Browse > Article
http://dx.doi.org/10.33961/jecst.2022.00122

Enhancing Electrochemical Performance of Co(OH)2 Anode Materials by Introducing Graphene for Next-Generation Li-ion Batteries  

Kim, Hyunwoo (Department of Energy Science, Sungkyunkwan University)
Kim, Dong In (Department of Energy Science, Sungkyunkwan University)
Yoon, Won-Sub (Department of Energy Science, Sungkyunkwan University)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.3, 2022 , pp. 398-406 More about this Journal
Abstract
To satisfy the growing demand for high-performance batteries, diverse novel anode materials with high specific capacities have been developed to replace commercial graphite. Among them, cobalt hydroxides have received considerable attention as promising anode materials for lithium-ion batteries as they exhibit a high reversible capacity owing to the additional reaction of LiOH, followed by conversion reaction. In this study, we introduced graphene in the fabrication of Co(OH)2-based anode materials to further improve electrochemical performance. The resultant Co(OH)2/graphene composite exhibited a larger reversible capacity of ~1090 mAh g-1, compared with ~705 mAh g-1 for bare Co(OH)2. Synchrotron-based analyses were conducted to explore the beneficial effects of graphene on the composite material. The experimental results demonstrate that introducing graphene into Co(OH)2 facilitates both the conversion and reaction of the LiOH phase and provides additional lithium storage sites. In addition to insights into how the electrochemical performance of composite materials can be improved, this study also provides an effective strategy for designing composite materials.
Keywords
Lithium-ion Batteries; Anode Materials; Graphene Composite; Ion Storage Mechanism; Extra Capacity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 B. Dunn, H. Kamath, and J.-M. Tarascon, Science, 2011, 334(6058), 928-935.   DOI
2 Z. P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, and Z. Chen, Nat. Energy, 2018, 3(4), 279-289.   DOI
3 W. Zhao, W. Choi, and W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(3), 195-219.   DOI
4 Z.-S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, and H.-M. Cheng, ACS Nano, 2010, 4(6), 3187-3194.   DOI
5 J. Zhou, J. Li, K. Liu, L. Lan, H. Song, and X. Chen, J. Mater. Chem. A, 2014, 2(48), 20706-20713.   DOI
6 M. Holzapfel, H. Buqa, W. Scheifele, P. Novak, and F. M. Petrat, Chem. Commun., 2005, 12, 1566-1568.
7 M. V. Reddy, G. V. Subba Rao, and B. V. R. Chowdari, Chem. Rev., 2013, 113(7), 5364-5457.   DOI
8 Q. Xiao, Y. Fan, X. Wang, R. A. Susantyoko, and Q. Zhang, Energy Environ. Sci., 2014, 7(2), 655-661.   DOI
9 X. Zuo, J. Zhu, P. Muller-Buschbaum, and Y. J. Cheng, Nano Energy, 2017, 31, 113-143.   DOI
10 H. Kim, H. Kim, S. Muhammad, J. H. Um, M. S. A. Sher Shah, P. J. Yoo, and W.-S. Yoon, J. Power Sources, 2020, 446, 227321.   DOI
11 H. Kim, W. I. Choi, Y. Jang, M. Balasubramanian, W. Lee, G. O. Park, S. B. Park, J. Yoo, J. S. Hong, Y. S. Choi, H. S. Lee, I. T. Bae, J. M. Kim, and W.-S. Yoon, ACS Nano, 2018, 12(3), 2909-2921.   DOI
12 Y. Q. Jing, J. Qu, W. Chang, Q. Y. Ji, H. J. Liu, T. T. Zhang, and Z. Z. Yu, ACS Appl. Mater. Interfaces, 2019, 11(36), 33091-33101.   DOI
13 Y. S. He, D. W. Bai, X. Yang, J. Chen, X. Z. Liao, and Z. F. Ma, Electrochem. commun., 2010, 12(4), 570-573.   DOI
14 H. Shi, Y. Dong, F. Zhou, J. Chen, and Z.-S. Wu, J. Phys. Energy, 2019, 1(1), 015002.
15 S. D. Kelly and B. Ravel, in Methods of Solid Analysis, Part 5 - Mineralogical Methods (Eds: A. L. Ulery, L. R. Drees), Soil Science Society of America, Madison, WI, 2008, p. 387.
