DOI QR코드

DOI QR Code

Prelithiation of Alpha Phase Nanosheet-Type VOPO4·2H2O Anode for Lithium-Ion Batteries

  • Tron, Artur (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Mun, Junyoung (Department of Energy and Chemical Engineering, Incheon National University)
  • Received : 2021.06.09
  • Accepted : 2021.06.25
  • Published : 2022.02.28

Abstract

Owing to the rising concern of global warming, lithium-ion batteries have gained immense attention over the past few years for the development of highly efficient electrochemical energy conversion and storage systems. In this study, alpha-phase VOPO4·2H2O with nanosheet morphology was prepared via a facile hydrothermal method for application in high-performance lithium-ion batteries. The X-ray diffraction and scanning electron microscopy (SEM) analyses indicated that the obtained sample had an alpha-2 (αII) phase, and the nanosheet morphology of the sample was confirmed using SEM. The lithium-ion battery with VOPO4·2H2O as the anode exhibited excellent long-term cycle life and a high capacity of 256.7 mAh g-1 at room temperature. Prelithiation effectively improved the specific capacity of pristine VOPO4·2H2O. The underlying electrochemical mechanisms were investigated by carrying out AC impedance, rate capability, and other instrumental analyses.

Keywords

Acknowledgement

This work was also supported by the Post-Doctor Research Program (2017-2018) through the Incheon National University (INU), Incheon, Republic of Korea.

