DOI QR코드

DOI QR Code

2D Coordination Polymer Derived Co3O4 Nanocrystals as High Performance Anode Material of Lithium-Ion Batteries

  • Wen, Hao (School of Petrochemical Engineering and Jiangsu Key Laboratory of Fine Petro-chemical Technology Changzhou University) ;
  • Shi, Changdong (School of Petrochemical Engineering and Jiangsu Key Laboratory of Fine Petro-chemical Technology Changzhou University) ;
  • Gao, Yuanrui (Department of Chemistry, College of Science Shanghai University) ;
  • Rong, Hongren (School of Petrochemical Engineering and Jiangsu Key Laboratory of Fine Petro-chemical Technology Changzhou University) ;
  • Sha, Yanyong (School of Petrochemical Engineering and Jiangsu Key Laboratory of Fine Petro-chemical Technology Changzhou University) ;
  • Liu, Hongjiang (Department of Chemistry, College of Science Shanghai University) ;
  • Liu, Qi (School of Petrochemical Engineering and Jiangsu Key Laboratory of Fine Petro-chemical Technology Changzhou University)
  • Received : 2018.07.09
  • Accepted : 2018.10.30
  • Published : 2018.12.31

Abstract

$Co_3O_4$ nanocrystals have been synthesized via an ordinary one-step calcination of a cobalt-based 2D coordination polymer [Co(tfbdc)(4,4'-bpy)$(H_2O)_2$]. As an anode material for lithium-ion batteries, the obtained $Co_3O_4$ nanocrystals exhibit high reversible capacity, excellent cyclic stability and better rate capability. The reversible capacity of the $Co_3O_4$ nanocrystals maintains $713mA\;h\;g^{-1}$ after 50 cycles at a current density of $50mA\;g^{-1}$. Our results confirm that searching for metal oxides nanomaterials used as anode materials of lithium ion batteries via the calcinations of 2D coordination polymer is a new route.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Jiangsu Colleges and Universities

