intercalation on the Carbon Anode by MA Addition in a PC-base Electrolyte

  • Kim, Woo-Seong;Park, Dong-Won;Jung, Hwan-Jung;Choi, Yong-Kook
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.82-86
    • /
    • 2006
  • Propylene Carbonate (PC) has the interesting properties of being able to dissolve and dissociate lithium salts, thus leading to highly conducting electrolytes even at low temperatures. Moreover, electrolytes that contain PC are stable against oxidation at voltages up to ~5 V. However, it is known that, when lithium is intercalated into graphite in pure PC based electrolytes, solvent co-intercalation occurs, leading to the destruction of the graphite structure. (i.e., exfoliation). The objective of this study was to suppress PC decomposition and prevent exfoliation of the graphite anode by co-intercalation. Electrochemical characteristics were studied using Kawasaki mesophase fine carbon (KMFC) in different 1 M $LiPF_6$/PC-based electrolytes. Electrochemical experiments were completed using chronopotentiometry, cyclic voltammetry, impedance spectroscopy, X-ray diffraction, and scanning electron microscopy. From the observed results, we conclude that the MA and $Li_2CO_3$ additive suppressed co-intercalation of the PC electrolyte into the graphite anode. The use of additives, for reducing the extent of solvent decomposition before exfoliation of the graphite anode, could therefore enhance the stability of a KMFC electrode.

2D Coordination Polymer Derived Co3O4 Nanocrystals as High Performance Anode Material of Lithium-Ion Batteries

  • Wen, Hao;Shi, Changdong;Gao, Yuanrui;Rong, Hongren;Sha, Yanyong;Liu, Hongjiang;Liu, Qi
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850139.1-1850139.10
    • /
    • 2018
  • $Co_3O_4$ nanocrystals have been synthesized via an ordinary one-step calcination of a cobalt-based 2D coordination polymer [Co(tfbdc)(4,4'-bpy)$(H_2O)_2$]. As an anode material for lithium-ion batteries, the obtained $Co_3O_4$ nanocrystals exhibit high reversible capacity, excellent cyclic stability and better rate capability. The reversible capacity of the $Co_3O_4$ nanocrystals maintains $713mA\;h\;g^{-1}$ after 50 cycles at a current density of $50mA\;g^{-1}$. Our results confirm that searching for metal oxides nanomaterials used as anode materials of lithium ion batteries via the calcinations of 2D coordination polymer is a new route.

Carbonaceous Materials as Anode Materials for Lithium Ion Secondary Batteries

  • Lee, Seung-Bok;Pyun, Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.187-195
    • /
    • 2003
  • The present article is concerned with the overview of carbonaceous materials used as anode materials for lithium ion secondary batteries. This article first classified carbonaceous materials into graphite, soft carbon and hard carbon according to their crystal structures, and then summarised the previous works on the characteristics of lithium intercalation/deintercalation into/from the carbonaceous materials. Finally this article reviewed our recent research works on the mechanism of lithium transport through graphite, soft carbon and hard carbon electrodes from the kinetic view point by the analysis of the theoretical and experimental potentiostatic current transients.

A Study on the Electrochemical Properties for Effect of Additive of the Lithium Metal Anode (리튬 금속 음극의 첨가제 효과에 따른 전기 화학적 특성에 관한 연구)

  • Cho, S.M.;Lee, S.W.;Cho, B.W.;Ju, J.B.;Sohn, T.W.
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.159-163
    • /
    • 2002
  • The use of lithium metal anode at lithium metal secondary battery can provide the very high energy density. Nevertheless, there are some problems that are short cycle life, lack of safety and poor thermal stability. Cycle life and cycling efficiency decline due to passivating films, dendritic lithium and increasing surface film by the reaction of lithium metal and electrolyte. This work investigated the additive effect of benzene, toluene, tetram-ethylethylenediamine, into the electrolyte. The cycling efficiency and cyclability are improved. The reason is confirmed by decreasing film resistance and increasing polarization resistance at AC impedance analysis. Electrolyte additive has a relatively less reactivity than electrolytes lithium and is adsorbed on lithium leading to suppression of the reaction between the electrolyte and lithium as well as an improvement in the lithium deposition mophology.

