DOI QR코드

DOI QR Code

Suppression of Co-intercalation on the Carbon Anode by MA Addition in a PC-base Electrolyte

  • Kim, Woo-Seong (R&D Center, DAEJUNG Chemicals & Metals Co., Ltd.) ;
  • Park, Dong-Won (Department of Chemistry & IBS & RRC/HECS, Chonnam National University) ;
  • Jung, Hwan-Jung (Department of Chemistry & IBS & RRC/HECS, Chonnam National University) ;
  • Choi, Yong-Kook (Department of Chemistry & IBS & RRC/HECS, Chonnam National University)
  • Published : 2006.01.20

Abstract

Propylene Carbonate (PC) has the interesting properties of being able to dissolve and dissociate lithium salts, thus leading to highly conducting electrolytes even at low temperatures. Moreover, electrolytes that contain PC are stable against oxidation at voltages up to ~5 V. However, it is known that, when lithium is intercalated into graphite in pure PC based electrolytes, solvent co-intercalation occurs, leading to the destruction of the graphite structure. (i.e., exfoliation). The objective of this study was to suppress PC decomposition and prevent exfoliation of the graphite anode by co-intercalation. Electrochemical characteristics were studied using Kawasaki mesophase fine carbon (KMFC) in different 1 M $LiPF_6$/PC-based electrolytes. Electrochemical experiments were completed using chronopotentiometry, cyclic voltammetry, impedance spectroscopy, X-ray diffraction, and scanning electron microscopy. From the observed results, we conclude that the MA and $Li_2CO_3$ additive suppressed co-intercalation of the PC electrolyte into the graphite anode. The use of additives, for reducing the extent of solvent decomposition before exfoliation of the graphite anode, could therefore enhance the stability of a KMFC electrode.

Keywords

References

  1. Arakawa, M.; Yamaki, J.-I. J. Power Sources 1995, 54, 250 https://doi.org/10.1016/0378-7753(94)02078-H
  2. Shu, Z. X.; McMillan, R. S.; Murray, J. J. J. Electrochem. Soc. 1995, 140, 2873
  3. Dey, A. N.; Sullivan, B. P. J. Electrochem. Soc. 1970, 117, 222 https://doi.org/10.1149/1.2407470
  4. Fong, R.; Van Sacken, U.; Dahn, J. R. J. Electrochem. Soc. 1990, 137, 2009 https://doi.org/10.1149/1.2086855
  5. Aurbach, D.; Ein-Eli, Y.; Chusid, O. Y.; Carmeli, Y.; Babai, M.; Yamin, H. J. Electrochem. Soc. 1994, 141, 603 https://doi.org/10.1149/1.2054777
  6. Aurbach, D.; Chusid, O. Y.; Carmeli, Y.; Babai, M.; Ein-Eli, Y. J. Power Sources 1993, 43, 47 https://doi.org/10.1016/0378-7753(93)80101-T
  7. Aurbach, D.; Ein-Eli, Y.; Markovsky, B.; Carmeli, Y.; Yamin, H.; Luski, S. Electrochim. Acta 1994, 39, 2559 https://doi.org/10.1016/0013-4686(94)00221-5
  8. Dahn, J. R.; Fong, R.; Spoon, M. J. Phy. Rev. B 1990, 42, 6424 https://doi.org/10.1103/PhysRevB.42.6424
  9. Abe, T.; Kawabata, N.; Mizutani, Y.; Inaba, M.; Ogumi, Z. J. Electrochem. Soc. 2003, 150, A257 https://doi.org/10.1149/1.1541004
  10. Shu, Z. X.; McMillan, R. S.; Murray, J. J. J. Electrochem. Soc. 1993, 140, 922 https://doi.org/10.1149/1.2056228
  11. Naji, A.; Ghanbaja, J.; Willmann, P.; Billaud, D. Electrochim. Acta 2000, 45, 1893 https://doi.org/10.1016/S0013-4686(99)00410-7
  12. Zhang, X.; Kostecki, R.; Richard Son, T. J.; Pugh, J. K.; Ross, Jr, P. N. J. Electrochem. Soc. 2001, 148, A 13141
  13. Chung, G. C.; Kim, H. J.; Yu, S. I.; Jun, S. H.; Choi, J. W.; Kim, M. H. J. Electrochem. Soc. 2000, 147, 4391 https://doi.org/10.1149/1.1394076
  14. Wang, C.; Appleby, A. J.; Little, F. E. J. Electroanal. Chem. 2002, 519, 9 https://doi.org/10.1016/S0022-0728(01)00708-2
  15. Billaud, D.; Naji, A.; Willmann, P. J. Chem. Soc., Chem. Commun. 1995, 1867
  16. Ding, M. S.; Jow, T. R. J. Electrochem. Soc. 2003, 150, A620 https://doi.org/10.1149/1.1566019
  17. Pan, Q.; Guo, K.; Wang, L.; Fang, S. J. Electrochem. Soc. 2002, 149, A1218 https://doi.org/10.1149/1.1499499
  18. Zhang, S. S.; Xu, K.; Allen, J. L.; Jow, T. R. J. Power Sources 2002, 110, 216 https://doi.org/10.1016/S0378-7753(02)00272-0
  19. Takami, N.; Satoch, A.; Hara, M.; Ohsaki, T. J. Electrochem. Soc. 1995, 142, 371 https://doi.org/10.1149/1.2044017

Cited by

  1. Enhanced graphite passivation in Li-ion battery electrolytes containing disiloxane-type additive/co-solvent vol.14, pp.12, 2010, https://doi.org/10.1007/s10008-008-0710-4
  2. Synthesis of Silicon-Carbon by Polyaniline Coating and Electrochemical Properties of the Si-C|Li Cell vol.27, pp.8, 2006, https://doi.org/10.5012/bkcs.2006.27.8.1175
  3. The importance of the active surface area of graphite materials in the first lithium intercalation vol.174, pp.2, 2006, https://doi.org/10.1016/j.jpowsour.2007.06.036
  4. Electrochemical Properties of Carbon Composites Prepared by Using Graphite Ball-milled in Argon and Air Atmosphere vol.29, pp.6, 2006, https://doi.org/10.5012/bkcs.2008.29.6.1121
  5. Ethyl Acetate가 첨가된 리튬염 유기전해질 특성 연구 vol.52, pp.6, 2006, https://doi.org/10.5012/jkcs.2008.52.6.668
  6. 리튬이온 전지의 저온특성에 대한 Ethyl Acetate의 효과 vol.52, pp.6, 2006, https://doi.org/10.5012/jkcs.2008.52.6.676
  7. Study on the Cycling Performances of Lithium-Ion Polymer Cells Containing Polymerizable Additives vol.30, pp.2, 2006, https://doi.org/10.5012/bkcs.2009.30.2.319
  8. Fabrication of 3-Dimensional LiMn2O4 Thin Film vol.30, pp.3, 2006, https://doi.org/10.5012/bkcs.2009.30.3.653