References

  1. J. B. Goodenough, Y. Kim, Chem. Mater., 2010, 22(3), 587-603. https://doi.org/10.1021/cm901452z
  2. M .R. Palacin, Chem. Soc. Rev., 2009, 38(9), 2565-2575. https://doi.org/10.1039/b820555h
  3. N. Nitta, F. Wu, J. T. Lee, G. Yushin, Mater. Today, 2015, 18(5), 252-264. https://doi.org/10.1016/j.mattod.2014.10.040
  4. N. Nitta, G. Yushin, Particle & Particle Systems Characterization, 2014, 31(3), 317-336. https://doi.org/10.1002/ppsc.201300231
  5. A. Tron, Y. N. Jo, S. H. Oh, Y. D. Park, J. Mun, ACS Appl. Mater. Interfaces, 2017, 9(14), 12391-12399. https://doi.org/10.1021/acsami.6b16675
  6. S. Jeong, B. H. Kim, Y. D. Park, C. Y. Lee, J. Mun, A. Tron, J. Alloy. Comp., 2019, 784, 720-726. https://doi.org/10.1016/j.jallcom.2019.01.046
  7. B. M. Azmi, T. Ishihara, H. Nishiguchi, Y. Takita, J. Power Sources, 2003, 119, 273-277. https://doi.org/10.1016/S0378-7753(03)00148-4
  8. L. Zhou, Q. Liu, Z. Zhang, K. Zhang, F. Xiong, S. Tan, Q. An, Y.-M. Kang, Z. Zhou, L. Mai, Adv. Mater., 2018, 30(32), 1801984. https://doi.org/10.1002/adma.201801984
  9. H. Y. Shi, Y. Song, Z. Qin, C. Li, D. Guo, X. X. Liu, X. Sun, Angew. Chem. Int. Ed., 2019, 58(45), 16057-16061. https://doi.org/10.1002/anie.201908853
  10. B. M. Azmi, T. Ishihara, H. Nishiguchi, Y. Takita, Electrochimica Acta, 2002, 48(2), 165-170. https://doi.org/10.1016/S0013-4686(02)00597-2
  11. N. Dupre, J. Gaubicher, T. Le Mercier, G. Wallez, J. Angenault, M. Quarton, Solid State Ionics, 2001, 140(3-4), 209-221. https://doi.org/10.1016/S0167-2738(01)00818-9
  12. X. Ji, J. Chen, F. Wang, W. Sun, Y. Ruan, L. Miao, J. Jiang, C. Wang, Nano Lett. 2018, 18(10), 6441-6448. https://doi.org/10.1021/acs.nanolett.8b02854
  13. T. S. Arthur, K. Kato, J. Germain, J. Guo, P. A. Glans, Y. S. Liu, D. Holmes, X. Fand, F. Mizuno, Chem. Commun., 2015, 51(86), 15657-15660. https://doi.org/10.1039/c5cc07161e
  14. G. He, W. H. Kan, A. Manthiram, Chem. Mater., 2016, 28(2), 682-688. https://doi.org/10.1021/acs.chemmater.5b04605
  15. L. Kong, C. Yan, J. Q. Huang, M. Q. Zhao, M. M. Titirici, R. Xiang, Q. Zhang, Energy Environ. Mater., 2018, 1(3), 100-112. https://doi.org/10.1002/eem2.12012
  16. B. Zhang, Y. D. Han, J. C. Zheng, J. F. Zhang, C. Shen, L. Ming, X.-B. Yuan, H. Li, ChemComm, 2014, 50(76), 11132-11134.
  17. M. M. Ren, Z. Zhou and X. P. Gao, J. Appl. Electrochem., 2010, 40(1), 209-213. https://doi.org/10.1007/s10800-009-9958-3
  18. T. A. Kerr, J. Gaubicher, L. F. Nazar, Electrochem. Solid-State Lett., 2000, 3(10), 460. https://doi.org/10.1149/1.1391179
  19. Y. Choi, T. Y. Ahn, S. H. Ha, J. H. Cho, ChemComm, 2019, 55(51), 7300-7302.
  20. R. Dedryvere, S. Laruelle, S. Grugeon, P. Poizot, D. Gonbeau, J. M. Tarascon, Chem. Mater., 2004, 16(6), 1056-1061. https://doi.org/10.1021/cm0311269
  21. J. Cabana, L. Monconduit, D. Larcher, M. R. Palacin, Adv. Mater., 2010, 22(35), E170-E192.
  22. S. Liu, J. Feng, X. Bian, J. Liu, H. Xu, RSC Adv., 2015, 5(75), 60870-60875. https://doi.org/10.1039/C5RA08926C
  23. P. Guo, H. Song, X. Chen, Electrochem Commun., 2009, 11(6), 1320-1324. https://doi.org/10.1016/j.elecom.2009.04.036
  24. S. Lim, K. Lee, I. Shin, A. Tron, J. Mun, T. Yim, T. H. Kim, J. Power Sources, 2017, 360, 585-592. https://doi.org/10.1016/j.jpowsour.2017.06.049
  25. F. Holtstiege, R. Schmuch, M. Winter, G. Brunklaus, T. Placke, J. Power Sources, 2018, 378, 522-526. https://doi.org/10.1016/j.jpowsour.2017.12.069
  26. L. Mai, L. Xu, B. Hu, Y. Gu, J. Mater. Res., 2010, 25(8), 1413-1420. https://doi.org/10.1557/jmr.2010.0196
  27. F. Holtstiege, T. Koc?, T. Hundehege, V. Siozios, M. Winter, T. Placke, ACS Appl. Energy Mater., 2018, 1(8), 4321-4331. https://doi.org/10.1021/acsaem.8b00945
  28. B. Garcia, M. Millet, J.P. Pereira-Ramos, N. Baffier, D. Bloch, J. Power Sources, 1999, 81, 670-674. https://doi.org/10.1016/S0378-7753(99)00097-X
  29. W. I. Jung, M. Nagao, C. Pitteloud, A. Yamada, and R. Kann, J. Power Sources, 2010, 195(10), 3328-3332. https://doi.org/10.1016/j.jpowsour.2009.11.132
  30. A. Tron, H. Kang, J. Kim, J. Mun, J. Electrochem. Sci. Technol., 2018, 9(1), 60-68. https://doi.org/10.5229/JECST.2018.9.1.60
  31. C. Siu, I. D. Seymour, S. Britto, H. Zhang, J. Rana, J. Feng, F. O. Omenya, H. Zhou, N. A. Chernova, G. Zhou, C. P. Grey, L. F. J. Piper, M. S. Whittingham, ChemComm, 2018, 54(56), 7802-7805.
  32. Z. Chen, Q. Chen, H. Wang, R. Zhang, H. Zhou, L. Chen, M. S. Whittingham, Electrochem. Commun., 2014, 46, 67-70. https://doi.org/10.1016/j.elecom.2014.06.009
  33. Z. Chen, Q. Chen, L. Chen, R. Zhang, H. Zhou, N. A. Chernova, M. S. Whittingham, J. Electrochem. Soc., 2013, 160(10), A1777. https://doi.org/10.1149/2.064310jes
  34. J. Gaubicher, T. Le Mercier, Y. Chabre, J. Angenault, M. Quarton, J. Electrochem. Soc., 1999, 146(12), 4375. https://doi.org/10.1149/1.1392646
  35. N. G. Park, K. M. Kim, S. H. Chang, Electrochem. Commun., 2001, 3(10), 553-556. https://doi.org/10.1016/S1388-2481(01)00217-X
  36. Z. H. Chen, Y. Z. Ma, P. C. Ma, J. L. Cao, Y. Wang, G. Sun, X. D. Wang, H. Bala, C. X. Zhang, Z. Y. Zhang, Trans. Nonferrous Met. Soc. China, 2017, 27(2), 377-381. https://doi.org/10.1016/s1003-6326(17)60042-6
  37. J. H. Park, J. H. Park, S. Jeong, H. N. Han, J. Mun, Electrochimica Acta, 2018, 282, 582-587. https://doi.org/10.1016/j.electacta.2018.06.064
  38. J. Hyoung, J. W. Heo, M. S. Chae, S. T. Hong, ChemSusChem, 2019, 12(5), 1069-1075. https://doi.org/10.1002/cssc.201802527
  39. S. S. Fedotov, A. S. Samarin, V. A. Nikitina, K. J. Stevenson, A. M. Abakumov, E. V. Antipov, ACS Appl. Mater. Interfaces., 2019, 11(13), 12431-12440. https://doi.org/10.1021/acsami.8b21272
  40. F. Wang, W. Sun, Z. Shadike, E. Hu, X. Ji, T. Gao, X. Q. Yang, K. Xu, C. Wang, Angew. Chem. Int. Ed., 2018, 57(37), 11978-11981. https://doi.org/10.1002/anie.201806748
  41. Y. Shao, M. F. El-Kady, L. J. Wang, Q. Zhang, Y. Li, H. Wang, M. F. Mousavi, R. B. Kaner, Chem. Soc. Rev., 2015, 44(11), 3639-3665. https://doi.org/10.1039/C4CS00316K
  42. H. R. Tietze, Aust. J. Chem., 1981, 34(10), 2035-2038. https://doi.org/10.1071/CH9812035