Enhancing Electrochemical Performance of Co(OH)2 Anode Materials by Introducing Graphene for Next-Generation Li-ion Batteries

  • Kim, Hyunwoo;Kim, Dong In;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.398-406
    • /
    • 2022
  • To satisfy the growing demand for high-performance batteries, diverse novel anode materials with high specific capacities have been developed to replace commercial graphite. Among them, cobalt hydroxides have received considerable attention as promising anode materials for lithium-ion batteries as they exhibit a high reversible capacity owing to the additional reaction of LiOH, followed by conversion reaction. In this study, we introduced graphene in the fabrication of Co(OH)2-based anode materials to further improve electrochemical performance. The resultant Co(OH)2/graphene composite exhibited a larger reversible capacity of ~1090 mAh g-1, compared with ~705 mAh g-1 for bare Co(OH)2. Synchrotron-based analyses were conducted to explore the beneficial effects of graphene on the composite material. The experimental results demonstrate that introducing graphene into Co(OH)2 facilitates both the conversion and reaction of the LiOH phase and provides additional lithium storage sites. In addition to insights into how the electrochemical performance of composite materials can be improved, this study also provides an effective strategy for designing composite materials.

Enhanced Reaction Kinetic of Fe3O4-graphite Nanofiber Composite Electrode for Lithium Ion Batteries

  • Wang, Wan Lin;Park, Ju-Young;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.338-343
    • /
    • 2014
  • A $Fe_3O_4$-graphite nanofiber composite for use as an anode material was successfully synthesized by calcining $Fe_3O_4$ and graphite nanofiber (GNF) together in a $N_2$ atmosphere. Using this $Fe_3O_4$-GNF composite in a lithium ion battery resulted in a higher lithium storage capacity than that obtained using $Fe_3O_4$-graphite ($Fe_3O_4$-G). The $Fe_3O_4$-GNF (10 wt%) electrode exhibited a higher lithium ion diffusion coefficient ($2.29{\times}10^{-9}cm^2s^{-1}$) than did the $Fe_3O_4$-G (10%) ($3.17{\times}10^{-10}cm^2s^{-1}$). At a current density of $100mA\;g^{-1}$, the $Fe_3O_4$-GNF (10 wt%) anode showed a higher reversible capacity ($1,031mAh\;g^{-1}$) than did the $Fe_3O_4$-G (10%) anode ($799mAh\;g^{-1}$). Moreover, the $Fe_3O_4GNF$ electrodes showed good cycling performance without the addition of a conductive material.

Electrochemistry Characteristics of $Li_4Ti_5O_{12}$ Anode Electrode for Li-ion Battery (리튬전지용 $Li_4Ti_5O_{12}$ 음극전극의 전기화학적 특성)

  • Oh, Mi-Hyun;Kim, Han-Joo;Kim, Young-Jae;Son, Won-Keun;Lim, Kee-Joe;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.340-341
    • /
    • 2005
  • Lithium titanium oxide as anode material for energy storage prepared by novel synthesis method. $Li_4Ti_5O_{12}$ based spinel-framework structures are of great interest material for lithium-ion batteries. We describe here $Li_4Ti_5O_{12}$ a zero-strain insertion material was prepared by novel sol-gel method and by high energy ball milling (HEBM) of precursor to from nanocrystalline phases. According to the X-ray diffraction and scanning electron microscopy analysis, uniformly distributed $Li_4Ti_5O_{12}$ particles with grain sizes of 100nm were synthesized. Lithium cells, consisting of $Li_4Ti_5O_{12}$ anode and lithium cathode showed the 173 mAh/g in the range of 1.0 $\sim$ 3.0 V. Furthermore, the crystalline structure of $Li_4Ti_5O_{12}$ didn't transfer during the lithium intercalation and deintercalation process.

  • PDF

Prelithiation of Alpha Phase Nanosheet-Type VOPO4·2H2O Anode for Lithium-Ion Batteries

  • Tron, Artur;Mun, Junyoung
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.90-99
    • /
    • 2022
  • Owing to the rising concern of global warming, lithium-ion batteries have gained immense attention over the past few years for the development of highly efficient electrochemical energy conversion and storage systems. In this study, alpha-phase VOPO4·2H2O with nanosheet morphology was prepared via a facile hydrothermal method for application in high-performance lithium-ion batteries. The X-ray diffraction and scanning electron microscopy (SEM) analyses indicated that the obtained sample had an alpha-2 (αII) phase, and the nanosheet morphology of the sample was confirmed using SEM. The lithium-ion battery with VOPO4·2H2O as the anode exhibited excellent long-term cycle life and a high capacity of 256.7 mAh g-1 at room temperature. Prelithiation effectively improved the specific capacity of pristine VOPO4·2H2O. The underlying electrochemical mechanisms were investigated by carrying out AC impedance, rate capability, and other instrumental analyses.