Browse > Article
http://dx.doi.org/10.5012/bkcs.2006.27.1.082

Suppression of Co-intercalation on the Carbon Anode by MA Addition in a PC-base Electrolyte  

Kim, Woo-Seong (R&D Center, DAEJUNG Chemicals & Metals Co., Ltd.)
Park, Dong-Won (Department of Chemistry & IBS & RRC/HECS, Chonnam National University)
Jung, Hwan-Jung (Department of Chemistry & IBS & RRC/HECS, Chonnam National University)
Choi, Yong-Kook (Department of Chemistry & IBS & RRC/HECS, Chonnam National University)
Publication Information
Abstract
Propylene Carbonate (PC) has the interesting properties of being able to dissolve and dissociate lithium salts, thus leading to highly conducting electrolytes even at low temperatures. Moreover, electrolytes that contain PC are stable against oxidation at voltages up to ~5 V. However, it is known that, when lithium is intercalated into graphite in pure PC based electrolytes, solvent co-intercalation occurs, leading to the destruction of the graphite structure. (i.e., exfoliation). The objective of this study was to suppress PC decomposition and prevent exfoliation of the graphite anode by co-intercalation. Electrochemical characteristics were studied using Kawasaki mesophase fine carbon (KMFC) in different 1 M $LiPF_6$/PC-based electrolytes. Electrochemical experiments were completed using chronopotentiometry, cyclic voltammetry, impedance spectroscopy, X-ray diffraction, and scanning electron microscopy. From the observed results, we conclude that the MA and $Li_2CO_3$ additive suppressed co-intercalation of the PC electrolyte into the graphite anode. The use of additives, for reducing the extent of solvent decomposition before exfoliation of the graphite anode, could therefore enhance the stability of a KMFC electrode.
Keywords
Lithium ion battery; Co-intercalation; Propylene carbonate; Methyl acetate; Lithium carbonate;
Citations & Related Records

Times Cited By Web Of Science : 8  (Related Records In Web of Science)
Times Cited By SCOPUS : 9
연도 인용수 순위
1 Abe, T.; Kawabata, N.; Mizutani, Y.; Inaba, M.; Ogumi, Z. J. Electrochem. Soc. 2003, 150, A257   DOI   ScienceOn
2 Shu, Z. X.; McMillan, R. S.; Murray, J. J. J. Electrochem. Soc. 1993, 140, 922   DOI
3 Naji, A.; Ghanbaja, J.; Willmann, P.; Billaud, D. Electrochim. Acta 2000, 45, 1893   DOI   ScienceOn
4 Aurbach, D.; Chusid, O. Y.; Carmeli, Y.; Babai, M.; Ein-Eli, Y. J. Power Sources 1993, 43, 47   DOI   ScienceOn
5 Aurbach, D.; Ein-Eli, Y.; Markovsky, B.; Carmeli, Y.; Yamin, H.; Luski, S. Electrochim. Acta 1994, 39, 2559   DOI   ScienceOn
6 Shu, Z. X.; McMillan, R. S.; Murray, J. J. J. Electrochem. Soc. 1995, 140, 2873
7 Fong, R.; Van Sacken, U.; Dahn, J. R. J. Electrochem. Soc. 1990, 137, 2009   DOI
8 Wang, C.; Appleby, A. J.; Little, F. E. J. Electroanal. Chem. 2002, 519, 9   DOI   ScienceOn
9 Aurbach, D.; Ein-Eli, Y.; Chusid, O. Y.; Carmeli, Y.; Babai, M.; Yamin, H. J. Electrochem. Soc. 1994, 141, 603   DOI
10 Zhang, X.; Kostecki, R.; Richard Son, T. J.; Pugh, J. K.; Ross, Jr, P. N. J. Electrochem. Soc. 2001, 148, A 13141
11 Billaud, D.; Naji, A.; Willmann, P. J. Chem. Soc., Chem. Commun. 1995, 1867
12 Pan, Q.; Guo, K.; Wang, L.; Fang, S. J. Electrochem. Soc. 2002, 149, A1218   DOI   ScienceOn
13 Zhang, S. S.; Xu, K.; Allen, J. L.; Jow, T. R. J. Power Sources 2002, 110, 216   DOI   ScienceOn
14 Takami, N.; Satoch, A.; Hara, M.; Ohsaki, T. J. Electrochem. Soc. 1995, 142, 371   DOI
15 Chung, G. C.; Kim, H. J.; Yu, S. I.; Jun, S. H.; Choi, J. W.; Kim, M. H. J. Electrochem. Soc. 2000, 147, 4391   DOI   ScienceOn
16 Dahn, J. R.; Fong, R.; Spoon, M. J. Phy. Rev. B 1990, 42, 6424   DOI   ScienceOn
17 Dey, A. N.; Sullivan, B. P. J. Electrochem. Soc. 1970, 117, 222   DOI
18 Ding, M. S.; Jow, T. R. J. Electrochem. Soc. 2003, 150, A620   DOI   ScienceOn
19 Arakawa, M.; Yamaki, J.-I. J. Power Sources 1995, 54, 250   DOI   ScienceOn