References

  1. M. Armand and J.-M. Tarascon, Nature 451, 652 (2008). https://doi.org/10.1038/451652a
  2. W. Ai, W. W. Zhou, Z. Z. Du, C. C. Sun, J. Yang, Y. Chen, Z. P. Sun, S. Feng, J. F. Zhao, X. C. Dong, W. Huang and T. Yu, Adv. Funct. Mater. 27, 1603603 (2017). https://doi.org/10.1002/adfm.201603603
  3. M. S. Whittingham, Chem. Rev. 114, 11414 (2014). https://doi.org/10.1021/cr5003003
  4. M. V. Reddy, G. V. Subba Rao and B. V. R. Chowdari, Chem. Rev. 113, 5364 (2013). https://doi.org/10.1021/cr3001884
  5. M. N. Obrovac and V. L. Chevrier, Chem. Rev. 114, 11444 (2014). https://doi.org/10.1021/cr500207g
  6. D. Larcher and J.-M. Tarascon, Nat. Chem. 7, 19 (2015). https://doi.org/10.1038/nchem.2085
  7. Q. Qu, T. Gao, H. Y. Zheng, X. X. Li, H. M. Liu, M. Shen, J. Shao and H. H. Zheng, Carbon 92, 119 (2015). https://doi.org/10.1016/j.carbon.2015.03.061
  8. Y. J. Mai, X. H. Xia and X. H. Jie, Mater. Res. Bull. 94, 216 (2017). https://doi.org/10.1016/j.materresbull.2017.06.005
  9. M. V. Reddy, B. C. Zhang, J. N. Li, K. M. Zhang and B. V. R. Chowdaria, Electrochem. Solid-State Lett. A 14, A79 (2011). https://doi.org/10.1149/1.3556984
  10. N. S. Marzuki, N. U. Taib, M. F. Hassan and N. H. Idris, Electrochim Acta 182, 452 (2015). https://doi.org/10.1016/j.electacta.2015.09.119
  11. P. Zhang, Z. P. Guo, Y. D. Huang, D. Z. Jia and H. K. Liu, J. Power Sources 196, 6987 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.090
  12. R. Xu, J. W. Wang, Q. Y. Li, G. Y. Sun, E. B. Wang, S. H. Li, J. M. Gu and M. L. Ju, J. Solid State Chem. 182, 3177 (2009). https://doi.org/10.1016/j.jssc.2009.08.033
  13. X. W. Lou, D. Deng, J. Y. Lee, J. Feng and L. A. Archer, Adv. Mater. 20, 258 (2008). https://doi.org/10.1002/adma.200702412
  14. A. Q. Pan, Y. P. Wang, W. Xu, Z. W. Nie, S. Q. Liang and Z. M. Nie, J. Power Sources 255, 125 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.131
  15. F. M. Zhan, B. Y. Geng and Y. J. Guo, Chem. Eur. J. 15, 6169 (2010).
  16. J. S. Chen, T. Zhu, Q. H. Hu, J. J. Gao, F. B. Su, S. Z. Qiao and X. W. Lou, ACS Appl. Mater. Interfaces 2, 3628 (2010). https://doi.org/10.1021/am100787w
  17. J. Y. Wang, N. L. Yang, H. J. Tang, Z. H. Dong, M. Yang, K. David, H. J. Zhao, Z. Y. Tang and D. Wang, Angew. Chem. 125, 6545 (2013). https://doi.org/10.1002/ange.201301622
  18. G. L. Xu, J. T. Li, L. Huang, W. F. Lin and S. G. Sun, Nano Energy 2, 394 (2013). https://doi.org/10.1016/j.nanoen.2012.11.005
  19. X. Wang, L. G. Yu, X. L. Wu, F. L. Yuan, Y. G. Guo, Y. Ma and J. N. Yao, J. Phys. Chem. C 113, 15553 (2009). https://doi.org/10.1021/jp904652m
  20. B. R. Jia, M. L. Qin, S. M. Li, Z. L. Zhang, H. F. Lu, P. Q. Chen, H. Y. Wu, X. Lu, L. Zhang and X. H. Qu, ACS Appl. Mater. Interfaces 8, 15582 (2016). https://doi.org/10.1021/acsami.6b02768
  21. Y. Z. Zhang, Y. Wang, Y. L. Xie, T. Cheng, W. Y. Lai, H. Pang and W. Huang, Nanoscale 6, 14354 (2014). https://doi.org/10.1039/C4NR04782F
  22. S. B. Zhou, G. Wang, Y. Z. Xie, H. Wang and J. B. Bai, J. Nanopart. Res. 15, 1740 (2013). https://doi.org/10.1007/s11051-013-1740-0
  23. F. L. Meng, Z. G. Fang, Z. X. Li, W. W. Xu, M. J. Wang, Y. P. Liu, J. Zhang, W. R. Wang, D. Y. Zhao and X. H. Guo, J. Mater. Chem. A 1, 7235 (2013). https://doi.org/10.1039/c3ta11054k
  24. L. Lux, K. Williams and S. Q. Ma, CrystEngComm 17, 10 (2015). https://doi.org/10.1039/C4CE01499E
  25. Z. Y. Sui, P. Y. Zhang, M. Y. Xu, Y. W. Liu, Z. X. Wei and B. H. Han, ACS Appl. Mater. Interfaces 9, 43171 (2017). https://doi.org/10.1021/acsami.7b15315
  26. J. Jin, Y. Zheng, L. B. Kong, N. Srikanth, Q. Y. Yan and K. Zhou, J. Mater. Chem. A 6, 15710 (2018). https://doi.org/10.1039/C8TA04425B