16 S. Akhtar, W. Lee, M. Kim, M.-S. Park, and W.-S. Yoon, J. Electrochem. Sci. Technol., 2021, 12(1), 1-20.   DOI
17 H. Xie, S. Tang, Z. Gong, S. Vongehr, F. Fang, M. Li, and X. Meng, RSC Adv., 2014, 4(106), 61753-61758.   DOI
18 J. Yao, Y. Li, R. Huang, J. Jiang, S. Xiao, and J. Yang, Ionics, 2021, 27, 65-74.   DOI
19 X.-Y. Shan, G. Zhou, L.-C. Yin, W.-J. Yu, F. Li, and H.-M. Cheng, J. Mater. Chem. A, 2014, 2(42), 17808-17814.   DOI
20 J. Kim, S. Park, S. Hwang, and W.-S. Yoon, J. Electrochem. Sci. Technol., 2021, 13(1), 19-31.
21 A. P. Cohn, L. Oakes, R. Carter, S. Chatterjee, A. S. Westover, K. Share, and C. L. Pint, Nanoscale, 2014, 6(9), 4669-4675.   DOI
22 E. Liu, J. Wang, C. Shi, N. Zhao, C. He, J. Li, and J. Z. Jiang, ACS Appl. Mater. Interfaces, 2014, 6(20), 18147-18151.   DOI
23 Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, and H.-M. Cheng, Nano Energy, 2012, 1(1), 107-131.   DOI
24 T. Wang, N. Zhao, C. Shi, L. Ma, F. He, C. He, J. Li, and E. Liu, J. Phys. Chem. C, 2017, 121(36), 19559-19567.   DOI
25 P. Balaya, H. Li, L. Kienle, and J. Maier, Adv. Funct. Mater., 2003, 13, 621-625.   DOI
26 E. Ventosa, W. Xia, S. Klink, F. La Mantia, M. Muhler, and W. Schuhmann, Electrochim. Acta, 2012, 65, 22-29.   DOI
27 Y. Y. Hu, Z. Liu, K. W. Nam, O. J. Borkiewicz, J. Cheng, X. Hua, M. T. Dunstan, X. Yu, K. M. Wiaderek, L. S. Du, K. W. Chapman, P. J. Chupas, X. Q. Yang, and C. P. Grey, Nat. Mater., 2013, 12, 1130-1136.   DOI
28 S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, and J.-M. Tarascon, J. Electrochem. Soc., 2002, 149(5), A627-A634.   DOI
29 J. Jamnik and J. Maier, Phys. Chem. Chem. Phys., 2003, 5(23), 5215-5220.   DOI
30 H. Kim, W. Choi, J. Yoon, J. H. Um, W. Lee, J. Kim, J. Cabana, and W.-S. Yoon, Chem. Rev., 2020, 120(14). 6934-6976.   DOI
31 M. Keppeler and M. Srinivasan, ChemElectroChem, 2017, 4(11), 2727-2754.   DOI
32 H. Kim, D. I. Kim, and W.-S. Yoon, J. Electrochem. Sci. Technol., 2021, 13(1), 32-53.
33 T. Kim, W. Choi, H.-C. Shin, J.-Y. Choi, J. M. Kim, M.-S. Park, and W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(1), 14-25.   DOI
34 J. M. Tarascon and M. Armand, Nature, 2001, 414, 359-367.   DOI
35 Z. X. Shu, R. S. McMillan, and J. J. Murray, J. Electrochem. Soc., 1993, 140(4), 922-927.   DOI
36 H. Kim, W. Lee, W. Choi, S. Yun, E. Lee, and W.-S. Yoon, Adv. Funct. Mater, 2021, 32(17), 2110828.
37 C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nat. Nanotechnol., 2008, 3, 31-35.   DOI
38 M. Aadil, S. Zulfiqar, M. F. Warsi, P. O. Agboola, and I. Shakir, J. Mater. Res. Technol., 2020, 9(6), 12697-12706.   DOI
39 R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, Nat. Mater., 2015, 14, 271-279.   DOI
40 X. L. Huang, J. Chai, T. Jiang, Y. J. Wei, G. Chen, W. Q. Liu, D. Han, L. Niu, L. Wang, and X. B. Zhang, J. Mater. Chem., 2012, 22(8), 3404-3410.   DOI
41 J. R. Dahn, T. Zheng, Y. Liu, and J. S. Xue, Science, 1995, 270(5236), 590-593.   DOI
42 X. Li, X. Sun, X. Hu, F. Fan, S. Cai, C. Zheng, and G. D. Stucky, Nano Energy, 2020, 77, 105143.   DOI
43 Y. Kim, J. H. Lee, S. Cho, Y. Kwon, I. In, J. Lee, N. H. You, E. Reichmanis, H. Ko, K. T. Lee, H. K. Kwon, D. H. Ko, H. Yang, and B. Park, ACS Nano, 2014, 8(7), 6701-6712.   DOI
44 S. Permien, S. Indris, A. L. Hansen, M. Scheuermann, D. Zahn, U. Schurmann, G. Neubuser, L. Kienle, E. Yegudin, and W. Bensch, ACS Appl. Mater. Interfaces, 2016, 8(24), 15320-15332.   DOI
45 J. H. Um, K. Palanisamy, M. Jeong, H. Kim, and W.-S. Yoon, ACS Nano, 2019, 13(5), 5674-5685.   DOI