  27. R. B. Wu, X. K. Qian, X. H. Rui, H. Liu, B. Yadian, K. Zhou, J. Wei, Q. Y. Yan, X. Q. Feng, Y. Long, L. Y. Wang and Y. Z. Huang, Small 10, 1932 (2014). https://doi.org/10.1002/smll.201303520
  28. R. B. Wu, X. K. Qian, F. Yu, H. Liu, K. Zhou, J. Wei and Y. Z. Huang, J. Mater. Chem. A 1, 11126 (2013). https://doi.org/10.1039/c3ta12621h
  29. W. X. Guo, W. W. Sun, L. P. Lv, S. F. Kong and Y. Wang, ACS Nano 11, 4198 (2017). https://doi.org/10.1021/acsnano.7b01152
  30. X. S. Hu, C. Li, X. B. Lou, Q. Yang and B. W. Hu, J. Mater. Chem. A 5, 12828 (2017). https://doi.org/10.1039/C7TA02953E
  31. B. Yan, L. Chen, Y. J. Liu, G. X. Zhu, C. G. Wang, H. Zhang, G. Yang, H. T. Ye and A. H. Yuan, CrystEngComm 16, 10227 (2014). https://doi.org/10.1039/C4CE01277A
  32. D. Ji, H. Zhou, J. Zhang, Y. Y. Dan, H. X. Yang and A. H. Yuan, J. Mater. Chem. A 4, 8283 (2016). https://doi.org/10.1039/C6TA01377E
  33. D. Ji, H. Zhou, Y. L. Tong, J. P. Wang, M. Z. Zhu, T. H. Chen and A. H. Yuan, Chem. Eng. J. 313, 1623 (2017). https://doi.org/10.1016/j.cej.2016.11.063
  34. M. Huang, K. Mi, J. H. Zhang, H. L. Liu, T. T. Yu, A. H. Yuan, Q. H. Kong and S. L. Xiong, J. Mater. Chem. A 5, 266 (2017). https://doi.org/10.1039/C6TA09030C
  35. Y. Wang, X. M. Guo, Z. K. Wang, M. F. Lu, B. Wu, Y. Wang, C. Yan, A. H. Yuan and H. X. Yang, J. Mater. Chem. A 5, 25562 (2017). https://doi.org/10.1039/C7TA08314A
  36. J. H. Zhang, M. Huang, B. J. Xi, K. Mi, A. H. Yuan and S. L. Xiong, Adv. Energy Mater. 8, 1701330 (2018). https://doi.org/10.1002/aenm.201701330
  37. Y. Y. Chen, Y. Wang, X. P. Shen, R. Cai, H. X. Yang, K. Q. Xu, A. H. Yuan and Z. Y. Ji, J. Mater. Chem. A 6, 1048 (2018). https://doi.org/10.1039/C7TA08868J
  38. W. Wen, J. M. Wu and M. H. Cao, Nanoscale 6, 12476 (2014). https://doi.org/10.1039/C4NR01806K
  39. C. C. Li, X. M. Yin, L. B. Chen, Q. H. Li and T. H. Wang, Chem. Eur. J. 16, 5215 (2010). https://doi.org/10.1002/chem.200901632
  40. L. Hu, N. Yan, Q. W. Chen, P. Zhang, H. Zhong, X. R. Zheng, Y. Li and X. Y. Hu, Chem. Eur. J. 18, 8971 (2012). https://doi.org/10.1002/chem.201200770
  41. Y. Peng, Y. S. Li, Y. J. Ban, H. Jin, W. M. Jiao, X. L. Liu and W. S. Yang, Science 346, 6215 (2014).
  42. Q. Liu, L. L. Yu, Y. Wang, Y. Z. Ji, J. Horvat, M. L. Cheng, X. Y. Jia and G. X. Wang, Inorg. Chem. 52, 2817 (2013). https://doi.org/10.1021/ic301579g
  43. C. D. Shi, Q. H. Xia, X. Xue, Q. Liu and H. J. Liu, RSC Adv. 6, 4442 (2016). https://doi.org/10.1039/C5RA22038F
  44. X. X. Liu, C. D. Shi, C. W. Zhai, M. L. Cheng, Q. Liu and G. X. Wang, ACS Appl. Mater. Interfaces 8, 4585 (2016). https://doi.org/10.1021/acsami.5b10781
  45. C. D. Shi, Y. R. Gao, L. L. Liu, Y. D. Song, X. M. Wang, H. J. Liu and Q. Liu, J. Nanopart. Res. 18, 371 (2016). https://doi.org/10.1007/s11051-016-3641-5
  46. C. D. Shi, X. M. Wang, Y. R. Gao, H. R. Rong, Y. D. Song, H. J. Liu and Q. Liu, J. Solid State Electrochem. 21, 2415 (2017). https://doi.org/10.1007/s10008-017-3591-6
  47. M. T. Zhao, Q. P. Lu, Q. L. Ma and H. Zhang, Small Methods 1, 1600030 (2017). https://doi.org/10.1002/smtd.201600030
  48. F. F. Wu, S. S. Zhang, B. J. Xi, Z. Y. Feng, D. Sun, X. J. Ma, J. H. Zhang, J. K. Feng and S. L. Xiong, Adv. Energy Mater. 10, 727 (2018).
  49. S. Liu, D. Wang and S. Pan, Analysis of X-Ray Photoelectron Spectroscopy (Science Press, Beijing, 1988).
  50. L. Zhan, S. Q. Wang, L. X. Ding, Z. Li and H. H. Wang, Electrochim. Acta 135, 35 (2014). https://doi.org/10.1016/j.electacta.2014.04.139
  51. S. L. Xiong, J. S. Chen, X. W. Lou and H. C. Zeng, Adv. Funct. Mater. 22, 861 (2012). https://doi.org/10.1002/adfm.201102192